

Supporting Information

for Adv. Sci., DOI: 10.1002/advs.201700550

3D-Bioprinted Osteoblast-Laden Nanocomposite Hydrogel Constructs with Induced Microenvironments Promote Cell Viability, Differentiation, and Osteogenesis both In Vitro and In Vivo

Xinyun Zhai, Changshun Ruan,* Yufei Ma, Delin Cheng, Mingming Wu, Wenguang Liu, Xiaoli Zhao, Haobo Pan,* and William Weijia Lu*

Supporting Information

3D-bioprinted Osteoblast-laden Nanocomposite Hydrogel Constructs with Induced Microenvironments Promote Cell Viability, Differentiation and Osteogenesis both *In Vitro* and *In Vivo*

Xinyun Zhai, Changshun Ruan*, Yufei Ma, Delin Cheng, Mingming Wu, Wenguang Liu, Xiaoli Zhao, Haobo Pan*, William Weijia Lu*

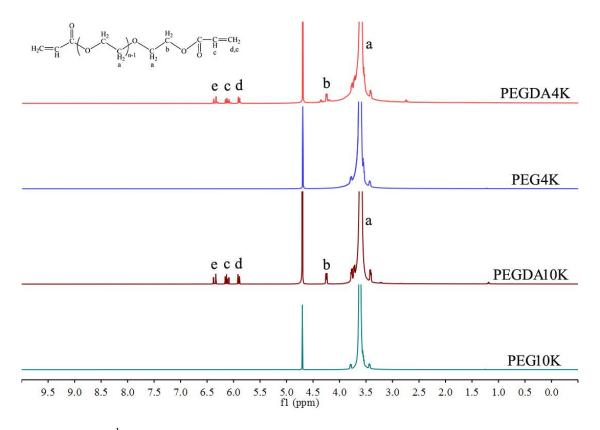


Figure S1. ¹H NMR spectra of PEG4K, PEG10K, PEGDA4K and PEGDA10K. ¹H NMR (D₂O): δ =6.35 (d, 2H, *cis* CH₂=CH), δ =5.80 (d, 2H, *trans* CH₂=CH), δ =6.10 (m, 2H, ROOCCH=CH₂), δ =4.25 (t, 4H, CH₂=CHCOOCH₂-CH₂O-), δ =3.5–3.6 (m, 360H, -CH₂CH₂O-). ^[1]

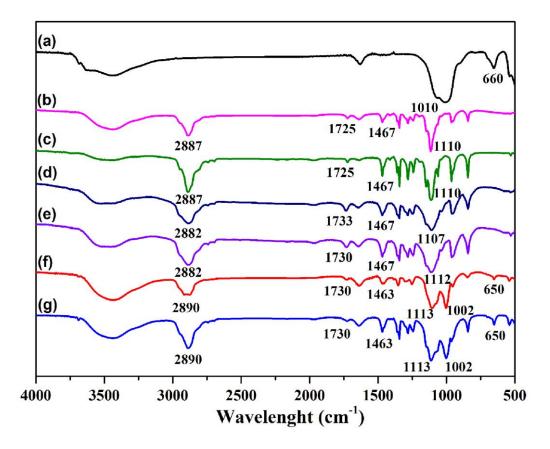


Figure S2. FTIR spectra of nanoclay (a), PEGDA4K (b), PEGDA10K (c), PEG4K hydrogel (d), PEG10K hydrogel (e), 20%PEG4K-7%Clay hydrogel (f) and 20%PEG10K-7%Clay hydrogel (g).

As shown in the figure, besides Si-O stretching and bending bands appearing at 1002 cm⁻¹ and 650 cm⁻¹, PEG-Clay hydrogel also shows C-H stretching bands at 2890 cm⁻¹, C=O stretching vibration at 1730 cm⁻¹, C-O-C stretching bands at 1113 cm⁻¹ and -CH₂- bending vibration at 1463 cm⁻¹, which can also be found out in PEGDA crosslinker and pure PEG hydrogel. This suggests the formation of hybrid hydrogel. [1, 2]

Figure S3. TGA curves of nanoclay, PEGDA4K, PEGDA10K, PEG4K hydrogel, PEG10K hydrogel, 20%PEG4K-7%Clay hydrogel and 20%PEG10K-7%Clay hydrogel.

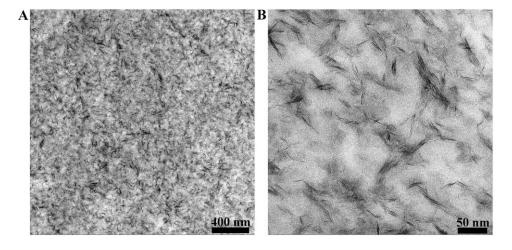


Figure S4. TEM images showing the exfoliation and dispersion of clay in the PEG4K-Clay hydrogel, where the dark platelets represent the exfoliated clay.

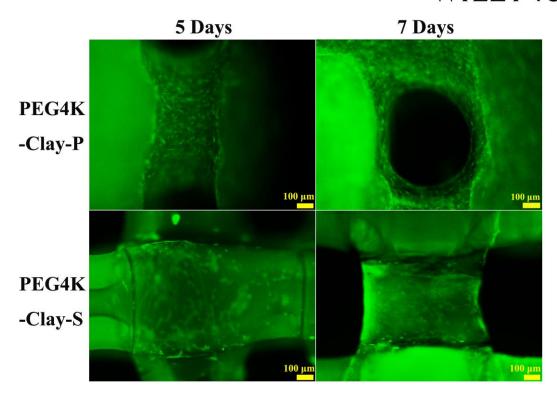


Figure S5. The status of ROBs after 3D-bioprinting (PEG4K-Clay-P) or traditional seeding (PEG4K-Clay-S) on PEG4K-Clay scaffolds after culturing for 5 and 7 days under 100× magnification.

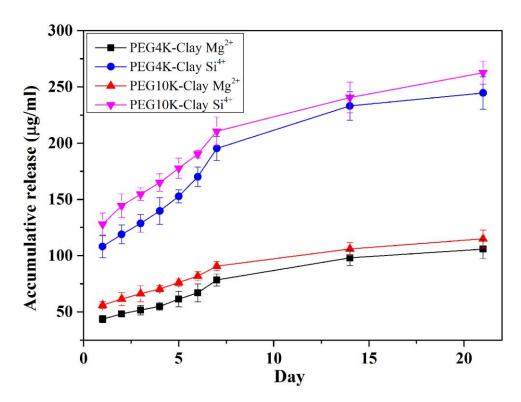


Figure S6. Accumulative release of magnesium ions and silicon ions from PEG-Clay scaffolds as a function of time.

WILEY-VCH

Table S1. Preparation of PEG-Clay and PEG pre-hydrogel solutions with varied monomer concentrations.

Sample	PEGDA (g)	Laponite XLG (g)	H ₂ O (μL)
20%PEG4K-3%Clay	0.20	0.03	1000
20%PEG4K-5%Clay	0.20	0.05	1000
20%PEG4K-7%Clay	0.20	0.07	1000
20\$PEG4K-10%Clay	0.20	0.10	1000
20%PEG10K-3%Clay	0.20	0.03	1000
20%PEG10K-5%Clay	0.20	0.05	1000
20%PEG10K-7%Clay	0.20	0.07	1000
20%PEG10K-10%Clay	0.20	0.10	1000
PEG4K	0.20	0	1000
PEG10K	0.20	0	1000

References

[1] J. Zhang, N. Wang, W. Liu, X. Zhao, W. Lu, Soft Matter 2013, 9, 6331

[2] H. Li, R. Wu, J. Zhu, P. Guo, W. Ren, S. Xu, J. Wang, J. Polym. Sci., Part B: Polym. Phys.2015, 53, 876.