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are necessary for increasing effect sizes in stroke patients.

Objectives: This systematic review and meta-analysis aim to summarize and analyze the available evidence of
non-invasive brain stimulation/spinal cord stimulation on gait, balance and/or lower limb motor recovery in stroke

Methods: The PubMed database was searched from its inception through to 31/03/2021 for randomized controlled
trials investigating repetitive transcranial magnetic stimulation or transcranial/trans-spinal direct current/alternating
current stimulation for improving gait, balance and/or lower limb motor function in stroke patients.

Results: Overall, 25 appropriate studies (including 657 stroke subjects) were found. The data indicates that non-
invasive brain stimulation/spinal cord stimulation is effective in supporting recovery. However, the effects are inho-
mogeneous across studies: (1) transcranial/trans-spinal direct current/alternating current stimulation induce greater
effects than repetitive transcranial magnetic stimulation, and (2) bilateral application of non-invasive brain stimulation

Conclusions: The current evidence encourages further research and suggests that more individualized approaches

Keywords: rTMS, tDCS, tACS, tsDCS, Stroke, Gait, Balance, Lower limb function

Introduction

Each year, approximately 795,000 people experience a
new or recurrent stroke [1]. Walking and balance distur-
bances are common post-stroke complications, affecting
about two-thirds of stroke survivors [2]. These deficits are
associated with worsened quality of life, impeded com-
munity reintegration [3], and an increased risk of falling
[4]. The ability to walk independently is the most com-
mon rehabilitation goal after stroke [5]. However, about
50% of stroke survivors suffer from an impaired walking
ability 6 months after current standard of care [2]. Other
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interventions are therefore needed to improve recovery.
Thus, the development of innovative therapeutical strate-
gies for improving balance and walking ability is one of
the top research priorities in stroke rehabilitation [6].
Non-invasive neuromodulation methods such as repeti-
tive transcranial magnetic stimulation (rTMS), transcra-
nial direct/alternating current stimulation (tDCS/tACS)
and trans-spinal direct current stimulation (tsDCS) can
modulate neural processing and have thus the potential
to counteract maladaptive neural plasticity after stroke
and contribute to a better recovery (7, 8].

Neural background of walking and balance

Neuroimaging studies have shown that walking and bal-
ance are complex sensorimotor functions controlled
by integrated cortical, subcortical, and spinal networks
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[9-11]. A single photon emission computed tomogra-
phy study demonstrates bilateral activation within the
primary sensorimotor area, supplementary motor area,
basal ganglia as well as within the visual cortex, cerebellar
vermis, and part of the left lower temporal lobe during
walking [12]. Similarly, a positron emission tomography
study shows a bilateral increase of cerebral blood flow
within the primary sensory cortex, primary motor cor-
tex and supplementary motor cortex as well as within the
anterior part of the cerebellum during active and passive
bipedal movement [13]. A recent meta-analysis indicates
a key role of the brainstem, cerebellum, basal ganglia,
thalamus, and several cortical regions during postural
control [9]. Accordingly, another meta-analysis shows
that the cerebellum, basal ganglia, thalamus, hippocam-
pus, inferior parietal cortex, and frontal lobe regions
are involved during balance tasks [14]. Importantly, the
available data indicates that also a spinal network may
be involved in postural balance and gait control [15].
E.g., multiple studies demonstrate that balance train-
ing induces suppression of H-reflexes [16]. Thus, it is
conceivable that the application of non-invasive brain
stimulation over several cortical regions as well as over
the cerebellum, the brainstem and the spinal cord may
be effective in the modulation of walking, balance and/or
lower limbs motor function.

Stroke-induced changes of neural control during walking

Up to now, different neuroimaging techniques have been
used to investigate the neural mechanism of walking dis-
ability and walking recovery in stroke patients. A large
part of the available data demonstrates a stroke-induced
disinhibition of the contralesional hemisphere with a shift
of the between-hemispheric balance to the detriment of
the affected hemisphere, as well as a correlation between
normalization of neural processing and favorable motor
recovery [17-21]. A diffusion tensor MRI demonstrates a
between-hemispheric asymmetry in fractional anisotropy
of the posterior limb of the internal capsule [18]. The
shift of balance towards the non-lesioned hemisphere
correlates with the amount of walking disability [18].
An optical imaging study shows a between-hemispheric
imbalance of oxygenated hemoglobin level in the medial
primary sensorimotor cortex that is greater in the unaf-
fected hemisphere than in the affected hemisphere. A
reduction of this asymmetry is associated with a favora-
ble gait recovery [19]. A TMS study shows an interhemi-
spheric asymmetry of corticomotor excitability of the
legs to the detriment of the affected hemisphere, as well
as a correlation between the reduction of this asymmetry
and a favorable motor outcome [20]. Another TMS trial
reveals increased connectivity between the contralesional
hemisphere and the affected lower limb, which correlated
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with the amount of walking disability [18]. A diffusion-
weighted MRI shows that the higher the anatomical con-
nectivity between the ipsilesional M1 and the (a) cerebral
peduncle, (b) thalamus, and (c) red nucleus, the better
is the lower limb motor performance [21]. Furthermore,
stroke-related disturbances of the spinal system were
detected, as well as its relationship to gait disability. In
fact, stroke patients show an increase of the H-reflex, in
comparison to healthy subjects [22], and its normaliza-
tion to be associated with a successful motor recovery of
the walking ability [23].

Non-invasive brain stimulation for network modulation

The application of non-invasive brain stimulation in
rehabilitation aims at prolonged effects on the neural
network. It is assumed that these techniques modulate
synaptic connectivity, similar to long-term potentia-
tion and long-term depression, which are considered
relevant mechanism of plastic reorganization [24]. The
amount and the duration of the induced neurophysi-
ological changes depend on the stimulation intensity
and duration [25, 26]. The available data indicates that a
direct current of at least 0.6 mA that is applied for at least
three minutes is sufficient to modulate cortical excit-
ability beyond the stimulation period. Applying tDCS
of 1 mA for five to seven minutes leads to short-term
changes of cortical excitability that last 10—15 min after
the end of stimulation. For long-term modulation of cor-
tical excitability (1 h or more) a current of 1 mA need to
be applied over a period of at least 11 min [25]. A sin-
gle session of rTMS induces cortical excitability changes
that last for at least 30 min after the end of stimulation
[26]. In previous decades specific certain protocols have
been established as either “facilitatory” or “inhibitory”
for both rTMS and tDCS/tACS/tsDCS techniques.
High-frequency rTMS (>5 Hz), intermittent theta burst
stimulation (iTBS), paired pulse rTMS (inter-stimulus
interval 1.5 ms) and anodal tDCS/tACS are considered
to have “up-regulating” effects on neural processing. In
contrast low-frequency rTMS (1 Hz), continuous theta
burst stimulation (cTBS), paired-pulse rTMS (inter-
stimulus interval 3 ms) and cathodal tDCS are expected
to induce a “down-regulation” [7, 8]. Indeed, several stud-
ies demonstrated a modulation of neural processing out-
side this framework [27-30]. An earlier study has shown
that several rTMS protocols (1 Hz, 10 Hz, 15 Hz, 20 Hz)
can induce an increase and a decrease of corticospinal
excitability in the stimulated hemisphere [27]. Similarly,
a more recent trial demonstrated inhibitory and facilita-
tory influences on corticospinal excitability of both iTBS
and cTBS [28]. The TBS-induced effect was highly cor-
related with the pre-interventional MEP latency [28].
Similarly, ¢cTBS decreased and increased corticospinal
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excitability, and its effects correlated with pre-interven-
tional MEP variability and late I-wave recruitment [29].
Also, both anodal and cathodal tDCS induced increases
and decreases of corticospinal excitability in the stimu-
lated hemisphere, and the intervention-induced effects
correlated with the pre-interventional MEP-latency [30].
Thus, present data shows that the responses to “up” and
“down” regulating brain stimulation protocols are incon-
sistent, already in the healthy condition, and the factors
influencing this inter-individual variability are not com-
pletely understood.

Another relevant issue is the state-dependency of stim-
ulation effects. Specifically, brain state-dependent single-
pulse TMS that was controlled by volitional modulation
of sensorimotor beta-band oscillatory activity induced
a robust increase of corticospinal excitability [31]. By
contrast, the identical stimulation pattern applied inde-
pendent of the brain state resulted in its decrease. The
same was true, when single-pulse TMS was paired with
peripheral stimulation; this pairing led to an increase or
decrease of corticospinal excitability, when applied dur-
ing volitional modulation of the sensorimotor beta-band
activity or independent of the brain state, respectively.
(32, 33].

There might be discrepancies, however, between online
(i.e., during the intervention) and offline (i.e., after the
intervention) stimulation effects, particularly, when the
former is applied during behavioral tasks and the latter
is done at rest. In this context, a meta-analysis detected
timing- and cohort-dependent effects of anodal tDCS
on the modulation of working memory. Healthy sub-
jects demonstrated significant offline improvement but
no online effects. By contrast, neuropsychiatric patients
showed improved working memory during the stimula-
tion but not afterwards [34]. Similarly, another meta-
analysis detected timing-dependent effects of rTMS
with regard to episodic memory, which was improved or
deteriorated, when the stimulation was applied before or
during the task [35]. Along the same lines a recent meta-
analysis showed that rTMS and tDCS modulated visuos-
patial abilities in healthy subjects to a larger extent when
applied before than during the task [36]. Therefore, we
may assume that the effectiveness of non-invasive brain
stimulation in supporting motor recovery after stroke
will not depend on the stimulation protocol only, but also
on the behavioral context.

Non-invasive brain/spinal cord stimulation for improving
walking, balance and lower limb motor function in stroke
patients

Despite its limitations, the theory of interhemispheric
imbalance and rivalry provides the most often used theo-
retical framework for the application of noninvasive brain
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stimulation in stroke rehabilitation [37]. Previous studies
have demonstrated that several stroke-induced deficien-
cies, such as upper limb impairment or visuo-spatial dis-
abilities may be successfully restored by application of
non-invasive brain stimulation within this concept [38,
39]. The available data (see previous subchapter) indi-
cates that a similar application may also be useful for
supporting gait, balance, and lower limbs” motor func-
tioning. This means either “inhibitory” stimulation of the
contralesional hemisphere or “facilitatory” stimulation of
the ipsilesional hemisphere. Furthermore, it is conceiva-
ble that “inhibitory” spinal stimulation may be beneficial.

This systematic review and meta-analysis summarize
the current evidence for non-invasive brain and spinal
cord stimulation to support gait, balance and/or lower
limbs function in stroke patients. The effectiveness is
analyzed with regard to the technique used (rTMS,
tDCS/tACS/tsDCS), protocols applied (anodal/cathodal/
bilateral tDCS, low-frequency/high-frequency rTMS,
iTBS/cTBS), stimulated hemisphere (affected/non-
affected/ bilateral), stimulated area (primary motor cor-
tex, cerebellum, supplementary motor area, spinal cord)
and applied study design (stimulation amount, evaluation
schedule). Furthermore, information regarding the par-
ticipants (time since stroke, gender, stroke type and loca-
tion), the exact stimulation location, and methodological
quality of the trial is included.

Methods

The protocol of this systematic review and meta-analysis
bases on the Preferred Reporting Items for Systematic
Reviews and Meta-Analysis (PRISMA) guidelines. A pre-
vious registration of the protocol was not performed.

Search protocol

Relevant studies were identified by searching of elec-
tronic database PubMed from inception to 31/03/2021.
The combination of following search terms was used: (1)
“tDCS” or “r'TMS” or “tACS” or “tsDCS” and (2) “balance”
or “postural control” or “gait” or “walking” or “lower
limbs” and (3) stroke. The screening was performed by
two independent reviewers (JV and AG). Disagreements
were resolved by consensus. Figure 1 illustrates the
search strategy based on the PRISMA guidelines.

Eligibility criteria

Trials matching the following criteria were enrolled: (1)
randomized controlled trials, (2) diagnosis stroke, (3) at
least five participants per intervention, (4) rTMS, tDCS,
tACS and/or tsDCS as intervention, (5) pre- and post-
interventional assessments of gait, balance and/or lower
limb motor function, (6) written in English or German.
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Data extraction

The data on gait, balance and/or lower limb function
were extracted from the included publications. Depend-
ing on the availability, we considered either (1) the pre-
intervention, post-intervention and follow up data, or
(2) the difference between the pre-intervention and
post-intervention data and the difference between the
pre-intervention and follow up-data were obtained. The
secondary data extracted were: (1) patients’ character-
istics (number, gender, age, time since incident, stroke
etiology and location), (2) stimulation parameters (tech-
nique used, positioning, duration, intensity, number of
sessions), (3) methods (study design, assessments, evalu-
ations schedule).

Data synthesis
Based on the methodological approach, the included
experiments were split up into (i) experiments comparing

real brain stimulation with sham stimulation and (ii)
experiments comparing two different brain stimula-
tion protocols. Within this framework, a subcategoriza-
tion was done depending on (a) stimulation technique
(rTMS, tDCS/tACS/tsDCS), (b) stimulation positioning
(affected hemisphere, non-affected hemisphere, bilateral,
spinal) and (c) stimulation protocol (“facilitatory”: anodal
tDCS/tACS/tsDCS, high-frequency rTMS, iTBS, “inhibi-
tory”: cathodal tDCS/tACS/tsDCS, low-frequency rTMS,
¢TBS, and “combined”).

Statistical analysis

Effect size calculators were used to estimate the effect
size and the 95% confidence interval for each experiment
[40, 41]. Depending on availability, the calculations are
based on either means and standard deviations of pre-
intervention, post-intervention and follow up data, or on
means and standard deviations of the difference between
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the pre-intervention and post-intervention data and
the difference between the pre-intervention and follow
up-data. Where multiple assessments were applied, the
effect sizes and the 95% confidence intervals were calcu-
lated for all outcomes, and on their basis average values
were determinate for each experiment. The Cohen defi-
nition of effect size was used for interpretation (d>0.2
“small’; d > 0.5 “medium’, d > 0.8 “large”) [42]. The incon-
sistency test (I12) was applied to evaluate the homogene-
ity across experiments, where values above 50% indicate
high heterogeneity [43].

Methodological quality assessment

11-items PEDro scale was applied to evaluate the meth-
odological quality of the studies, such as random alloca-
tion, subjects” and assessors” blinding, dropout rate etc
[44]. The higher the total score, the higher the methodo-
logical quality (10-9 excellent, 8—6 good, 5—4 fair and <4
poor).

Results

TDCS, tADCS, tsDCS

In total, 16 studies tested the effects of tDCS, tACS or
tsDCS (Table 1) [45-60]. Their methodological quality
varied between fair and excellent (Table 2).

Participants: Overall 445 stroke patients (299 males,
146 females) were investigated. The cohorts were incon-
sistent in term of the mean time since stroke (between
two days and ten years), stroke etiology (309 ischemic, 55
hemorrhagic, 81 na), lesion location (91 subcortical, 109
cortical, 245 na) and lesion site (108 right, 86 left, 251 na).

Study design: 14 studies investigated the effective-
ness of real tDCS/tACS/tsDCS in comparison to sham
stimulation [45-53, 56—60]. Five studies compared dif-
ferent stimulation protocols [45, 54-56, 60]. The over-
all duration of active stimulation varied between 15 and
400 min (one to 16 sessions with a duration of seven to
40 min were applied). All studies performed a pre- and
post-evaluation of the parameters assessed. Nine stud-
ies performed additional follow-up evaluations, one up
to 24 weeks after completing the intervention [45, 46, 49,
51, 52, 54-56, 58].

Stimulation protocol: Seven studies applied anodal
tDCS over the ipsilesional hemisphere [45, 47, 49, 52,
58, 60]. Five trials investigated bilateral tDCS (combin-
ing anodal tDCS over the ipsilesional hemisphere and
cathodal tDCS over the contralesional hemisphere) [45,
50, 57, 59] or bilateral tACS [51]. The contralesional
hemisphere alone was stimulated in only two studies — in
one study with anodal [60] and in another with cathodal
tDCS [45]. One study combined anodal tDCS over sup-
plementary motor area with cathodal tDCS over cerebel-
lum [53]. One trial investigated cathodal tsDCS [56].
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Effectiveness—active stimulation versus sham: In total,
the post-interventional data show a medium-sized effect
of tDCS/tACS/tsDCS on gait, balance, and lower limb
motor function in stroke patients (Fig. 2). However,
effects were inhomogeneous across the studies. Cathodal
tDCS over the contralesional hemisphere and bilateral
tDCS induce large effects on the evaluated parameters. In
contrast, only small effects were found for anodal tDCS/
tACS over the ipsilesional hemisphere and for tsDCS.
No effect was induced by anodal tDCS over the contral-
esional hemisphere and by fronto-parietal tDCS.

The follow-up data demonstrate a large-sized effect of
stimulation on the assessed parameters, as well as inho-
mogeneity of the effects across the experiments (Fig. 3).
Cathodal tDCS over the contralesional hemisphere and
bilateral tDCS evoke large effects. A medium-sized effect
was detected for anodal tDCS/tACS over the ipsilesional
hemisphere. No effect was found for tsDCS.

Effectiveness—comparison of different stimulation pro-
tocols: Both the post-interventional and the follow-up
data demonstrate that different stimulation protocols
may induce significantly different effects on gait, bal-
ance, and lower limbs motor function in stroke patients
(Figs. 4, 5). In particular bilateral tDCS/tACS and
cathodal tDCS over the contralesional hemisphere are
superior to other stimulation protocols.

rTMS

Nine studies tested rTMS for improving gait, bal-
ance, and lower limb motor function in stroke patients
(Table 3) [20, 61-68]. Their methodological quality was
good to excellent (Table 2).

Participants: In total, 212 patients (133 males, 70
females, 9 gender na) were enrolled. The study cohorts
were inconsistent regarding the mean time since stroke
(11 days to 29 months), stroke etiology (144 ischemic, 44
hemorrhagic, 24 na), stroke location (78 subcortical, 32
cortical, 23 brainstem, 79 na) and lesioned site (95 right,
85 left, 32 na).

Study design: All studies investigated the effectiveness
of rTMS in comparison to sham stimulation. A direct
comparison of different stimulation protocols was not
performed. The duration of the total amount of active
stimulation varied between 15 and 330 min (between
five and 13 sessions with a duration of seven to 30 min
were performed). All trials applied pre- and post-inter-
ventional assessments. Additional follow-up evaluations,
over one week to three months after completing the stim-
ulation, were performed in six trials [61-64, 66, 68].

Stimulation protocol: Four studies applied low-fre-
quency rTMS over the contralesional hemisphere [62,
63, 66, 68]. Three trials performed bilateral stimula-
tion (combining high-frequency rTMS or iTBS over the
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Stimulation protocol / stimulated hemisphere / Snmula.non Time since Effect Lower Upper Relative
N duration stroke N - . N
stimulated area N size  limit limit  weight
(minutes)  (months)
Kim et al., 2014 1Hz rTMS CL CR 75 0.5 -0.22 -0.97 0.53 3.86 o
Geroin et al., 2011 1.5mA anodal tDCS IL M1 70 26.0 -0.22 -1.13 0.84 241 O
Seoetal., 2017 2.0mA anodal tDCS IL M1 200 114.0 -0.10 -0.94 0.75 2.53
Manji et al., 2018 1.0mA anodal+cathodal tDCS CE SMA+CR 100 1.1 -0.03 -0.66 0.67 7.24
Madhavan etal., 2020 2.0mA anodal tDCS IL M1 180 606  -0.02 -066 059  4.83
Zandvliet et al., 2018 1.5mA anodal tDCS IL CR 20 108.0 0.02 -0.70 0.74 3.62
Zandvliet et al., 2018 1.5mA anodal tDCS CL CR 20 108.0 0.06 -0.65 0.78 3.62 — 00—
Lin et al., 2019 iTBS IL+CL M1+M1 70 13.0 0.10 -0.78 0.98 241
Cattagni et al., 2019 2.0mA anodal tDCS IL M1 30 120.0 0.11 -0.46 0.67 5.79
Chang et al., 2015 2.0mA anodal tDCS IL M1 100 0.5 0.11 -0.70 0.92 2.90
Huang et al., 2018 1Hz rTMS CL M1 195 1.0 0.13 -0.52 0.77 4.46 +
Rastgoo et al., 2016 1Hz rTMS CL M1 85 29.0 0.16 -0.72 1.04 241 ———
Klomjai et al., 2018 2.0mA anodal+cathodal tDCS IL+CL M1+M1 20 32 026 -0.38 090 458
Koch et al., 2019 iTBS CLCR 150 13.0 0.30 -0.36 0.96 434
Picelli et al., 2015 2.5mA cathodal tsDCS 10Th 200 56.0 033 -0.57 1.23 241 _O—
Picelli et al., 2015 2.0mA anodal tDCS IL M1 200 56.0 035 -0.54 1.24 241
Bornheim et al., 2020 1.0mA anodal tDCS IL M1 400 0.1 0.38 -0.20 0.97 5.55 $
Koganemaru et al., 2019 0.0-2.0mA tACS IL+CL M1 20 74.5 042 -034 1.27 2.65
Chiefflo et al., 2014 20Hz FTMS IL+CL M1+M1 330 200 055 -0.40 150 217 —
Tahtis et al., 2014 2.0mA anodal+cathodal tDCS IL+CL M1+M1 15 0.8 061 -049 170 1.69 _ 00—
Sayes et al., 2015 1.5mA anodal+cathodal tDCS IL+CL M1+M1 320 42.0 0.62 -0.10 1.34 3.86 —O—
Sasaki et al., 2017 10Hz rTMS IL+CL M1+M1 50 11.0 0.70 -0.18 1.58 2.53 —
Wang et al., 2012 1Hz rTMS CL M1 100 23.0 097 012 1.82 2.90 ——
Koganemaru et al., 2019 0.0-2.0mA tACS IL+CL CR+M1 100 74.5 1.01 -0.05 2.06 193 —_—O—
Wang et al., 2019 5Hz rTMS IL M1 135 29.0 1.03 -0.10 217 1.69 —_—
Andrade et al., 2017 2.0mA anodal tDCS IL M1 200 2.7 234 138 3.30 3.62 —_—O—
Andrade et al., 2017 2.0mA cathodal tDCS CL M1 200 2.7 311 197 4.24 3.62 —O—
Andrade et al., 2017 2.0mA anodal+cathodal tDCS IL+CL M1+M1 200 2.7 371 248 493 3.62 —_—O—
Total (IZ=69.22%) 140 35 0.56 -0.23 1.36 100.00 R
tDCS, tACS, tsDCS (Iz=78.02%) 143 a3 0.65 -0.13 1.45 72.01 _

¢l (cathodal 2.0mA tDCS) 311 197 424 378 —_— —

IL + CL (anodal + cathodal 1.5mA, 2.0mA tDCS, 0.0-2.0mA tACS) (1>=82.99%) 115 027 204 1917 _  —

IL (anodal 1.0mA, 1.5mA, 2.0mA tDCS) (17=50.56%) 034 -038 108 3518 —

SP (cathodal 2.5mA) 033 -057 123 252 _ —

CL (anodal 1.5mA) 0.06 -0.65 078 3.78 _ —

FR + PA (anodal+cathodal 1.0mA) -0.03 -0.66 0.67 7.57 —_ —

FTMS (1°=0.00%) 132 13 034 -0.46 1.15 27.99 ———

IL (5Hz rTMS) , 1.03 -0.10 217 177 e ——

IL + CL (10Hz, 20Hz FTMS, iTBS) (17=0.00%) 045 -0.45 135 7.44 e —

CL (iTBS) 030 -036 096 454 —

CL (1Hz rTMS) (17=0.00%) 021 -055 097 14.25 i

2 1 0 1 2 3 4 5

Fig. 2 Postinterventional overview of effect sizes, 95% confidence intervals and homogeneity for studies comparing non-invasive brain
stimulation/spinal cord stimulation with sham stimulation for improving gait, balance and/or lower limb recovery in stroke patients. black repetitive
transcranial magnetic stimulation, white transcranial/trans-spinal direct current/alternating current stimulation, patterned non-invasive brain
stimulation overall, CL contralesional, FR frontal, Hz hertz, IL ipsilesional, P inconsistency test, iTBS intermittent theta burst stimulation,
mA milliampere, PA parietal, rTMS repetitive transcranial magnetic stimulation, SP spinal, tACS transcranial alternating current stimulation,
tDCS transcranial direct current stimulation, tsDCS trans-spinal direct current stimulation

ipsilesional and the contralesional hemisphere) [61, 65,
67]. One study tested high-frequency rTMS over the
ipsilesional hemisphere [68]. One trial applied iTBS over
the contralesional hemisphere [64].

Effectiveness—active stimulation versus sham: In total,
the post-interventional data indicate a small effect of
r'TMS on the observed parameters (Fig. 2). Despite a high
homogeneity of detected effects, stimulation protocol
dependent differences were found. High-frequency rTMS
over the ipsilesional hemisphere induces large effects.
ITBS over the contralesional hemisphere and bilateral
stimulation evoke a small effect. No effect was found for
low-frequency rTMS over the contralesional hemisphere.

The follow-up data show (in total) a middle-sized effect
of rTMS on gait, balance, and lower limb motor function
in stroke patients (Fig. 3). Despite the high homogene-
ity of effect sizes, stimulation protocol dependent differ-
ences were observed. Bilateral stimulation induces large
effects. High-frequency rTMS over the ipsilesional hemi-
sphere evokes middle-sized effects. ITBS over contral-
esional hemisphere results in a small effect. No effect is

induced by low-frequency rTMS over the contralesional
hemisphere.

Discussion

Our data demonstrates that non-invasive neuromodula-
tion is an effective way for improving gait, balance and/or
lower limb motor function in stroke patients. This obser-
vation is supported by previous reviews and meta-analyses
[69-72] that also demonstrate outcome-dependent effects
[71, 72]. A recent meta-analysis revealed for example, sig-
nificant effects of tDCS on functional ambulation category,
Rivermead Mobility, and timed up and go test, but not on
walking speed, 6-min walking distance, Tinetti test and
Berg Balance Scale [71]. Similarly, another meta-analysis
detected no relevant effects of rTMS on the Berg Balance
Scale, while the remaining outcome measures for gait,
balance and lower limb motor function were significantly
influenced by the treatment [72]. In contrast to these stud-
ies, our meta-analysis focuses on the effectiveness in rela-
tion to the stimulation technique, protocol, hemisphere,
area, duration and time since stroke (Table 4).
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Fig. 3 Follow-up overview of effect sizes, 95% confidence intervals and homogeneity for studies comparing non-invasive brain stimulation/spinal
cord stimulation with placebo stimulation in supporting gait, balance and/or lower limb recovery in stroke patients. black repetitive transcranial
magnetic stimulation, white transcranial/trans-spinal direct current/alternating current stimulation, patterned non-invasive brain stimulation
overall, CL contralesional, Hz hertz, IL ipsilesional, ¥ inconsistency test, iTBS intermittent theta burst stimulation, mA milliampere, rTMS repetitive
transcranial magnetic stimulation, SP spinal, tACS transcranial alternating current stimulation, tDCS transcranial direct current stimulation,

. . . Stimulation Time since  Follow up
Stimulation protocol / stimulated . )
hemisphere / stimulated area duration stroke duration
(minutes)  (months) (weeks)
Kim et al., 2018 1Hz rTMS CLCR 75 0.5 1.0
Geroin et al., 2011 1.5mA anodal tDCS IL M1 70 26 2.0
Madhavan et al., 2020 2.0mA anodal tDCS IL M1 180 69.6 12.0
Picelli et al., 2015 2.5mA cathodal tsDCS 10Th 200 56.0 4.0
Picelli et al., 2015 2.0mA anodal tDCS IL M1 200 56.0 4.0
Rastgoo et al., 2016 1Hz rTMS CL M1 85 29.0 1.0
Picelli et al., 2015 2.5mA cathodal tsDCS 10Th 200 56.0 2.0
Picelli et al., 2015 2.0mA anodal tDCS IL M1 200 56.0 20
Koch et al., 2019 iTBS CLCR 150 13 3.0
Seoetal,, 2017 2.0mA anodal tDCS IL M1 200 114.0 4.0
Huang et al., 2018 1Hz rTMS CL M1 195 1.0 13.0
Bornheim et al., 2020 1.0mA anodal tDCS IL M1 400 0.1 2.0
Bornheim et al., 2020 1.0mA anodal tDCS IL M1 400 0.1 14.0
Wang et al., 2019 5Hz rTMS IL M1 135 29.0 4.0
Bornheim et al., 2020 1.0mA anodal tDCS IL M1 400 0.1 56.0
Bornheim et al., 2020 1.0mA anodal tDCS IL M1 400 0.1 28.0
Koganemaru et al., 2019  0.0-2.0mA tACS IL+CL CR+M1 100 745 1.0
Chiefflo et al., 2014 20Hz rTMS IL+CL M1+M1 330 20.0 4.0
Andrade et al., 2017 2.0mA anodal tDCS IL M1 200 2.7 4.0
Andrade et al., 2017 2.0mA cathodal tDCS CL M1 200 2.7 4.0
Andrade et al., 2017 2.0mA anodal tDCS IL M1 200 2.7 12.0
Andrade et al., 2017 2.0mA cathodal tDCS CL M1 200 2.7 12.0
Andrade et al., 2017 2.0mA anodal+cathodal tDCS IL+CL M1+M1 200 2.7 4.0
Andrade et al., 2017 2.0mA anodal+cathodal tDCS IL+CL M1+M1 200 2.7 12.0
Total (1°=81.18) 215 30 8
tDCS, tACS, transspinal DCS (Iz=85.51%) 232 35 10
CL (cathodal 2.0mA tDCS) (1%=0.00%)
IL + CL (anodal + cathodal 2.0mA tDCS, 0.0-2.0mA tACS) (|2=0.00%)
IL (anodal 1.0mA, 1.5mA, 2.0mA tDCS) (I°=67.62%)
SP (cathodal 2.5mA) (1°=0.00%)
rTMS (I2=O.DD%) 172 18 a4
IL + CL (20Hz rTMS)
IL (5Hz rTMS)
CL (iTBS)
CL (1Hz rTMS) (1°=0.00%)
tsDCS trans-spinal direct current stimulation

Effect Lower Upper Relative
size limit  limit  weight
033 -125 059 3.72 —
026 -141 077 458 —O—
-0.02 -066 0.59 286 —O0—
0.04 -084 092 3.00
013 -075 101 858
021 -067 109 572
024 -065 113 429
033 -0.56 122 4.29 —O—
037 -031 105 286
041 -048 130 6.87
049 -0.19 118 343 ——
061 001 120 529 —0O—
061 001 120 286 —O—
0.65 -059 188 544 ‘_8_7
067 008 127 515
071 012 131 286 —O0—
0.83 -021 186 2.86 — O —
101 000 202 658 ——
249 151 346 315 —O—
277 176 377 258 —O0—
3.07 200 413 200 —O—
315 207 423 458 —O—
326 213 439 3.0 —O—
354 239 469 343 —O0—
0.88 -0.01 1.78 100.00 <R
1.04 016 192 7225
301 196 4.07 7.5 - - -
261 151 372 930 — - _ =
059 -022 139 4850 e
016 -073 105 7.30 -
046 048 141 27.75 ——
101 000 202 6.58 ——e——
065 -0.59 1.88 544 e
037 -031 105 286 —~—
013 -071 097 12.88 ——
2 0 2 4

direct current stimulation

Less effective stimulation protocol / Stimulation Time since

More effective stimulation protocol / . . . . Effect Lower Upper Relative
X X . stimulated hemisphere / stimulated ~ duration stroke . - o .
stimulated hemisphere / stimulated area R size limit  limit  weight
area (minutes)  (months)
Zandvliet et al.,, 2018  1.5mA anodal tDCS CL CR 1.5mA anodal tDCS IL CR 30 108.0 0.02 -0.79 084 8.14 _——
Andrade etal., 2017  2.0mA cathodal tDCS CL M1 2.0mA anodal tDCS IL M1 200 2.7 012 -0.61 085 14.48 —O0—
Picelli et al., 2015 2.0mA anodal tDCS IL M1 2.5mA cathodal tsDCS 10Th 200 56.0 0.19 -0.69 1.07 9.05 YO
Picelli et al., 2018 2.0mA cathodal tDCS CL CR 2.0mA anodal tDCS IL M1 200 60.0 0.19 -0.69 1.07 9.50 —O—
Picelli et al., 2019 2.0mA cathodal tDCS CL CR 2.0mA cathodal tDCS IL CR 200 64.0 037 -0.20 0.95 27.15 407
Andrade etal., 2017  2.0mA anodal+cathodal tDCS IL+CL M1+M1  2.0mA cathodal tDCS CL M1 200 2.7 119 035 2.04 18.10 j:
Andrade et al., 2017  2.0mA anodal+cathodal tDCS IL+CL M1+M1  2.0mA anodal tDCS IL M1 200 2.7 121 038 203 1357
Total (1?=72.12%) 054 -0.22 129 100.00 —_ —
1 0 1 2 3

Fig. 4 Postinterventional overview of effect sizes, 95% confidence intervals and homogeneity for studies comparing different non-invasive brain
stimulation protocols in supporting gait, balance and/or lower limb recovery in stroke patients. white transcranial/trans-spinal direct current
stimulation, CL contralesional, IL ipsilesional, r inconsistency test, mA milliampere, tDCS transcranial direct current stimulation, tsDCS trans-spinal

Stimulation technique-dependent effects

Both, the post-interventional data, and the follow-up
data indicate that tDCS/tACS/tsDCS is superior to rTMS
in supporting gait, balance, and lower limb function in
stroke patients. These findings contrast with observations
made in previous meta-analyses, that indicate superior
effects of rTMS (in comparison to tDCS) on balance and
postural control [70], or on hemi-spatial neglect [36] in
this cohort. Furthermore, our data detects heterogeneity
of tDCS/tACS/tsDCS effects that did not occur in rTMS

trials. Similar observations were not made previously [69,
70]. It is an open question whether and to what extent
the detected differences reflect the differential impact of
various techniques on the central nervous system and
behavior, and which role other factors (such as patients
characteristics, study design, and “outlier” etc.) may play.
Our data shows that the superior effect of tDCS/tACS/
tsDCS is primarily based on very high effects detected in
a single study, which performed three different experi-
ments in large cohorts [45]. Therefore, the results of this
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More effective stimulation protocol / Less effective s-t'lmulanon Snmula?hon Time since FOHOW_ up Effect Lower Upper Relative
N ) . protocol / stimulated duration stroke duration . - . .
stimulated hemisphere / stimulated area X X K size  limit limit  weight
hemisphere / stimulated area  (minutes)  (months)  (weeks)
Picelli et al., 2019 2.0mA cathodal tDCS IL CR 2.0mA cathodal tDCS CL CR 200 64.0 2.0 0.04 -053 061 1176
Picelli et al., 2019 2.0mA cathodal tDCS IL CR 2.0mA cathodal tDCS CL CR 200 64 4.0 005 -052 062 11.76
Picelli et al., 2018 2.0mA cathodal tDCS CL CR 2.0mQ anodal tDCS IL M1 200 60.0 2.0 0.09 -0.79 0.97 5.88 —O—
Andrade et al., 2017 2.0mA cathodal tDCS CL M1 2.0mA anodal tDCS IL M1 200 2.7 4.0 0.13 -0.61 0.87 8.82 —O—
Picelli et al., 2018 2.0mA cathodal tDCS CL CR 2.0mQ anodal tDCS IL M1 200 60.0 4.0 0.15 -0.74 1.03 5.88 —O—
Picelli et al., 2015 2.0mA anodal tDCS IL M1 2.5mA cathodal tsDCS 10Th 200 56.0 4.0 016 -0.72 1.04 5.88 _—O—
Picelli et al., 2015 2.0mA anodal tDCS IL M1 2.5mA cathodal tsDCS 10Th 200 56.0 2.0 022 -0.66 1.10 5.88 —O—
Andrade et al., 2017 2.0mA anodal+cathodal tDCS IL+CL M1+M1 2.0mA cathodal tDCS CL M1 200 2.7 4.0 0.76 -0.07 1.59 8.82 —O—
Andrade et al., 2017 2.0mA anodal+cathodal tDCS IL+CL M1+M1 2.0mA cathodal tDCS CL M1 200 2.7 12.0 0.81 0.04 1.59 8.82 —O—
Andrade et al., 2017 2.0mA anodal+cathodal tDCS IL+CL M1+M1 2.0mA anodal tDCS IL M1 200 2.7 4.0 0.84 0.00 1.68 8.82 O
Andrade et al., 2017 2.0mA anodal+cathodal tDCS IL+CL M1+M1 2.0mA anodal tDCS IL M1 200 2.7 12.0 085 0.07 163 8.82 —O0—
Andrade et al., 2017 2.0mA cathodal tDCS CL M1 2.0mA anodal tDCS IL M1 200 2.7 12.0 1.05 024 1.87 8.82 —O—
Total (17=25.90) 0.44 -032 1.20 100.00 _  —
-1 0 1 2

direct current stimulation

Fig. 5 Follow-up overview of effect sizes, 95% confidence intervals and homogeneity for studies comparing different non-invasive brain
stimulation protocols in supporting gait, balance and/or lower limb recovery in stroke patients. white transcranial/trans-spinal direct current
stimulation, CL contralesional, /L ipsilesional, /* inconsistency test, mA milliampere, tDCS transcranial direct current stimulation, tsDCS trans-spinal

study strongly influence the overall outcome of the meta-
analysis. The reason for the superior stimulation effec-
tiveness in this specific study may be the high amount
of therapy applied in an early phase after the incident (a
more detailed discussion of this topic is included below).
From a global perspective, our data reveals that available
rTMS and tDCS/tACS/tsDCS trials differ significantly
with respect to the time since stroke, amount of inter-
vention, scheduling of the evaluations and study design
(Figs. 2, 3, 4). While an average of 143 min (and 232 min
in follow up data) of active treatment was applied in
TDCS/tACS/tsDCS trials, an average of only 132 min
(and 172 min in follow up data) was administrated in
rTMS studies. This discrepancy may explain lower effect
sized induced by rTMS interventions. The present data
indicates that the behavioral changes are crucially deter-
mined by the amount of stimulation applied. Studies with
relevant effects (according to Cohen’s effect size defini-
tion) applied on average 169 min (and 232 min on follow
up) of stimulation, while studies without relevant effects
applied 99 min (and 172 min on follow up) of stimula-
tion only. Furthermore, the data shows stimulation
technique-dependent differences that indicate that only
a higher amount of tDCS/tACS/tsDSC but not of rTMS
induces larger behavioral changes. tDCS/tACS/tsDSC
studies with statistically relevant effects applied on aver-
age 186 min (and 241 min on follow up) of stimulation.
tDCS/tACS/tsDSC trials without relevant effects applied
89 min (and 196 min on follow up) of stimulation only.
By contrast, rTMS was applied for 132 min (172 min
on follow up) and 134 min (no follow up data) in stud-
ies with and without relevant effects, respectively. Our
observations do not confirm a previous meta-analysis
that suggested that a larger number of rTMS sessions
corresponded to more benefits for balance and postural
control in stroke patients [70]. Furthermore, significantly
different stroke chronicity was detected in rTMS trials

as compared with tDCS/tACS/tsDCS studies. While on
average 43 months (and 35 months in follow up data)
passed by since stroke in tDCS/tACS/tsDCS trials, there
were only 13 months (18 months in follow up data) since
the incident in rTMS studies. This is surprising, since
the available data indicates that the chronicity of stroke
correlates with less motor recovery, and reduced ther-
apy-induced benefits. A constraint-induced movement
therapy applied over two weeks, for example, induces a
greater improvement of motor function of the affected
hand in patients who are less than 9 months post-stroke
than in patients who are more than 12 months post-
stroke [73]. Moreover, the follow-up duration is on aver-
age ten weeks in tDCS/tACS/tsDCS studies and only four
weeks in rTMS trials. Furthermore, no rTMS trial per-
forms a direct comparison of different protocols, in con-
trast to tDCS/tACS/tsDCS studies.

Stimulation protocol-dependent effects

Both the post-interventional and the follow-up data dem-
onstrate that different stimulation protocols induce dif-
ferential effects on gait, balance, and lower limb motor
function in stroke patients. In sum, bilateral stimulation
is superior to unilateral protocols. Similarly, a previous
meta-analysis demonstrates the superior effectiveness of
bilateral tDCS/rTMS for improving visuo-spatial abil-
ity following stroke [39]. However, a current meta-anal-
ysis indicates that bilateral tDCS is inferior to unilateral
tDCS for improving motor learning in stroke patients
[74]. Interestingly, our data shows that only tDCS stud-
ies apply the bilateral stimulation in accordance with the
assumed maladaptive role of the contralesional hemi-
sphere [37]—with an anode over the ipsilesional and a
cathode over the contralesional hemisphere [45, 50, 51,
57, 59]. In contrast, bilateral rTMS studies applied high-
frequency protocols over either hemisphere [61, 65, 67].
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The unilateral application of non-invasive brain stimu-
lation induces, other than bilateral protocols, less consist-
ent results across rTMS and tDCS/tACS/tsDCA studies.
On the one hand, cathodal tDCS over the contralesional
hemisphere induces large effects on gait, balance, and
lower limb motor function [45]. On the other hand, low-
frequency rTMS over this hemisphere had no effects
[20, 62, 63, 66]. Interestingly, “facilitatory” stimulation of
the contralesional hemisphere (contrary to its assumed
maladaptive role) shows significant benefits with iTBS
[64], but not with anodal tDCS [60]. Similarly, “facilita-
tory” stimulation of the ipsilesional hemisphere seems to
be effective when using high-frequency rTMS [68], but
not anodal tDCS [45, 47-49, 52, 58, 60]. Furthermore,
cathodal tsDCS56 and the coupling of frontal anodal
tDCS with parietal cathodal tDCS [53] did not induce
relevant effects. Collectively, the data indicates that the
application of “facilitatory” TMS protocols (high-fre-
quency rTMS, iTBS) induces an improvement of the
assessed parameters, regardless of the stimulated hemi-
sphere. In contrast, the successful application of tDCS is
strongly determined by the concept of interhemispheric
competition after a stroke, as described above [27].
In this context, it must be pointed out that recent data
challenges the traditional view of either “facilitatory” or
“inhibitory” effects of specific rTMS and tDCS protocols.
It has been shown that rTMS (1 Hz/5 Hz/15 Hz/20 Hz),
iTBS/cTBS, anodal/cathodal tDCS may all lead to both
increases and decreases the corticospinal excitability
[27-30]. The direction and/or the amount of TMS- and
tDCS-induced changes may be significantly determined
by individual (sex, age, genetics, medication, pre-inter-
ventional MEP latency and amplitude, pre-interventional
MT size), technical (stimulator type, neuro-navigation
use, TMS pulse waveform) and methodological (tar-
get muscle and hemisphere, time after stimulation, time
of day, behavioral context) factors [28, 75-77]. A better
understanding of the impact of these variables on stimu-
lation effects may optimize the therapeutic application of
these methods. Therefore, future studies need to develop
more individualized stimulation protocols in accordance
with the current knowledge [28, 75-77].

Beside this, only a limited spectrum of stimulation
intensities has been investigated in previous stroke
studies [20, 45, 68]. The intensity of 2.5 mA has not
been exceeded in any tDCS trial. The existing evi-
dence indicates, however, that higher tDCS intensities
(>2.0 mA) are more effective than low-intensity stimula-
tion (<1.5 mA) (Fig. 4). Moreover, recent studies show
that intensities up to 4 mA are safe, tolerable, and do
not elicit any serious adverse effects [78, 79]. Therefore,
tDCS intensities between 3.0 and 4.0 mA may have the
potential to better support stroke recovery than present
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protocols. Another relevant issue is the individualization
of tDCS intensity. In contrast to rTMS which is applied
in every subject with a specific intensity that is deter-
mined relative to the individual motor threshold, tDCS
is usually applied with the same, predefined intensity in
all subjects. It is, therefore, an open question, whether
individualization of tDCS intensity corresponding to
the respective corticospinal excitability may increase
stimulation effectiveness [80]. Regarding rTMS, reason-
ably good evidence exists for the effects of 1 Hz rTMS
supporting walking, balance, and lower limb function
in stroke cohorts. However, the available data indi-
cates better effectiveness of 5-20 Hz rTMS protocols
(Table 4). Thus, stimulation frequencies above 20 Hz
may evoke even higher effects on motor recovery than
present protocols. However, the risk of rTMS-induced
seizures increases also with r'TMS frequency. Therefore,
the risk—benefit ration should be careful considered [81].
Up to now, stimulation protocols with frequencies of up
to 50 Hz were successfully applied within the framework
of neurorehabilitation [82]. Furthermore, most trials that
were included in our meta-analysis applied rTMS with
90% of rMT. Only four studies applied another intensity
(80% of active motor threshold [64], 100% [63, 65] and
120% [62] of resting motor threshold), and the available
evidence did not show a superiority of any protocol.

A new way of tailoring TMS protocols is to consider
the brain state of synchronized neuronal populations in
the EEG at the time of stimulation. These EEG-triggered
approaches may be informed by a series of post-hoc
analyses of EEG features at the time of randomly applied
TMS. In healthy subjects, stimulation effects on corti-
cospinal excitability were less variable when the stimuli
occurred at the optimum phase of beta frequency oscil-
lations [83]. Along the same lines, the stimulation effects
increased in both the resting and active motor system,
when considering the oscillatory power of the beta-fre-
quency band [84, 85]. Specifically, in both the resting
brain85 and during voluntarily modulation [85], high and
low beta-band activity decreased and increased corti-
cospinal excitability, respectively. In addition, stimulation
effects were modulated in a phase-dependent way along
the oscillatory beta cycle and peaked with a diagonal
shift of the highest stimulation response along the rising
phase of the oscillatory cycle with increasing frequency
[84]. Importantly, this phase-modulation was critically
dependent on the precise temporal occurrence of the
stimuli at a specific phase of the respective beta oscilla-
tory cycle [86]. However, this high temporal precision
could not be achieved in the past with EEG-triggered
TMS approaches due to latencies between measure-
ment and stimulation. Therefore, previous studies have
applied EEG-controlled TMS on the basis of features that
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necessitated less temporal precision such as high and low
oscillatory power levels in the beta band (16—22 Hz) [31,
32], and positive and negative peaks of the slow (<1 Hz)
[87] or alpha (8—12 Hz) [88, 89] oscillatory cycle. While
beta power-dependent TMS induced robust increases of
corticospinal excitability [31, 32], alpha peak-dependent
findings were less consistent. Specifically, the alpha peak-
dependent observations in a preselected group of partici-
pants with intrinsically high sensorimotor alpha power
[88] could not be replicated, when the same approach
of targeting the positive and negative peaks of the alpha
cycle was applied in non-selected individuals [89]. Novel
EEG-triggered approaches with integrated recording
and stimulation devices and higher temporal precision
may allow to repetitively target specific phases of higher
frequency bands such as the oscillatory beta-band that
have determined corticospinal excitability in previous
post-hoc studies [83—86]. Moreover, such EEG-triggered
approaches need also to be investigated in patient popu-
lations, e.g., following stroke [90], to explore their clinical
utility under pathophysiological conditions.

Stimulated area-dependent effect

It is an open question, how much influence the stimula-
tion location has on gait, balance, and lower limb motor
function after stroke. Most analyzed studies stimulated
the primary motor cortex. Beside this, cerebellum, sup-
plementary motor area and spinal cord were also targeted
in a few trials. However, a direct comparison of these
areas is difficult because of numerous additional vari-
ables, such as different stimulation protocols, stimulated
hemispheres, patient cohorts etc. Future studies need to
create larger evidence for the application of non-invasive
stimulation of areas other than the primary motor cortex.
The cerebellum is a highly promising candidate in this
regard. The available data indicates that the cerebellum is,
similar to M1, critically involved in motor learning, but
the mechanisms underlying cerebellar stimulation differ
from those related to M1 stimulation. Specifically, the
cerebellum is more linked to predictions about the con-
sequences of movement than to direct motor commands
[91]. Moreover, “cerebellar inhibition” (i.e., the inhibitory
tone of the cerebellum over M1 via the thalamus) seems
to play a key role during error-based motor learning,
which is differently involved during early and late skill
learning [91]. A current experiment demonstrates that
preconditioning cerebellar stimulation improves not only
the performance during the subsequent learning phase of
visuo-moto adaptation tasks, but also induces a sustained
improvement in the re-adaptation of the recently learned
skill [92]. This observation is important for neuroreha-
bilitation. It is an open question, however, whether and to
which extend a stroke-induced damage of cortical motor
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areas may be compensated by cerebellar structures. In
general, “cerebellar reserve” refers to the capacity of this
area to compensate for tissue damage or loss of func-
tion following different etiologies [93]. Thus, it is plau-
sible that cerebral stimulation may be a good alternative
for patients that suffer from extensive cortical damage.
Furthermore, it is conceivable that other cortical (such
as the inferior parietal and frontal cortex) and subcorti-
cal (such as basal ganglia, thalamus, and hippocampus)
regions and the brainstem are suitable for the applica-
tion of non-invasive stimulation techniques for support-
ing gait and balance recovery [9, 13, 14]. Furthermore,
the development of innovative technical devices enables
modulating brain regions that could insufficiently be
targeted by conventional stimulation equipment [26, 94,
95]. Double-cone coils, for example, are larger version of
the standard figure-8 coils, and have two circular wind-
ings angled towards the subject’s head. Such double-cone
coils are less focal but stimulate deeper brain areas than
conventional figure-8 coils and may thus be beneficial for
targeting the leg motor area, medial prefrontal cortex,
cingulate, insula, and cerebellum [26, 94]. Similarly, other
coil design (H, crown, stretched C-core, triple halo) have
also the potential to modulate deeper brain areas than
conventional figure-8 coils [94, 95], and their effective-
ness in supporting gait, balance and lower limb function
need to be investigated in future studies.

Patient characteristic-dependent effects

The studies included in our meta-analysis demonstrate
an inconsistency of subjects regarding time since stroke,
stroke etiology and lesion location. All these factors may
hamper the interpretation of the results. Future studies
should devote more attention to these important aspects.
Studies investigating non-invasive brain stimulation for
improving hand motor recovery could detect that lesion
location may determine the effectiveness of the treatment
[96, 97]. Fifteen sessions of 1 Hz rTMS over the contral-
esional primary motor cortex, for example, supported
motor function of the affected hand only in patients
with lesion of the dominant hemisphere. Patients with
an injury of the non-dominant hemisphere did not profit
from the intervention.98 Similarly, a single session of
10 Hz rTMS over the ipsilesional primary motor cortex
significantly improved motor function of the affected
upper limb in patients with a subcortical lesion. In con-
trast, no changes were detected in patients with cortical
involvement [96]. Furthermore, a fMRI study detected
different activation patterns during active movement
of the affected lower limb in patients with subcortical
and cortical stroke [98]. The data revealed similar acti-
vation patterns in patients with subcortical lesion and
healthy controls with the recruitment of the contralateral
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primary motor cortex, supplementary motor area, and
bilateral somatosensory area. In contrast patients with
cortical stroke and brainstem stroke showed reduced
cortical recruitment [98]. Thus, it is conceivable that dif-
ferent stimulation protocols may be beneficial, depending
on the lesion location.

Strength and limitations

To our knowledge, this is the first meta-analysis that
compared the effectiveness of different non-invasive
stimulation protocols in supporting gait, balance, and
lower limb motor function in stroke subjects. An impor-
tant strength is that we included and analyzed more stud-
ies than previously articles to this topic [69-72]. The
main weakness is the inconsistency of analyzed stud-
ies with regard to the included patients (different time
period since the incident, different stroke etiology and
location), methodological approach (different numbers
of intervention-sessions, different evaluation schedules),
interventions (different stimulation protocols, different
stimulation duration, different stimulated areas) and out-
comes (more than twenty different assessments). Further
weaknesses are the methodological limitations of the
analyzed studies: (1) the absence of concealed allocation,
(2) the absence of therapist blinding and (3) the absence
of intention to treat analysis (Table 2). This may hamper
the interpretation of the results.

Conclusions

This systematic review and meta-analysis show that cer-
tain types of non-invasive neuromodulation are effective
in improving gait, balance, and lower limb motor func-
tion in stroke survivors. Available data indicates that (1)
tDCS/tACS/tsDCS is more effective than rTMS, and that
(2) bilateral stimulation is more effective than unilateral
stimulation. However, more research is needed to maxi-
mize the effectiveness of existing protocols by optimizing
stimulation dosage, intensity, and duration, by consider-
ing the brain state with EEG-triggered interventions, and
by better characterizing the targeted stroke cohorts that
may benefit.
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