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OBJECTIVES: Fluid therapy is an important component of intensive care manage-
ment, however, optimal fluid management is unknown. The relationship between 
fluid balance and ventilator-associated events has not been well established. This 
study investigated the dose-response relationship between fluid balance and ven-
tilator-associated events.

DESIGN: Nested case-control study.

SETTING: The study was based on a well-established, research-oriented reg-
istry of healthcare-associated infections at ICUs of West China Hospital system 
(Chengdu, China).

PATIENTS: A total of 1,528 ventilator-associated event cases with 3,038 
matched controls, who consistently underwent mechanical ventilation for at least 
4 days from April 1, 2015, to December 31, 2018, were included.

INTERVENTIONS: None.

MEASUREMENTS AND MAIN RESULTS: We calculated cumulative 
fluid balance within 4 days prior to ventilator-associated event occurrence. A 
weighted Cox proportional hazards model with restricted cubic splines was 
used to evaluate the dose-response relationship. A nonlinear relationship be-
tween fluid balance and all three tiers of ventilator-associated events, patients 
with fluid balance between –1 and 0 L had the lowest risk (p < 0.05 for nonlinear 
test). The risk of ventilator-associated event was significantly higher in patients 
with positive fluid balance (4 d cumulative fluid balance: 1 L: 1.19; 3 L: 1.92; 5 
L: 2.58; 7 L: 3.24), but not in those with negative fluid balance (–5 L: 1.34; –3 
L: 1.14; –1 L: 0.98).

CONCLUSIONS: There was nonlinear relationship between fluid balance and all 
three tiers of ventilator-associated event, with an fluid balance between –1 and 0 L 
corresponding to the lowest risk. Positive but not negative fluid balance increased 
the risk of ventilator-associated events, with higher positive fluid balance more 
likely to lead to ventilator-associated events.

KEY WORDS: dose-response relationship; fluid balance; ventilator-associated 
event

Ventilator-associated pneumonia (VAP) is a common complication 
among patients receiving invasive mechanical ventilation (MV)  
(1, 2). VAP may lead to longer stays in ICU and hospital and longer 

duration of MV, and is associated with increased healthcare costs and mor-
tality (1, 3, 4). However, the diagnostic criteria for VAP are subjective and 
inconsistent. In 2013, the U.S. Centers for Disease Control and Prevention 
(CDC) proposed a new approach (5), called ventilator-associated events 
(VAEs), which is more objective and can detect a broad range of ICU 
complications (2, 6).
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Although VAE rates are routinely monitored in over 
2,000 hospitals in United States, there is limited sur-
veillance in other countries (7), possibly because of a 
lack of sound evidence on risk factors and strategies for 
prevention (2). Although several potential strategies 
have been proposed (8), some of potential strategies 
have not been validated. For instance, the relationship 
between fluid balance (FB) and VAEs has only been 
investigated in a few studies with small sample sizes 
and is not fully understood (9–11).

As an important approach to optimize tissue per-
fusion, fluid therapy is widely used to improve organ 
perfusion and survival in patients with critical illness 
(12, 13). However, inadequate or overload fluid resus-
citation is associated with poor prognosis; the former 
may lead to tissue hypoperfusion and exacerbate organ 
dysfunction, whereas the latter can increase the risk of 
heart failure, pulmonary edema, and pleural effusions 
(9, 10, 12, 14–17). Thus, the relationship between FB 
and adverse outcomes may not be linear. However, 
this has not been addressed by previous investigations, 
which have categorized FB using a linear regression 
model with different cutoff values (9–11).

Therefore, we conducted a nested case-control study 
using data from a registry of healthcare-associated 
infections of ICUs (ICU-HAIs) at West China Hospital 
(WCH) system, aiming to assess the dose-response re-
lationship between FB and risk of VAEs.

MATERIALS AND METHODS

We followed the reporting standards set by Reporting 
of studies Conducted using Observational Routinely 
collected health Data in this study (18). This study was 
approved by the Ethical Committee of WCH in 2018 
(WCH2018-409).

Data Source

The ICU-HAI registry of WCH system is a multisource 
database that include all patients who were admitted 
to any one of the six ICUs in WCH since April 1, 2015 
(19). A detailed description regarding the data profile 
of the ICU-HAI registry has been published elsewhere 
(20). Briefly, the registry contains three databases 
(electronic medical record, ICU system, and ICU-HAI 
system). The ICU-HAI system is the unique system 
routinely used for VAE surveillance in China, with 
over 1,800 cases recorded between April 2015 and 

December 2018. Through integrating the multisource 
databases using unique patient identification codes, 
the registry includes a large number of patients and is 
a valuable, high quality, comprehensiveness data re-
source for clinical studies (21, 22) (Additional File 1, 
http://links.lww.com/CCM/G619).

Study Design and Cohort Identification

The disease status and treatment pattern including 
fluid therapy from initiation of MV to extubation 
varied across patients. Therefore, we used a nested 
case-control study design to ensure identical duration 
of MV treatment between cases and controls and to 
improve statistical efficiency (23).

We identified patients who consistently underwent 
MV for at least 4 days from April 1, 2015, to December 
31, 2018, from the ICU-HAI registry. We excluded 
patients who met any of the following criteria: 1) age 
less than 18 years; 2) incomplete information on date 
of birth, sex, and discharged diagnosis; 3) extremely 
long hospital stays (> 365 d) and abnormal hospital bill 
because of medical disputes; 4) non-Chinese nation-
ality; and 5) consecutive unstable or increasing daily 
minimum positive end-expiratory pressure (PEEP) or 
Fio2 during MV treatment. According to U.S. CDC 
criteria, patients with consecutive unstable or dete-
riorating respiratory status were judged as non-VAE; 
these patients were excluded as clinical characteristics 
could differ between non-VAE cases with and without 
consecutive stable or improved respiratory status. We 
also excluded patients who were exclusively admitted 
to the thoracic surgery ICU because information on 
FB was not electronically recorded at this unit.

Case Identification and Control Selection

VAEs were identified from the ICU-HAI system at 
WCH. A team of experienced infection control practi-
tioners collected related information and judged VAEs 
using the U.S. CDC criteria every day (5). VAEs were 
classified as ventilator-associated complication (VAC), 
infection-related ventilator-associated complication 
(IVAC), or the possible ventilator-associated pneu-
monia (PVAP) (Additional File 2, Supplementary Fig. 
S1, http://links.lww.com/CCM/G619). The accuracy of 
PVAP has been validated to be 96.2% previously (20).

We matched each case with up to two controls with 
the same number of MV days from the initiation of 
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MV to VAE occurrence using an incidence density 
sampling approach. In addition, cases and controls 
were matched in terms of age (< 45, 45–59, 60–75, 
75–89, and ≥ 90) and days from ICU admission to in-
itiation of MV. Case and control selection was limited 
to the first episode of MV.

Exposure Assessment

We calculated cumulative FB as cumulative daily FB 
within 4 days prior to the event of interest. Daily FB 
was calculated as daily total fluid intake (sum of all IV 
and oral fluids) minus daily total fluid output (sum of 
urine, ultrafiltration fluid, drain fluid, and gastrointes-
tinal losses). Data regarding fluid intake and output 
were routinely recorded every hour by well-trained 
specialty nurses. Due to the difficulty of a reliable 
assessment, we did not consider insensible fluid loss.

Measurement of Covariates

Potential confounders were identified from the reg-
istry including demographic characteristics, ICU type, 
chronic comorbidities, acute conditions at ICU admis-
sion, Acute Physiology and Chronic Health Evaluation 
(APACHE) II score, prescription, operation/proce-
dures, and other treatments (Table  2). We identified 
drug treatment from prescription data, diagnosis in-
formation using the International Classification of 
Diseases, 10th Revision (ICD-10) code, and laboratory 
examinations information using specific codes devel-
oped by WCH. The completeness and accuracy of the 
ICD-10 code at WCH have been reported as 99% and 
88%, respectively (22).

Statistical Analysis

We assessed the dose-response relationship be-
tween cumulative FB for all three tiers of VAE using 
a weighted Cox proportional hazards model with re-
stricted cubic splines (RCS), which can provide greater 
flexibility for data fitting and modeling without the 
assumption of linearity and has been widely used to 
explore nonlinear relationships between continuous 
exposure and response (24–26). The hazard ratio (HR) 
for FB and risk of all tiers of VAE were calculated 
using a weighted Cox model, which has been applied 
to matched case-control studies with time-dependent 
variates and is considered superior to traditional Cox 

models and conditional logistic regression in terms of 
bias and mean squared error (27).

We adjusted all analyses using a combination of 
fixed and time-varying covariates. Time-varying vari-
ables included exposures to drugs, enteral nutrition, 
gastrointestinal decompression, mandatory ventila-
tion, and head-of-bed elevation, which were measured 
as daily exposure on each of the 4 days prior to the 
event of interest. Missing data were imputed by sto-
chastic regression.

Sensitivity Analyses

To examine the robustness of effect estimates, we con-
ducted the following sensitivity analyses for VAEs: al-
ternative definition of FB (cumulative FB within 7 d 
prior to the event of interest); alternative approach 
for missing data (without imputation); alternative 
approach for incidence density sampling (sampling 
controls from the entire risk set excluding cases); al-
ternative inclusion and exclusion criteria (excluding 
patients with heart, kidney failure, and cases of VAE 
occurring within 4 d after initiation of MV; including 
patients with consecutive unstable or increasing PEEP 
and Fio2); and alternative statistical model (addition-
ally adjusted stroke, trauma, sepsis, and complicated 
intra-abdominal infections).

RESULTS

Characteristics of the Study Population

The initial cohort included 6,176 consecutive patients 
who consistently underwent MV for at least 4 days and 
with stable or decreasing PEEP or Fio2 for at least 2 
days between April 1, 2015, and December 31, 2018. 
We excluded 739 patients who were exclusively admit-
ted to the thoracic surgery ICU. After performing in-
cidence density sampling, 1,528 VAE cases with 3,038 
matched controls were finally included. Of 1,528 VAEs, 
452 were IVACs and 132 were PVAP (Fig. 1).

Among VAE cases, the median age was 58 years and 
median APACHE II score was 20; 64.5% of patients 
were male and 30% were admitted to the surgical ICU. 
The most common comorbidities were hypertension 
(21.5%), kidney failure (9.4%), and malignant tumor 
(8.4%) among VAEs. Most VAE cases occurred early in 
the course of the MV episode and the median day from 
the initiation of MV to the VAE occurrence was 4 days 



Wang et al

310          www.ccmjournal.org	 February 2022 • Volume 50 • Number 2

TABLE 1. 
Clinical Characteristics of Cases and Matched Controls

Characteristics
Overall  

(n = 4,566)
Cases  

(n = 1,528)
Controls  

(n = 3,038) p

Age, median (IQR) 59 (46–70) 58 (46–70) 59 (46–70) 0.456

  18–44 1,026 (22.5) 344 (22.5) 682 (22.4) 0.85

  45-64 1,794 (39.3) 608 (39.8) 1,186 (39.0)  

  ≥ 65 1,746 (38.2) 576 (37.7) 1,170 (38.5)  

Sex, male (%) 2,895 (63.4) 985 (64.5) 1,910 (62.9)  

ICU type (%) < 0.001

  General ICU 1,704 (37.3) 555 (36.3) 1,149 (37.8)  

  Neurologic ICU 1,007 (22.1) 344 (22.5) 663 (21.8)  

  Respiratory ICU 831 (18.2) 171 (11.2) 660 (21.7)  

  Surgical ICU 1,024 (22.4) 458 (30.0) 566 (18.6)  

Acute Physiology and Chronic Health 
Evaluation II, median (IQR)

20 (16–25) 20 (16–25) 20 (15–25) 0.56

Cardiac surgery 22 (0.5) 14 (0.5) 8 (0.5) 0.95

Cranial surgery 418 (9.2) 294 (9.7) 124 (8.1) 0.094

Acute conditions (%)

  Acute respiratory distress syndrome at  
  ICU admission

56 (1.2) 16 (1.0) 40 (1.3) 0.523

  Shock at ICU admission 287 (6.3) 96 (6.3) 191 (6.3) 1

  Gastrointestinal bleeding at ICU  
  admission

75 (1.6) 22 (1.4) 53 (1.7) 0.521

  Pneumonia at ICU admission 486 (10.6) 159 (10.4) 327 (10.8) 0.75

Chronic comorbidities (%)

  Diabetes 250 (5.5) 72 (4.7) 178 (5.9) 0.124

  Cardiovascular disease 19 (0.4) 9 (0.6) 10 (0.3) 0.297

  Heart failure 244 (5.3) 86 (5.6) 158 (5.2) 0.592

  Chronic lung disease 274 (6.0) 78 (5.1) 196 (6.5) 0.081

  Malignant tumor 441 (9.7) 128 (8.4) 313 (10.3) 0.043

  Liver failure 105 (2.3) 42 (2.7) 63 (2.1) 0.183

  Hypertension 974 (21.3) 329 (21.5) 645 (21.2) 0.845

  Kidney failure 383 (8.4) 143 (9.4) 240 (7.9) 0.105

Outcomes

  Days of hospitalization, median (IQR) 25 (16–38) 27 (16–42) 24 (16–37) < 0.001

  Days of ICU stays, median (IQR) 16 (10–26) 19 (12–30.25) 15 (10–24) < 0.001

  Days of mechanical ventilation,  
  median (IQR)

11 (7–18) 13 (8–21) 9 (6–16) < 0.001

  Hospital mortality (%) 784 (17.2) 323 (21.1) 461 (15.2) < 0.001

IQR = interquartile range.
The clinical characteristics of included patients and compares these between patients with ventilator-associated events and matched 
controls.
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TABLE 2. 
Associations Between Cumulative Fluid Balance Within 4 Days Prior to the Events of Interest 
and Ventilator-Associated Events

Cumulative  
Fluid Balance

Adjusted Hazard Ratio (95% CI)

–5 L –3 L –1 L 0 L 1 L 3 L 5 L 7 L

Ventilator-
associated  
event

1.34  
(0.97–1.85)

1.14  
(0.95–1.36)

0.98  
(0.94–1.02)

References 1.19  
(1.14–1.25)

1.92  
(1.67–2.21)

2.58  
(2.22–2.99)

3.23  
(2.76–3.79)

Infection-related 
ventilator-
associated 
complication

1.56  
(0.99–2.48)

1.24  
(0.96–1.61)

1.01  
(0.95–1.07)

References 1.16  
(1.08–1.25)

1.82  
(1.46–2.28)

2.48  
(1.96–3.14)

3.19  
(2.49–4.10)

Possible ventilator-
associated 
pneumonia

1.81  
(0.83–3.96)

1.35  
(0.87–2.08)

1.03  
(0.92–1.15)

References 1.16  
(0.99–1.35)

1.83  
(1.15–2.90)

2.40  
(1.46–3.92)

2.94  
(1.74–4.98)

All models were adjusted for: age; sex; ICU type; chronicity comorbidities (malignant tumor, diabetes, cardiovascular disease, congestive 
heart failure, chronic lung disease, liver failure, and renal failure), acute comorbidities at ICU admission (gastrointestinal bleeding, shock, 
pneumonia, and acute respiratory distress syndrome); Acute Physiology and Chronic Health Evaluation II score; rehabilitation exercises; 
operation/procedures (cranial or cardiac surgery, fiberoptic bronchoscopy examination, tracheotomy); daily exposures to sedative, 
neuroleptic agents, opioids, antithrombotic agents, neuromuscular blockers, acid inhibitors, expectorant, antibiotics, intestinal probiotics, 
immunosuppressive agent, expectorant, and vasopressors; daily exposure to enteral nutrition, gastrointestinal decompression, mandatory 
ventilation, and head-of-bed elevation.
Associations between cumulative fluid balance within 4 d prior to the events of interest and the risk of all three tiers of ventilator-
associated events, compared with the reference category of 0 L.

(2–7 d). There were 519 (34.0%) VAE cases occurred on 
calendar day 3 of MV and 260 (17.0%) cases occurred 
on calendar day 4 of MV. There were no significant dif-
ferences between VAE cases and controls in terms of 
age, sex, APACHE II score, ICU type, and acute con-
ditions at admission (p > 0.05). Comorbidities were 
similar among cases and controls with the exception of 
malignant tumors, which were more common in control 
patients compared with patients with VAEs (10.3% vs 
8.4%; p = 0.043). Compared with controls, patients with 
VAEs had longer median duration of hospitalization (27 
vs 24 d; p < 0.001), ICU stay (19 vs 15 d; p < 0.001), and 
time on MV (13 vs 9 d; p < 0.001); crude mortality rate 
was also higher (21.1% vs 15.2%; p < 0.001) (Table 1).

The clinical characteristics of included patients 
varied among different ICU units. The proportion of 
cases with acute respiratory distress syndrome (2.8%), 
shock (10.2%), gastrointestinal bleeding (2.6%), com-
plicated intra-abdominal infections (28.4%), sepsis 
(10.2%), and pneumonia (14.7%) were highest in the 
general ICU. The proportion of patient with stoke 
(61.5%) was highest in neurologic ICU and trauma 
(23.8%) were highest in surgical ICU. With respect 
to chronic comorbidities, patients admitted to the 

neurologic ICU had the highest proportion of hyper-
tension (35.6%) and diabetes (7.1%), while propor-
tion of heart failure (9.7%) and chronic lung disease 
(19.6%) were highest among patients admitted to the 
respiratory ICU (Additional File 3, Supplementary 
Table S1, http://links.lww.com/CCM/G619).

FB Over Time

Cumulative FBs within 7 days after ICU admission are 
shown in Figure 2. Compared with non-VAE cases, 
the cumulative FB was significantly higher among VAE 
cases 1–7 days after ICU admission (1 d: 1.08 vs 0.83 L, p 
< 0.001; 2 d: 1.65 vs 1.14 L, p < 0.001; 3 d: 2.06 vs 1.20 L, p 
< 0.001; 4 d: 2.33 vs 1.31 L, p < 0.001; 5 d: 2.57 vs 1.38 L, p 
< 0.001; 6 d: 2.69 vs 1.47 L, p < 0.001; 7 d: 2.93 vs 1.71 L, 
p < 0.001). The cumulative FB during ICU stays was 
also higher among VAE cases than non-VAE cases (7.66 
vs 4.37 L; p < 0.001). We also summarized cumulative 
FBs within 7 days prior to events of interest and daily 
fluid input and output with 14 days after ICU admis-
sion in Additional File 4, Supplementary Figs. S1 and 
S2 (http://links.lww.com/CCM/G619). The fluid output 
increased within 7 days after ICU admission both in 
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VAE cases and non-VAE cases. However, after 7 days, 
the fluid output gradually stabilized.

Dose-Response Relationship Between  
FB and VAEs

The Cox model with RCS showed a J shape relationship 
between cumulative FB within 4 days prior to events 
of interest and VAEs, an FB between –1 and 0 L had 
the lowest risk of VAEs (p < 0.0001 for nonlinear test) 

(Fig. 3). Compared with 
the reference value of 0 L, 
a positive FB significantly 
increased the risk of VAEs, 
and higher FB was associ-
ated with an elevated risk 
for VAEs in patients with 
positive FB (4 d cumulative 
FB at 1 L: HR 1.19, 95% CI: 
1.14–1.25, p < 0.0001; 3 L: 
HR 1.92, 95% CI: 1.67–
2.21, p < 0.0001; 5 L: HR 
2.58, 95% CI: 2.22–2.99, p 
< 0.0001; 7 L: HR 3.24, 95% 
CI: 2.76–3.79, p < 0.0001). 
Although there was a trend 
toward more VAE cases in 
patients with negative FB, 
but the result was not sta-
tistically significant (4 d 
cumulative FB at –1 L: HR 
0.98, 95% CI: 0.94–1.02, p 
= 0.358; –3 L: HR 1.14, 95% 
CI: 0.95–1.36, p = 0.167; –5 
L: HR 1.34, 95% CI: 0.97–
1.85, p = 0.076) (Fig. 3 and 
Table  2). Among patients 
with cumulative positive 
FB, those with VAEs had 
longer duration of MV (13 
vs 9 d; p < 0.001), ICU stays 
(19 vs 15 d; p < 0.001), and 
hospital stay (25 vs 23 d; 
p < 0.001) compared with 
those without VAEs. The 
hospital mortality was 
higher in patients with 
VAEs than those without 

(21.3% vs 15.0%) (Additional File 3, Supplementary 
Table S2, http://links.lww.com/CCM/G619).

The dose-response analysis also showed a J shape re-
lationship between cumulative FB and IVACs, with FB 
between –1 and 0 L corresponding to the lowest risk of 
IVACs (p < 0.0001 for the nonlinear test). Compared 
with the reference value of 0 L, a higher positive FB sig-
nificantly increased the risk of IVACs (4 d cumulative 
FB at 1 L: HR 1.16, 95% CI: 1.08–1.25, p < 0.0001; 3 L: 
HR 1.82, 95% CI: 1.46–2.28, p < 0.0001; 5 L: HR 2.48, 

Figure 1. Study flow chart. IVAC = infection-related ventilator-associated complication, MV = 
mechanical ventilation, PEEP = positive end-expiratory pressure, PVAP = possible ventilator-
associated pneumonia, TICU = thoracic surgery ICU, VAE = ventilator-associated event.

http://links.lww.com/CCM/G619


Clinical Investigations

Critical Care Medicine	 www.ccmjournal.org          313

95% CI: 1.96–3.14, p < 0.0001; 7 L: HR 3.19, 95% CI: 
2.49–4.10, p < 0.0001). There was a nonlinear relation-
ship between cumulative FB and PVAPs (p = 0.02 for the 
nonlinear test); positive but not negative FB was associ-
ated with increased risk of PVAP (Fig. 3 and Table 2).

Sensitivity Analyses

All sensitivity analyses showed nonlinear association 
between FB and risk of VAEs (Additional File 5, Figs. 
S1–S8, http://links.lww.com/CCM/G619).

DISCUSSION

There was a nonlinear relationship between FB and all 
three tiers of VAE, with an FB between –1 and 0 L hav-
ing the lowest risk of VAEs. Compared with the ref-
erence value of 0 L, positive but not negative FB was 
associated with a significantly higher risks of all three 
tiers of VAE. A higher positive FB was more likely to 
increase the risk of VAEs. The effect estimates were 

robust using alternative definition of FB, alternative 
approaches for sampling and missing data, and alter-
native inclusion and exclusion criteria.

Similar to our findings, several observational stud-
ies and randomized controlled trials (RCTs) have re-
ported that positive FB was associated with a higher 
risk of adverse outcomes (9–11, 14, 16, 17). An RCT 
of 304 patients at nine ICUs who received MV showed 
that restrictive fluid management was associated with 
50% fewer VAEs and VAPs compared with the usual 
practice (28). In another trial of patients with acute 
lung injury, the fluid output increased after ICU ad-
mission among patients received liberal strategy; con-
servative fluid resuscitation improved lung function 
and increased the number of ventilator-free days com-
pared with liberal resuscitation strategies (29). A mul-
ticenter RCT involved patients admitted to PICUs with 
acute lung injury/acute respiratory distress syndrome 
and found that increased fluid accumulation was as-
sociated with worsening oxygenation and increased 

Figure 2. Cumulative fluid balances over the 7 d after ICU admission for ventilator-associated events (VAEs) and non-VAEs.

http://links.lww.com/CCM/G619
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mortality (30). Among critically ill patients, adequate 
fluid resuscitation is essential for restoring cardiac 
output and renal perfusion, however, excess fluid can 
lead to cardiopulmonary complications including pul-
monary edema and congestive heart failure (8, 31, 
32), resulting in impaired gas exchange and contrac-
tility, conduction disturbance, reduced compliance, 
and diastolic dysfunction, which may further increase 
the risk of adverse outcomes including VAEs (16, 33). 

Indeed, 20–40% of VAEs may be attributable to con-
gestive heart failure and pulmonary edema caused by 
fluid overload (8, 9, 34). In addition, patients with pul-
monary edema and impaired respiratory function are 
also more susceptible to bacterial infection, leading to 
IVACs and VAPs (28).

Although all of the abovementioned studies have 
demonstrated the adverse effects of fluid overload, the 
effect estimates vary markedly between studies (11, 
16, 28, 35, 36). For instance, in the study by Liu et al 
(11), 30 of the 428 patients received MV developed 
VAEs and the risk was eight times higher in patients 
with daily FB greater than or equal to 50 mL versus 
less than 50 mL. Another study of 192 pairs of patients 
with VACs and matched controls showed that FB be-
tween 27 and 93 mL/kg was associated with two-fold 
increase in VAE compare to FB less than or equal to 
–11 mL/kg (10). However, it was also reported that a 
positive FB (≥ 5%) had a higher mortality rate than an 
even FB between 0 % and less than 5% (HR, 1.72; 95% 
CI, 1.55–1.92) (36). One potential reason for the in-
consistent results may be small sample size overall and 
the paucity of VAEs in these studies (9, 10). Another 
possible reason may be differences in cutoff values for 
positive FB and reference groups. Dichotomizing a 
continuous variable by means rather than their orig-
inal scale may reduce statistical power and increase 
bias (37). Furthermore, the relationship between FB 
and adverse events may not be linear. In this study, 
we used RCS to explore the nonlinear dose-response 
relationship in a larger sample. We documented a 
nonlinear relationship between FB and VAEs, with 
a higher FB linked to an elevated risk for VAEs in 
patients with a net positive FB but not in those with 
negative FB. This presumably reflects the greater risk 
of pulmonary edema and congestive heart failure 
among patients with cumulative positive FBs, which 
more often requires ventilatory support.

The optimal fluid management of ICU patients has 
not been established. Clinical characteristics vary among 
ICU patients, making is difficulties to detect fluid over-
load for individual patients. Several RCTs have showed 
that biomarker-guided protocols for fluid management, 
such as a B-type natriuretic peptide-guided strategy 
for depletive fluid management, may have benefits on 
improving respiratory function (28, 38). However, large 
simple size RCTs are needed to further compare the ef-
fectiveness and feasibility of these protocols.

Figure 3. Dose-response relationship between cumulative fluid 
balance within 4 d prior to events of interest and all three tiers 
of ventilator-associated events (VAEs). IVAC = infection-related 
ventilator-associated complication, PVAP = possible ventilator-
associated pneumonia.
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Our study has several strengths. Our sample size 
was very large, with thousands of VAE cases. We used 
RCS functions to explore the nonlinear relationship 
between FB and all three tiers of VAE and performed 
multiple sensitivity analyses to assess the robustness 
of effect estimates. However, our findings should be 
interpreted with caution. First, this study was an ob-
servational study. Although we used multiple statis-
tical methods and adjusted for an extensive array of 
potential confounders, the results may be attributable 
to residual confounders. Second, we only calculated FB 
during ICU admission and did not take into account 
FB in the emergency department or ward and insen-
sible losses, which may have resulted in the misclassi-
fication of FB. Third, due to the stringent requirements 
of dose-response analysis and relatively small number 
of patients for each type of respiratory failure, we did 
not conduct subgroup analyses by type of respiratory 
failure. Finally, our findings were exclusively based on 
data from a homogeneous healthcare system and may 
not be generalizable to other settings.

CONCLUSIONS

We documented a strong but nonlinear relationship 
between FB and risk of all three tiers of VAE, with 
an FB between –1 and 0 L corresponding to the low-
est risk. Positive but not negative FB was associated 
with significantly higher risk of all three tiers of VAEs. 
Patients with higher positive FB were more likely to de-
velop VAEs. Although this study mirrors and extends 
findings from prior investigations, it should be inter-
preted with caution given the observational nature of 
the study.
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