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ABSTRACT: Enantiopure 2-halo-1-arylethanols are essential precursors for the synthesis of pharmaceuticals, agrochemicals, and
fine chemicals. This study investigates the asymmetric reduction of 2-haloacetophenones and their substituted analogs to obtain their
corresponding optically active 2-halo-1-arylethanols using secondary alcohol dehydrogenase from Thermoanaerobacter
pseudethanolicus (TeSADH) mutants. Specifically, the ΔP84/A85G and P84S/A85G TeSADH mutants were evaluated for the
asymmetric reduction of 2-haloacetophenones, generating their corresponding optically active halohydrins with high
enantioselectivities. The asymmetric reduction of 2-haloacetophenones and their substituted analogs using the ΔP84/A85G
TeSADH mutant yielded their corresponding (S)-2-halo-1-arylethanols with high enantiopurity in accordance with the anti-Prelog’s
rule. Conversely, the P84S/A85G TeSADH mutant produced (R)-alcohols when reducing 2-chloro-4′-chloroacetophenone, 2-
chloro-4′-bromoacetophenone, and 2-bromo-4′-chloroacetophenone, while generating the (S)-configured halohydrin from 2-chloro-
4′-fluoroacetophenone. Asymmetric reduction of the unsubstituted 2-bromoacetophenone, 2-chloroacetophenone, and 2,2,2-
trifluoroacetophenone resulted in production of their (S)-halohydrins with the tested mutants, which reflects the importance of the
nature of the substituent on the substrate’s ring in controlling the stereopreference of these TeSADH-catalyzed reduction reactions.
These findings contribute to the understanding and application of TeSADH in synthesizing optically active compounds and aid in
the design of further mutants with the desired stereopreference.

■ INTRODUCTION
The synthesis of optically active 2-halo-1-arylethanols has
garnered considerable interest from various research
groups.1−5 These compounds are important building blocks
for pharmaceutical drugs. For instance, (S)-2-chloro-1-(2′,4′-
dichlorophenyl)ethanol is essential in the synthesis of
ticonazole, a treatment for vaginal candidiasis and superficial
fungal infections of the skin.6,7 Similarly, (R)-2-chloro-1-
phenylethanol is used in the synthesis of mirabegron, a β-3
adrenergic receptor agonist,8 and (S)-2-chloro-1-(3,4-
difluorophenyl)ethanol is used in the synthesis of ticagrelor,
a receptor antagonist.9 Optically active alcohols are typically
obtained through asymmetric reduction of prochiral ke-
tones10,11 or via kinetic resolution (KR) or deracemization of
racemates.12,13 However, KR is limited to 50% yield with high

enantiopurity, while deracemization necessitates multiple
catalysts with specific stereopreferences operating in the
same vessel, hampering the development of new deracemiza-
tion approaches. Consequently, the asymmetric reduction of
prochiral 2-haloacetophenones presents a straightforward
option for producing enantiopure 2-halo-1-arylethanols.
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The biocatalytic asymmetric reduction of prochiral ketones
is a highly attractive approach for the production of
enantiopure secondary alcohols.14 This is primarily due to
the exceptional chemo-, regio-, and stereoselectivity of
enzymes, besides being environmentally friendly catalysts,
which makes them a sustainable choice.15−17 Alcohol
dehydrogenases (ADHs, EC 1.1.1.X, X = 1 or 2) have been
previously employed for the asymmetric reduction of 2-
haloacetophenones.2,4,18−21 An interesting enzyme is secon-
dary ADH from Thermoanaerobacter pseudethanolicus (Te-
SADH, EC 1.1.1.2),22,23 a nicotinamide-adenine dinucleotide
phosphate (NADP+)-dependent ADH, which has garnered
particular interest because of its thermal stability and tolerance
to high concentrations of organic solvents.24 The latter
characteristic makes TeSADH suitable for substrate-coupled
coenzyme regeneration using 2-propanol. This enzyme is
identical to the commercially available secondary ADH from
Thermoanaerobacter brockii (TbSADH).25

The stereopreference of TeSADH follows Prelog’s rule,26 in
which the NADPH delivers its pro-R hydride from the re face
of prochiral ketones, producing (S)-configured alcohols when
the large group of the prochiral ketone exhibits a higher Cahn-
Ingold-Prelog priority than that of the small group. To expand
the substrate scope of TeSADH, various mutants of this
enzyme have been constructed to accommodate aryl-ring-
containing ketones that are not substrates for the wild-type
TeSADH. Notably, mutations at the W110 site have been
shown to enable the accommodation of substrates such as 4-
aryl-2-butanones and 1-aryl-2-propanones, resulting in the
production of their corresponding (S)-configured alcohols (i.e.,
Prelog mode).27−29 Furthermore, the I86A TeSADH mutant
has been reported to accommodate unsubstituted acetophe-
none, producing the corresponding (R)-1-phenylethanol.30

The construction of mutants such as I86A/C295A, A85G/
I86A/C295A, I86A/V115A/C295A, and I86A/T153A/C295A

has further expanded the smaller pocket in the active site of
TeSADH, enabling the reduction of substituted acetophenones
to their corresponding (R)-alcohols.31,32 In the current study,
we present the asymmetric reduction of 2-haloacetophenone
analogs to obtain enantiocomplementary optically active 2-
halo-1-arylethanols using various mutants of TeSADH.

■ RESULTS AND DISCUSSION
In this study, we constructed four mutants of TeSADH,
namely, I86A, A85G/186A/C295A, P84S/186A, and ΔP84/
A85G to conduct the asymmetric reduction of 2−haloaceto-
phenone analogs which have never been reported to be
reduced using TeSADH. The design of these mutants aimed to
expand the enzyme’s smaller binding pocket30 and to disrupt
the rigidity (imposed by proline-84) of the loop that lines the
active site.33 A85, I86, and C295 line the small pocket of
TeSADH, and thus mutations at these sites with sterically less
demanding amino acids is expected not only to improve the
substrate scope of TeSADH, but also to switch its stereo-
preference. I86A and A85G/186A/C295A mutants of
TeSADH were proven before to reduce acetophenone analogs
in anti-Prelog mode.30−32

To evaluate the performance of these TeSADH mutants, we
conducted reduction reactions using 2-bromoacetophenone
(1a) as the substrate. The reactions were carried out in
tris(hydroxymethyl)aminomethane hydrochloride (Tris-HCl)
buffer solutions (pH 7.0, 50 mM) containing 2-propanol (30%
v/v), which served as both a cosubstrate for NADPH
regeneration and a cosolvent to enhance the solubility of
aryl-ring-containing hydrophobic substrates, which are spar-
ingly soluble in aqueous media. Reactions under slightly acidic
or basic pH conditions resulted in formation of byproducts
including the 1-phenyl-1,2-ethanediol and 1-phenylethanol.
All the mutants that were tested successfully reduced 1a,

resulting in production of (S)-2-bromo-1-phenylethanol [(S)-

Table 1. Asymmetric Reduction of 2-Haloacetophenone Analogs using TeSADH Mutantsa

Z

X R substrate A85G/186A/C295A P84S/I86A ΔP84/A85G I86A

conv. (%)b ee (%)c conv. (%)b ee (%)c conv. (%)b ee (%)c conv. (%)b ee (%)c

H CH2Br 1a >99 >99 S >99 >99 S 23 >99 S 71 >99 S
H CH2Cl 2a 97 >99 S >99 >99 S 14 >99 S 75 >99 S
H CF3 3a >99 >99 S 43 >99 S low nd low nd
F CH2Cl 4a 78 >99 S >99 >99 S 98 >99 S 48 96 S
Cl CH2Cl 5a 10 >99 R 66 >99 R 37 88 S 12 >99 R
Br CH2Cl 6a 16 low >99 >99 R >99 >99 S 10 low
Cl CH2Br 7a nr 17 99 R 47 82 S nr
NO2 CH2Br 8a nr 46 96 R 77 97 S nr

aUnless otherwise stated, reactions were performed in Tris-HCl buffer solution (pH 7.0, 50 mM) containing 2-propanol (30%, v/v) with total
reaction volume of 1.0 mL. The following components are expressed as final concentrations in the reaction mixture: ketones substrate (na, 10
mM), TeSADH mutant (1.6 μM), NADP+ (1.0 mM). The reaction mixture was shaken at 50 °C and 180 rpm for 12 h. bPercent conversion was
determined by GC. cThe % ee of each of the produced alcohols was determined by GC using a chiral stationary phase. nd: not determined, nr: no
reaction detected.
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1b] with high conversions and enantioselectivities (>99%),
except for ΔP84/A85G, which showed a low conversion, Table
1. Similar results were observed in the asymmetric reduction of
2-chloroacetophenone (2a) to (S)-2-chloro-1-phenylethanol
[(S)-2b]. The production of (S)-1b and (S)-2b, considering
the inverted Cahn-Ingold-Prelog priority for all halohydrin
substrates reported in the current study, was in line with our
expectations based on the design of these TeSADH mutants.
The production of (S)-alcohols using the tested mutants
indicates that their ketones 1a and 2a fit into the active site of
TeSADH in a pro-S orientation (i.e., anti-Prelog mode). This
finding is consistent with a previous report of I86A TeSADH-
catalyzed reduction of acetophenone, which resulted in the
production of (R)-1-phenylethanol (i.e., anti-Prelog mode).30

Reduction of 2,2,2-trifluoroacetophenone (3a) using A85G/
186A/C295A TeSADH resulted in quantitative formation of
(S)-2,2,2-trifluoro-1-phenylethanol [(S)-3b] with high enan-
tioselectivity. The same enantiomer, yet with a lower yield, was
produced when using P84S/I86A TeSADH.
Reduction of 2-chloro-4′-fluoroacetophenone (4a) using all

mutants resulted in formation of (S)-2-chloro-1-(4′-fluoro-
phenyl)-1-ethanol [(S)-4b] with very high enantioselectivity.
Notably, P84S/186A and ΔP84/A85G mutants showed
improved conversion yields for this substrate. Reduction of
2-chloro-4′-chloroacetophenone (5a) using I86A, A85G/
186A/C295A and P84S/186A TeSADH mutants resulted in
production of (R)-2-chloro-1-(4′-chlorophenyl)-1-ethanol
[(R)-5b] with high enantioselectivity (>99% ee), but with
low to moderate conversions. In contrast, the ΔP84/A85G
TeSADH produced (S)-5b with low conversion but high
enantioselectivity. Asymmetric reduction of 2-chloro-4′-
bromoacetophenone (6a) using P84S/I86A and ΔP84/A85G
mutants quantitatively yielded (R)-2-chloro-1-(4′-bromophen-
yl)-1-ethanol [(R)-6b], and (S)-6b, respectively, with high
enantioselectivity (>99% ee). A similar trend was observed in
the asymmetric reduction of 2-bromo-4′-chloroacetophenone
(7a) and 2-bromo-4′-nitrocetophenone (8a) using P84S/I86A
and ΔP84/A85G mutants, albeit with low to medium
conversions.
The results obtained from the asymmetric reduction of 4a−

8a underscore the significant impact of the substituent’s
identity on the phenyl ring in controlling the stereopreference
of TeSADH-catalyzed asymmetric reductions of substituted 2−
haloacetophenones. Furthermore, the performance of P84S/
I86A and ΔP84/A85G TeSADH mutants surpassed that of
A85G/I86A/C295A and I86A TeSADH in the asymmetric
reduction of the tested para-substituted 2-haloacetophenones.
Remarkably, P84S/I86A TeSADH displayed enantiocomple-

mentary stereopreference to ΔP84/A85G TeSADH in the
asymmetric reduction of 5a−8a, which is aligned with a
previous study on asymmetric reduction of bulky−bulky
ketones that exhibit aryl-ring-containing groups on both sides
of the carbonyl group.33 Additionally, ΔP84/A85G TeSADH
consistently exhibited anti-Prelog stereopreference, yielding
(S)-halohydrins in reduction of ketones 1a-8a. Interestingly,
despite the para-substituent, substrate 4a interacted similarly
with the tested TeSADH mutants as the unsubstituted
acetophenones, possibly due to the smaller size of fluorine
compared to chlorine and bromine. With substrates 1a, 2a, and
4a, both P84S/I86A and ΔP84/A85G exhibited a similar trend
to that observed in I86A and A85G/186A/C295A mutants but
with improved conversions and enantioselectivities.

The origin of stereopreference in P84S/I86A and ΔP84/
A85G TeSADH mutants was investigated by docking
substrates 5a and 2a into the active sites of these mutants
using the AutoDock Vina program.34 The crystal structure of
TbSADH, which is identical to TeSADH,25 complexed with
NADP (PDB: 1YKF) was used as the basis for docking
analyses.35 The lowest energy docked conformations are
shown in Figure 1. In the P84S/I86A mutant, the aryl ring

of 5a occupies the space in the large pocket while the
halomethylene group is placed in the small pocket (Figure 1a),
allowing for a pro-R orientation. Placing the aryl ring in the
small pocket of P84S/I86A would have resulted in a steric
clash with the methyl group of A85 (Figure S1). In contrast,
ΔP84/A85G allows the aryl ring to fit in the small pocket and
the halomethylene group in the large pocket, enabling a pro-S
orientation (Figure 1b).
The absence of a substituent on the phenyl ring of 2a

eliminates the possible steric clash with A85′s methyl group,
resulting in a pro-S orientation in both P84S/I86A and ΔP84/
A85G (Figure 1c,1d). The docking results indicate that the
methyl group of A85 plays critical role in altering the
stereopreference of TeSADH in asymmetric reduction of
para-substituted 2-haloacetophenones. Unsubstituted 2-haloa-
cetophenones fit in the active site of the TeSADH mutants
tested in this study in an orientation that positions the phenyl
ring in the small pocket of the active site, allowing for a pro-S
orientation (i.e., anti-Prelog’s mode). For para-substituted 2-
haloacetophenones, the aryl ring is ejected from the small
pocket due to the clash with A85 in P84S/I86A TeSADH, and
thus moves to the large pocket allowing for a pro-R orientation
(i.e., Prelog mode). These results also confirm the higher
affinity of the smaller binding pocket of TeSADH when
compared with that of the larger binding pocket, which is
consistent with the original findings for the wild-type TeSADH
and TbSADH.36,37

To further explore the impact of A85G in altering the
stereopreference in the asymmetric reduction of para-

Figure 1. Lowest energy dockings of: (a) 5a into the binding pocket
of P84S/I86A TbSADH, (b) 5a into the binding pocket of ΔP84/
A85G TeSADH, (c) 2a into the binding pocket of P84S/I86A, (d) 2a
into the binding pocket of ΔP84/A85G. The substrate is viewed from
the face occupied by NADPH in the TbSADH crystal structure.
Enzyme carbon is represented in green, substrate carbon in yellow,
nitrogen in blue, oxygen in red, and chlorine in cyan.
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substituted 2-haloacetophenones using ΔP84/A85G TeSADH,
we created A85G and ΔP84 mutants of TeSADH. Sub-
sequently, we carried out reduction reactions of para-
substituted 2-chlorocetophenones using A85G and ΔP84
single mutants of TeSADH. The results presented in Table 2

reveal that when reducing para-substituted 2-chloroacetophe-
nones, 4a−6a, A85G exhibited a stereopreference that is
consistent with that of ΔP84/A85G, producing the (S)-
halohydrins in the reduction of 5a and 6a. Interestingly,
asymmetric reduction of 4a using A85G TeSADH produced
the corresponding (R)-halohydrin, unlike all other variants
tested. Conversely, ΔP84 exhibited minimal to no activity with
these substrates. These results indicate that replacing A85 with
the less sterically demanding glycine is crucial in influencing
the TeSADH’s stereopreference in the asymmetric reduction of
substituted 2-haloacetophenones and in expanding the binding
pocket of TeSADH to accommodate these substrates. This
observation is consistent with previous findings on asymmetric
reduction of substituted acetophenones.32

The current study adds to the growing repertoire of available
ADHs that exhibit anti-Prelog stereopreference in the
asymmetric reduction of prochiral ketones. It also provides
valuable insights into the factors that influence the stereo-
preference of TeSADH, as demonstrated by the switch in the
stereochemical outcome observed when using the P84S/I86A
versus ΔP84/A85G variants of TeSADH. Expanding the pool
of ADHs capable of anti-Prelog reduction opens up new
opportunities for the selective synthesis of valuable chiral
alcohol building blocks.38

■ CONCLUSIONS
In conclusion, this study delved into the asymmetric reduction
of 2-haloacetophenone analogs using four mutants of TeSADH
(I86A, A85G/186A/C295A, P84S/186A, and ΔP84/A85G).
Notably, the P84S/I86A and ΔP84/A85G mutants demon-
strated improved performance compared to I86A and A85G/
186A/C295A mutants, displaying superior conversions and
enantioselectivities. Intriguingly, the P84S/I86A and ΔP84/
A85G mutants exhibited enantiocomplementary stereoprefer-
ences in the reduction of para-substituted 2-haloacetophe-
nones. Modeling studies emphasize the critical role of the
interactions between the substituent in the para position of the
substituted 2-haloacetopenones and the methyl group of A85
in controlling the stereopreference of P84S/I86A and ΔP84/
A85G mutants of TeSADH. These findings demonstrate the
potential of guided mutagenesis in broadening the substrate
scope and stereopreference of TeSADH. They also provide
valuable insights into how the substituent on the aryl ring of 2-

haloacetophenones influences the stereopreference in their
TeSADH-catalyzed asymmetric reductions. The current study
opens up avenues for exploring asymmetric reduction of other
substituted 2-haloacetophenone analogs using P84S/I86A and
ΔP84/A85G. It should also guide in designing TeSADH
mutants with large substrate scope and with the desired
stereopreference. Overall, this study contributes to the
development of more efficient and selective biocatalysts for
organic synthesis.

■ EXPERIMENTAL SECTION
Asymmetric Reduction of Ketones Using TeSADH

Mutants. The enzymatic reduction reactions of ketones were
carried out by using an NADPH recycle system as described
previously. Reactions were conducted in 1.5 mL reaction tubes
consisting of α-haloacetophenones (1.0 mg), NAD+ (1.0 mg),
Tris-HCl buffer solution (700 μL, pH 8.5 and pH 7.0 for
brominated substrates), 2-propanol (300 μL), and 10 μL of
∼160 μM (i.e., 1.6 μM final concentration) enzyme. The
mixture was shaken at 180 rpm and 50 °C for 14 h. The
reaction progress was monitored using thin layer chromatog-
raphy. The mixture was then extracted with diethyl ether (500
μL × 2). The organic layer was dried with sodium sulfate, and
then concentrated to dryness.
Gene Expression and Purification of TeSADH Mu-

tants. The genes encoding TeSADH with mutations were
synthesized and subcloned into the pET11b vector (Gen-
Script). The resulting expression vectors to express Δ84
TeSADH, A85G TeSADH, ΔP84/A85G TeSADH, A85G/
I86A/C295A TeSADH, and I86A TeSADH are pET11b_Te-
SADH-Δ84, pET11b_TeSADH-A85G, pET11b_TeSADH-
ΔP84 A85G, pET11b_A85G I86A C295A, and pET11b_Te-
SADH-I86A, respectively. Each expression vector was trans-
formed into BL21(DE3) E. coli cells. The transformed cells
were grown in LB medium at 37 °C until 1.0 of OD600 and
further incubated for 3 h after adding isopropyl b-d-1-
thiogalactophranoside (IPTG, 1 mM). The cells were
harvested by centrifugation (5,500 g for 10 min) and
resuspended in Lysis buffer (50 mM Tris-HCl pH 8.8, 10
mM BME). The protein purifications were performed as
reported previously.39,40
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