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Wet and dry deposition remove aerosols from the atmosphere, and
these processes control aerosol lifetime and thus impact climate and
air quality. Dry deposition is a significant source of aerosol uncer-
tainty in global chemical transport and climate models. Dry deposi-
tion parameterizations in most global models were developed when
few particle deposition measurements were available. However,
new measurement techniques have enabled more size-resolved par-
ticle flux observations. We combined literature measurements with
data that we collected over a grassland in Oklahoma and a pine
forest in Colorado to develop a dry deposition parameterization.
We find that relative to observations, previous parameterizations
overestimated deposition of the accumulation and Aitken mode par-
ticles, and underestimated in the coarse mode. These systematic dif-
ferences in observed and modeled accumulation mode particle
deposition velocities are as large as an order of magnitude over ter-
restrial ecosystems. As accumulationmode particles formmost of the
cloud condensation nuclei (CCN) that influence the indirect radiative
effect, this model-measurement discrepancy in dry deposition alters
modeled CCN and radiative forcing. We present a revised observa-
tionally driven parameterization for regional and global aerosol
models. Using this revised dry deposition scheme in the Goddard
Earth Observing System (GEOS)-Chem chemical transport model,
we find that global surface accumulation-mode number concentra-
tions increase by 62% and enhance the global combined anthropo-
genic and natural aerosol indirect effect by −0.63 W m−2. Our
observationally constrained approach should reduce the uncertainty
of particle dry deposition in global chemical transport models.
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The lifetime of particles in the atmosphere is determined by
wet and dry deposition. Wet deposition removes particles by

precipitation or in-cloud processing, while dry deposition directly
uptakes particles to terrestrial surfaces (1). Wet deposition losses
are typically estimated to account for the majority of submicron
particle removal from the atmosphere––for example, models and
measurements suggest >80% of black carbon mass loss from the
atmosphere is due to wet deposition (2, 3). However, dry de-
position remains a globally important first-order loss process that
scales with concentration and is critical for estimating accurate
spatial and temporal aerosol distributions in atmospheric models
(1, 4, 5).
The two largest sources of uncertainty associated with anthro-

pogenic climate forcing are the direct and indirect aerosol effects.
Aerosols scatter or absorb radiation through the direct effect,
thereby cooling or warming the climate directly. Aerosols also
interact with clouds to cause the indirect effect by altering cloud
droplet concentration, cloud albedo, and precipitation (6). Cloud
droplet concentrations, along with cloud albedo and precipitation
rates, are affected by cloud condensation nuclei (CCN) concen-
trations (generally, the number concentration of particles with
diameters larger than 50–100 nm). CCN are small particles on
which cloud droplets activate (7). Dry deposition rates of particles
directly impact model estimates of particle and CCN concentra-
tions, and thus both the direct and indirect effects. Dry deposition

in the accumulation mode (0.1 to 1 μm) is the single process that
contributes the most uncertainty to global CCN predictions (8).
Improving our understanding of dry deposition of accumulation
mode particles can directly reduce uncertainties in the radiative
effects of aerosols.
The treatment of dry deposition in most global models stems

from theoretical work conducted by Slinn (9–11). This parame-
terization and its derivatives, including the widely used parame-
terization from Zhang et al. (12), are often implemented in air-
quality models (12–15). These parameterizations generally predict
a size-dependent deposition velocity with a minimum at particle
diameters of ∼1 μm (for land surfaces). There were few particle
flux measurements over the terrestrial biosphere at the time of
Slinn’s pioneering work. Since then, direct measurements of par-
ticle deposition have progressed substantially. As we will show
below, these measurements suggest that the deposition velocity
minimum occurs closer to ∼0.1 μm, at the lower bound of the
accumulation mode and an order of magnitude smaller than
previously thought. We explore the evidence for, and implications
of, this revised particle dry deposition parameterization below.

Resistance Models of Dry Deposition
Dry deposition is typically described using a resistance model that
includes gravitational setting (Vg) and a series of two resistors to
describe the aerodynamic (Ra) and surface resistances (Rs):

Significance

Dry deposition is a key sink of atmospheric particles, which
impact human and ecosystem health, and the radiative balance
of the planet. However, the deposition parameterizations used
in climate and air-quality models are poorly constrained by
observations. Dry deposition of submicron particles is the
largest uncertainty in aerosol indirect radiative forcing. Our
particle flux observations indicate that dry deposition veloci-
ties are an order of magnitude lower than models suggest. Our
updated, observation-driven parameterizations should reduce
uncertainty in modeled dry deposition. The scheme increases
modeled accumulation mode aerosol number concentrations,
and enhances the combined natural and anthropogenic aerosol
indirect effect by −0.63 W m−2, similar in magnitude to the
total aerosol indirect forcing in the Intergovernmental Panel on
Climate Change report.

Author contributions: G.R.M. and D.K.F. designed research; E.W.E., A.L.H., H.M.D., K.R.B.,
J.R.P., G.R.M., and D.K.F. performed research; E.W.E., A.L.H., K.R.B., and J.R.P. analyzed
data; and E.W.E. and D.K.F. wrote the paper.

The authors declare no competing interest.

This article is a PNAS Direct Submission.

This open access article is distributed under Creative Commons Attribution-NonCommercial-
NoDerivatives License 4.0 (CC BY-NC-ND).
1To whom correspondence may be addressed. Email: delphine.farmer@colostate.edu.

This article contains supporting information online at https://www.pnas.org/lookup/suppl/
doi:10.1073/pnas.2014761117/-/DCSupplemental.

First published October 5, 2020.

26076–26082 | PNAS | October 20, 2020 | vol. 117 | no. 42 www.pnas.org/cgi/doi/10.1073/pnas.2014761117

https://orcid.org/0000-0003-0350-3810
https://orcid.org/0000-0002-5099-3659
https://orcid.org/0000-0002-5643-8015
https://orcid.org/0000-0002-5996-1522
https://orcid.org/0000-0002-4241-838X
https://orcid.org/0000-0001-9782-3713
https://orcid.org/0000-0002-6470-9970
http://crossmark.crossref.org/dialog/?doi=10.1073/pnas.2014761117&domain=pdf
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:delphine.farmer@colostate.edu
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2014761117/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2014761117/-/DCSupplemental
https://www.pnas.org/cgi/doi/10.1073/pnas.2014761117


Vd(dp) = Vg(dp) +  
1

Ra + Rs
. [1]

Under stable conditions, the aerodynamic resistance term dom-
inates, but under turbulent conditions, the surface resistance
term dominates (13). The surface resistance term includes the
loss efficiency of particles by three processes: Brownian diffusion
(Eb), impaction (EIm), and interception (EIn). The loss of parti-
cles by Brownian motion is a result of diffusion of the particle
from near the surface to the surface of a collector. Impaction is
the direct collision of a particle to a surface resulting from the
particle’s inertia preventing it from following the streamlines
around a collector surface. Interception is a similar process to
impaction, but describes the instances when the particle comes
within a single-particle radius of the collector and is captured.
Modeled particle loss due to Brownian diffusion and impaction
occurs over all land use types, but interception only occurs over
surfaces that have collectors (e.g., trees, grasses, leaves) that can
be described with a cross-sectional radius.

Rs = 1
«0Up(Eb + EIm + EIn)  R1

. [2]

These terms make up the overall surface resistance in conjunc-
tion with an empirical coefficient («0), friction velocity (Up), and
a bounce correction term, R1 (12). The loss efficiency of particles
by Brownian diffusion, impaction, and interception is size depen-
dent and contains empirical coefficients that are adjusted to de-
scribe observations––although we note that these adjustments
have been modified infrequently since the original 1980 studies:

EB = CbSc−2=3, [3]

EIm = CIm( St
α + St

)β, [4]

EIn = CIn(dpA)υ. [5]

These equations depend on the land use dependent constant (A),
particle diameter dependent parameters (Stokes number: St and
the Schmidt number: Sc), and all others are empirical coeffi-
cients that were developed to describe the observations at the
time. Of these three equations, only the interception efficiency
(Eq. 5) depends on surface properties (i.e., land use type) to
which particles deposit.

A Revised Parameterization
We collected extensive measurements of size-resolved particle
fluxes over both a pine forest and grassland (Methods). Similar to
other recent studies (e.g., 16, 17), we find strong observational
evidence that the minimum dry deposition velocity occurs at a
diameter over an order of magnitude smaller compared to pre-
vious descriptions (<0.1 versus >1 μm). Fig. 1 summarizes size-
resolved particle deposition velocities from our observations over
a grassland and forest, other literature observations, the com-
monly used Zhang parameterization (18), and our revised pa-
rameterization (described below). The Zhang parameterization
fails to represent recent observational evidence, including our own
observations. Newer parameterizations (18–22) are more consis-
tent with these observations, but GEOS-Chem and other chemical
transport models still typically implement Zhang et al.’s parame-
terization (12). The newer parameterizations vary from completely
empirical (21) to incorporating additional, unknown loss processes
(22)––but are rarely incorporated into global models, likely due to
the complexity of updated parameterizations.

Three particle loss mechanisms––gravitational settling and the
Brownian and impaction collection efficiencies––drive the loca-
tion of the minimum in the Zhang parameterization (Fig. 2A). We
emphasize that the minimum of the Zhang parameterization is
consistent with flux measurements available at the time. However,
these measurements were taken over smooth and nonvegetated
surfaces, and critically, particle deposition was less influenced by
the interception loss mechanism. Considering the wealth of
measurements now available over evergreen needle leaf forests, it
is evident that interception is a key component of particle dry
deposition that was underemphasized in the original parameteri-
zations, as we will describe below. In a sophisticated model of
particle dry deposition, Petroff and Zhang (23) demonstrated that
changing interception can shift the minimum deposition velocity
toward smaller particles. While Petroff and Zhang’s model cap-
tured observations better than most previous approaches, it relied
on changes to the functional form of the parameterizations, in-
cluding increased numbers of land use categories, making it
challenging to simply adapt to existing deposition modules in
chemical transport models. Instead, a simple parameterization
that relies on empirical changes to the existing and commonly
used Zhang parameterization would be far simpler to employ in
models. However, such a modification requires a fundamental
understanding of the role of turbulence strength (described by
friction velocity, Up) in controlling particle deposition velocity.
Our extensive particle flux measurements over a pine forest

enabled us to investigate turbulence effects on deposition, and
thus constrain the empirical coefficients of the original Zhang
approach (based on the Slinn framework) into a revised param-
eterization that fits both our and previously published data in both
size dependence and deposition velocity magnitude (Fig. 1 and SI
Appendix, Fig. S1). Over the accumulation mode, our observations
from the Seasonal Particles in Forest Flux studY (SPiFFY) sug-
gest that the Zhang parameterization 1) overestimates deposition
velocity as a function of Up for small particles (<100 nm), 2)
captures deposition velocities well at the center of the accumu-
lation mode (150–285 nm), and 3) underestimates (by a factor of
2 or more) deposition velocity for larger particles (>400 nm).
Poor counting statistics limit our observations for larger particles
(>400 nm), but previous studies fill in the gaps.
In concert with relatively small changes to the Brownian dif-

fusion coefficients, our revised parameterization incorporates
a larger role for interception based on our observations
showing consistent underestimation of fluxes over more vegetated
surfaces––and the observed differences between the forest and
grassland sites (Fig. 2B). Our revised parameterization shifts the
minimum deposition velocity to smaller particles, consistent with
our and other observations over needle leaf forests. SI Appendix,
Table S1 presents the revised parameterization. Specifically, we
modified six empirical coefficients, all independent of land use,
based on a substantial number of measurements that were not
previously available. Our parameterization is simple enough to be
easily included in chemical transport models on multiple scales.
To this end, we investigated how this updated parameterization
impacts aerosol concentrations, radiative effects, and CCN in a
global chemical transport model.
Our modified parameterization can describe observations

across a variety of land use types: deciduous forest, coniferous
forest, agricultural land, and water (Fig. 1). Over these four land
use types, our parameterization captures most observations within
an order of magnitude uncertainty, implying a far smaller degree
of uncertainty in dry deposition parametrizations than previously
possible. For example, Lee et al. (8) suggested that the uncertainty
in dry deposition velocity was two orders of magnitude in their
assessment of uncertainties contributing to the CCN indirect
effect––of which dry deposition was identified as the dominant
source of uncertainty. We note that while some of the measure-
ments appear outside of the order of magnitude bounding region
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in Fig. 1, the model line uses a single assumed Up that may not be
representative of that particular measurement. The parameteriza-
tion can be used for a sensible or measured value of Up. For ex-
ample, our SPiFFY observations over a coniferous forest are
consistent with a 5× bounding region that describes 95% of the
variability of measured deposition velocities when the observed Up

values are accounted for. There are fewer particle flux observations
over the remaining land use types, particularly for particles <100 nm
over grasslands. However, available data suggest that deposition
velocities over both terrestrial and water surfaces show a similar

submicron diameter minimum to coniferous forest, which is far
better captured by our revised parameterization than the previous
Zhang approach. The parameterization over water surfaces is dis-
tinct from terrestrial surfaces because there can be no interception
over a flat surface and thus the size dependence is driven only by
Brownian diffusion and impaction, resulting in a stronger Up de-
pendence in the accumulation mode. As water is the dominant
surface over earth, this revision in dry deposition may have sub-
stantial consequences for the global atmospheric lifetime of
particles––although it is possible that under strong wind conditions,

Fig. 1. Dry deposition velocities as a function of particle diameter across four land use types used in GEOS-Chem. Literature observations are shown, as is the
Zhang parameterization (current default in GEOS-Chem, green) and our revised parameterization (purple). Both parameterizations assume particle density is
1,200 kg m−3, particle water uptake corresponding to ambient relative humidity, and U* of 0.2 m s−1, although the observations may vary from this value. The
bounding range for the Zhang parameterization spans two orders of magnitude, while we propose a 5× bounding range. Observations are shown in red for
the needle leaf and grassland land use types.

Fig. 2. Contributions from the three collection efficiencies governing the surface resistance and gravitational settling are contrasted for the Zhang et al. (12)
parameterization (A) and our revised parameterization (B) for evergreen needle leaf forests. Our revised parameterization increases the role of interception
following recently available observational evidence. Models consider U* = 0.4 m  s−1, and assumed a particle density of 1,500 kg m−3.
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waves provide enough surface structure to enable interception.
Additional particle flux measurements over the diversity of land use
types, including water, cryosphere, and urban systems, would be
useful tests of this new parameterization.
Overall, the observational data support a narrower uncertainty

bound for this revised dry deposition parameterization over ter-
restrial and water surfaces, although additional observations are
essential for further validating our approach.

Impact on Modeled Number Concentrations, CCN, and
Radiative Effects
Our revised dry deposition treatment has substantial impacts on
global aerosols, altering their lifetime and thus ambient concen-
trations at the surface (Fig. 3). Using a global chemical transport
model with detailed aerosol microphysics (GEOS-Chem-TOMAS)
(TwO-Moment Aerosol Sectional) that predicts size-resolved par-
ticle concentrations between 3 nm and 10 μm, we find that these
changes impact the modeled first aerosol indirect effect (i.e., cloud-
albedo), direct effect, and aerosol number and mass concentrations
(Figs. 3 and 4). Importantly, the direction and magnitude of these
changes in modeled aerosol concentrations are size-dependent.
Generally, deposition velocities of particles in the Aitken mode and
much of the accumulation mode decrease relative to the Zhang
parameterization, which leads to longer aerosol lifetimes and in-
creased particle concentrations, on average. Fig. 3 shows the per-
cent changes in aerosol number concentrations at the surface from
updating the Zhang parameterization to the revised scheme. In the
accumulation mode, the number concentration of particles with
diameters between 100 and 500 nm (N100-500; Fig. 3B) show the
strongest increase with the revised parameterization (62% globally
averaged, 38% averaged over land, 80% averaged over oceans),
due to their order-of-magnitude decrease in dry deposition veloc-
ities in the revised parameterization. Between 500 nm and 2 μm
(N500-2000; Fig. 3C), the new parameterization crosses the orig-
inal scheme to have faster deposition rates over most land surface
types. Subsequently, particles between 2 and 10 μm (N2000-
10000) have decreasing concentrations over nearly all land areas.

N500-2000 increases by an average of 23% over oceans and an
average of 2% over land due to variability between land types.
N2000-10000 instead increases by only 6% over oceans but de-
creases by 21% over land. Overall, N500-2000 and N2000-10000
show modest changes globally (17 and −0.5%, respectively). The
Aitken-mode changes between 3–100 nm (N3-100; Fig. 3A) are
more complicated. The new parameterization slows dry deposition
in this region leading to increased concentrations; however, there
are regions of decreased concentrations due to microphysical
feedbacks (the increases in N100-500 cause reductions in nucle-
ation and growth rates and increases in coagulational loss rates of
the small particles). Overall, N3-100 increases by 47% globally,
67% over oceans, and −1% over land.
In Fig. 4, we show the broader impacts of the dry deposition

changes. Cloud-droplet number concentrations (CDNC) at low-
cloud level (∼900 hPa) increase by 10–30% over most of the globe
(Fig. 4C), driven by increases in accumulation mode particles
(Fig. 3B). The cloud-albedo aerosol indirect effect (Fig. 4A) from
these CDNC changes (including changes to both anthropogenic
and natural aerosols) is −0.63 Wm−2 averaged globally. The effect
is strongest over oceans. Over land surfaces, the decrease is
smaller, but still substantial (−0.13 W m−2). For context, the likely
range for estimated radiative forcing from aerosol–radiation and
aerosol–cloud interactions is −0.4 to −1.5 W m−2 (24)––although
we emphasize that the number in our study is a difference between
two present-day simulations with different dry deposition schemes.
Ocean surfaces are a major driver of modeled changes to the
aerosol indirect effect for our updated versus Zhang parameteri-
zation (e.g., Southern Ocean) as dry deposition velocities in the
revised parameterization over that surface type are reduced by an
order of magnitude for CCN-relevant particle sizes.
The changes in particle concentrations due to updating from

the Zhang scheme to our revised scheme increases the aerosol
direct effect cooling tendency by −0.09 W m−2 globally (includ-
ing both anthropogenic and natural aerosols). However, this
globally averaged negative effect is driven by predicted changes
in particle concentrations over the oceans with the new

A B

C D

Fig. 3. Percent change of aerosol number concentration for various size ranges at the surface for GEOS-Chem-TOMAS simulations using the revised dry
deposition parameterization relative to simulations with the default parameterization. Warm red colors indicate more particles when using our revised dry
deposition scheme; cool blue colors are the opposite. (A–D) NX-Y refers to the number concentrations of particles within a size range (e.g., N3-100 is the
number concentration of particles with diameters between 3 and 100 nm).
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deposition parameterizations. In contrast, land surfaces show a
slight positive effect (change of +0.02 W m−2), which is most
pronounced over sub-Saharan Africa, South America, Australia,
Greenland, and scattered parts of North America and Eurasia.
Thus overall, relative to the base case (default dry deposition
parameterization in GEOS-Chem), the revised parameterization
decreases both the aerosol indirect and direct effects.
In addition to implications for estimating radiative effects on

climate, the improved treatment of dry deposition through our
revised parameterization has implications for modeling air pollu-
tion and impacts on human health. For example, exposure to
PM2.5 (total mass of particles <2.5 μm in diameter) is linked to
respiratory and cardiovascular disease (25). Our revised parame-
terization increases surface PM2.5 concentrations by 11% globally
and by 6.5% over land relative to the Zhang parameterization.
Changes in PM2.5 concentrations are observed globally and not
limited to a single land use type (Fig. 4D). By changing the de-
position velocities over the health relevant size ranges, we predict
PM2.5 to increase by 6.5% over terrestrial areas.

Implications
Our observations and previous work clearly show that dry depo-
sition is not accurately described by the schemes used in most
atmospheric models. However, our observationally constrained
revision of the dry deposition parameterization has substantial
impacts on predicted aerosol concentrations and their radiative
and potentially health impacts. The updated models must be ho-
listically tested against suites of observational data, particularly in
remote regions, and potentially other model schemes with un-
certainties (such as emissions, chemistry, or wet deposition) may
need to be adjusted to compensate for the dry deposition updates.
Relative to the expert elicitation in Lee et al. (8), our work

decreases the uncertainty bounds around size-resolved particle

dry deposition. However, our knowledge of particle deposition
remains incomplete. Gaining process-level insight into dry depo-
sition across the size distribution will help to further reduce
deposition-related uncertainty in global climate models. More
eddy covariance flux measurements across a variety of land use
types, particularly water surfaces, are essential, as is an improved
understanding of the spatial variability of subgrid processes within
individual model grid boxes through additional modeling and
measurement. Improving our description of particle deposition
requires a better understanding of how rapid changes in relative
humidity controls particle diameter on the timescales of turbulent
eddies. Further, our understanding of deposition over water sur-
faces requires an improved understanding of the extent to which
flat versus undulating surfaces (e.g., oceans) could change the
impaction term. Finally, we note that many eddy covariance data
are collected in remote sites with uniform terrain, but under-
standing the processes that control particle dry deposition under
more heterogeneous surfaces and turbulence conditions is essen-
tial for validating model parameterizations.

Conclusion
Particle dry deposition is challenging to observe, but recent ad-
vances in aerosol instrumentation have enabled numerous dry
deposition measurements over a variety of land use types in the
last 20 y, including our two new datasets. Collectively, these
measurements clearly demonstrate that existing dry deposition
parameterizations in aerosol models poorly represent observa-
tions. We suggest a revised parameterization that follows the
Zhang and Slinn frameworks. Importantly, we suggest that the
lack of data over coniferous forests and other complex surfaces
hindered the previous approaches from accurately capturing the
importance of interception as a component of dry deposition.
Increasing the collection efficiency by interception over land use

A B

C D

Fig. 4. The change between GEOS-Chem-TOMAS simulations using the revised parameterization relative to the simulations with the default parameteri-
zation for: (A) cloud-albedo aerosol indirect effect, (B) aerosol direct effect (externally mixed), (C) CDNC at 900 hPa, and (D) PM2.5 mass concentration at the
surface. The aerosol radiative effects (A and B) are the total change across both anthropogenic and natural aerosols in Wm−2. The changes in CDNC and PM2.5

are in percent difference.
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surfaces, coupled to modifications in Brownian diffusion, shifts
the deposition velocity minimum from particles with a diameter
of 2 to 0.1 μm. Our revised parameterization fits our and liter-
ature observations in terms of both size dependence and mag-
nitude, is extremely simple to implement in existing chemical
transport models, and accurately considers the role of turbulence
on deposition.
Dry deposition may be typically overlooked in global climate

models, but our study points to its importance in accurately pre-
dicting radiative balance on global and regional scales. The impli-
cations of revisiting particle dry deposition on aerosol concentrations
and direct and indirect effects suggest that aerosol sources and
measurements must be similarly revisited.

Methods
Observations. This study uses data from two field campaigns: 1) the five
distinct measurement periods of the SPiFFY study at the Manitou Experi-
mental Forest and 2) the Black Carbon Aerosol Deposition Study (BCADS
2017) campaign at the southern Great Plains (2). Both sites were described
previously (26–30).

Instruments were housed in a temperature-controlled enclosure at the
base of the measurement tower during both field campaigns. During SPiFFY,
the inlet was located 26 m above ground level with an inlet length of ∼30 m
(3/8-in. inner diameter copper tubing) with a turbulent flow rate of 19 L
min−1 and a residence time of 3 s. During BCADS, the inlet was located 2.7 m
above ground level with a length of ∼4.5 m of 4.3-mm internal diameter
stainless-steel tubing operated at 12 L min−1 and a residence time of 0.3 s. In
both field campaigns the inlet was aligned downward (45° ± 15° angle), with
a wire mesh screen to exclude insects and large debris contamination, and
proximal to the sonic anemometer (slightly below in both cases, <50 cm
distance).

Particles at ambient relative humidity were detected by sampling off the
bypass line at 0.6 cm3 s−1 using the Ultra-High Sensitivity Aerosol Spec-
trometer (UHSAS, Droplet Measurement Technologies, Inc.) operating with a
1,054-nm wavelength laser counting particles with an optical diameter from
60 nm to 100 nm at 10 Hz. Particles were collected into 99 original-size bins
that were aggregated into 12 bins (diameter ranges in nanometers): 60–70,
70–84, 84–103, 103–126, 126–153, 153–177, 177–204, 204–286, 286–403,
403–506, 506–711, and 711–1,000. The UHSAS operated on its own internal
computer collecting data at 10 Hz with continuous timestamps. The UHSAS
was calibrated prior to each field campaign with polystyrene latex spheres.

At SPiFFY, three-dimensional high-frequency (10-Hz) windspeed data
were collected using a Campbell CSAT III anemometer during summer 2015,
winter 2016, spring 2016, and summer 2016 and an Applied Technologies
Inc. A-probe sonic anemometer during fall 2016. These data were collected
on a separate computer, and timestamps were synced. During BCADS,
windspeed was collected using the Gill Instruments WindMaster Pro and
were corrected per technical note KN1509v3 (31).

We measure surface-atmosphere exchange with the eddy covariance flux
technique. This technique measures the vertical flux (Fc) for a given scalar
crossing the measurement plane of a horizontally homogeneous area. Fc is
determined by the covariance of the vertical windspeed (w) and scalar
(c; e.g., particle concentration)

Fc =  w ’c’   =  
1
n
∑n
i=0

(ci − c)  ( wi −w), [6]

where n is the number of points used in the calculation, wi and ci are in-
stantaneous measurements of vertical windspeed and scalar, respectively,
and w and c are the mean values. (32) Eddy covariance flux measurements
can be calculated over varying timescales, but 30 min is typical and employed
here. The deposition velocity is determined from the flux and the mean
concentration over the 30-min flux period as

Fc = −Vdc, [7]

where a positive Vd indicates deposition and a negative Vd implies an
emission process.

We calculated eddy covariance fluxes of size-resolved particle bins:

1) Particle diameter was calculated from the UHSAS data.
2) Timelag correction: Scalar data were corrected for the timelag between

the sonic and UHSAS data using bypass flow rates (−3 and −0.3 s for the
SPiFFY and BCADS campaigns, respectively).

3) Sonic rotation: A two-dimensional rotation of windspeed in three axes
accounted for the sonic anemometer not being precisely level with the
ground. (33, 34).

4) Eq. 18 calculates eddy covariance fluxes.
5) Quality controls:

� The stationarity test ensures that calculated fluxes do not vary substan-
tially within the timescale of analysis (35).

� We remove flux periods with an average wind direction that was
obstructed by the sampling tower.

6) Storage correction: During horizontally homogeneous conditions, the
turbulent flux below the measurement height can be different. Due to
a lack of below-sensor measurements, we use a one-point storage term
developed by Rannik et al. (36):

Fstorage = ∫ zr
0

∂c
∂t

dz ≈ zr
c(t + ΔT) − c(t)

ΔT
[8]

where c is the concentration and t = 2 min with ΔT = 30 min. These values
were calculated for all flux periods that ended within 10 s of the next one
starting. We considered other data corrections (storage, time response,
sensor separation, tube attenuation, Webb–Pearman–Leuning, despiking,
and detrending), but did not include them as they were either inappro-
priate or resulted in negligible changes to the calculated fluxes.

7) Uncertainty: We determined an average limit of detection (LOD) (37):

LOD =  
1
N

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑N
i=1

(α × REi)2i
√√√

, [9]

where α is a specified confidence interval (α = 3 for the 99th percentile)
and REi is the error of a particular flux period as calculated using Finkelstein
and Sims (ref. 38). We propagate the flux limit of detection to a deposition
velocity limit of detection.

8) Spectral analysis: Eddy covariance requires a sufficiently fast sensor re-
sponse time. The UHSAS as well as other particle-counting methods meet
this criterion (16, 17, 39). SI Appendix, Fig. S2 shows an example cospec-
trum for a day during the Summer 2015 SPIFFY campaign. The charac-
teristic inertial subrange (f−7/3) predicted by Kolmogorov theory (40) is
observed between 0.1 and 3 Hz and demonstrates a sufficiently fast sen-
sor response time for this instrument. Additionally, the particle data follow
the sensible heat cospectrum, demonstrating a near-ideal measurement.

Modeling. All modeling used the GEOS-Chemmodel v12.0.3 (geos-chem.org/)
coupled to the TwO-Moment Aerosol Sectional (TOMAS) microphysics model
(41) to run two simulations, one with the Zhang et al. parameterization and
one with our revised parameterization. This version of GEOS-Chem had 47
vertical layers, a horizontal resolution of 4° × 5°, and used GEOS-FP re-
analysis meteorology. TOMAS had 15 size bins with dry diameters spanning
3 nm–10 μm. This microphysics scheme includes nucleation, condensation,
coagulation, size-resolved emissions, and wet and dry deposition. TOMAS
includes size-resolved organic aerosol, black carbon, sulfate, sea salt, and
mineral dust species. The simulations were run for 12 mo of the model year
2016, with 1 mo of model spin up. The base anthropogenic inventory was
EDGARv4.3 (42). Anthropogenic regional emissions inventories included:
MIX (Asia), Diffuse and Inefficient Combustion Emissions (DICE, Africa), Na-
tional Emissions Inventory (NEI2011, United States; https://www.epa.gov/air-
emissions-inventories), Air Pollutant Emission Inventory (APEI, Canada;
https://www.canada.ca/en/environment-climate-change/services/pollutants/
air-emissions-inventory-overview.html), the Big Bend Regional Aerosol and
Visibility Observational Study Emissions Inventory (BRAVO, Mexico), and the
European Monitoring and Evaluation Program (EMEP, Europe; https://www.
ceip.at/) (43–45). Biomass burning emissions were from the Global Fire
Emissions Database, 4th Generation (46). Sea-salt emissions followed Jaeglé
et al.’s scheme (47), natural dust emissions followed the Dust Entrainment and
Deposition scheme (48), and secondary organic aerosols followed Pai et al.
(49). For the aerosol direct radiative effect and cloud-albedo indirect effects,
we used the offline Rapid Radiative Transfer Model for Global and Regional
Modeling Applications (50, 51). Meteorological (form GOES-FP) and aerosol
inputs (from GEOS-Chem-TOMAS) were monthly averaged for these calcula-
tions. For the aerosol direct effect, we assumed that within each TOMAS size
bin black carbon was a separate particle from all other aerosol components
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(i.e., “externally” mixed). For the cloud-albedo indirect effect, we used the
cloud-droplet-radius perturbation method originally described in Rap et al. (52).

Data Availability. The .csv data have been deposited in Open Science
Framework (53).
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