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A B S T R A C T   

The increase in human consumption of animal proteins implies changes in the management of meat production. 
This is followed by increasingly restrictive regulations on antimicrobial products such as chemical biocides and 
antibiotics, used in particular to control pathogens that can spread zoonotic diseases. Aligned with the One 
Health concept, alternative biological solutions are under development and are starting to be used in animal 
production. Beneficial bacteria able to form positive biofilms and guide surface microbial ecology to limit mi-
crobial pathogen settlement are promising tools that could complement existing biosecurity practices to maintain 
the hygiene of livestock buildings. Although the benefits of positive biofilms have already been documented, the 
associated fundamental mechanisms and the rationale of the microbial composition of these new products are 
still sparce. This review provides an overview of the envisioned modes of action of positive biofilms used on 
livestock building surfaces and the resulting criteria for the selection of the appropriate microorganisms for this 
specific application. Limits and advantages of this biosecurity approach are discussed as well as the impact of 
such practices along the food chain, from farm to fork.   

1. Introduction 

Nowadays, a significant increase in the production of meat and fish is 
observed around the world [1]. This is linked to the growing consumer 
demand associated with the demographic and consumption increase in 
developing countries. To cope with this societal demand, an increase in 
the number and size of farms and a densification of animals in the 
buildings are envisioned. High animal density, particularly in confined 
buildings, can lead to the emergence of diseases, such as zoonosis. Ac-
cording to the World Organization for Animal Health, 60% of the 1400 
human pathogens have an animal origin and 75% of emerging animal 
diseases can infect humans. Microbial pathogens in farms can trigger 
human diseases by direct contact with animals, but can also affect the 
whole food chain up to processed products such as meat or dairy 
products [2]. Characterizing pathogenic agents in livestock buildings 
and finding appropriate means to reduce their establishment and their 
propagation are therefore important challenges in the agrifood domain. 

Prophylactic means of control such as vaccines to prevent the onset, 
spread and worsening of diseases or curative methods such as antibiotic 

therapy are mostly used to control these infectious diseases in animals. 
To limit animal contamination in farms, the surfaces of livestock 
buildings are cleaned and disinfected according to defined “biosecurity 
schemes” between each batch of animals. These protocols are aimed at 
limiting the microbial surface load that can be a reservoir of pathogens 
in livestock buildings before animals enter. However, these protocols 
may lack efficiency [3]. This variable effectiveness could be associated 
with the formation of spatially organized biofilms by the surface mi-
crobial communities. Biofilms are three-dimensional microbial struc-
tures adhering to a surface and buried in self-produced extracellular 
polymeric substances (EPS) [4]. They colonize all biotopes and are the 
most prevalent mode of life of microorganisms in nature [5]. The pres-
ence of an EPS matrix, the heterogeneity of cell types and the existence 
of specific intercellular communication phenomena such as the 
density-dependent intercellular communication system called quorum 
sensing give rise to emerging biofilm properties, including an extraor-
dinary adaptation to environmental fluctuations. Microorganisms 
within a biofilm tolerate much more intense stresses than their plank-
tonic counterparts, such as dehydration or the action of disinfectants 
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* Corresponding author. 
E-mail address: romain.briandet@inrae.fr (R. Briandet).  

Contents lists available at ScienceDirect 

Biofilm 

journal homepage: www.sciencedirect.com/journal/biofilm 

https://doi.org/10.1016/j.bioflm.2022.100075 
Received 14 February 2022; Received in revised form 7 April 2022; Accepted 10 April 2022   

mailto:romain.briandet@inrae.fr
www.sciencedirect.com/science/journal/25902075
https://www.sciencedirect.com/journal/biofilm
https://doi.org/10.1016/j.bioflm.2022.100075
https://doi.org/10.1016/j.bioflm.2022.100075
https://doi.org/10.1016/j.bioflm.2022.100075
http://crossmark.crossref.org/dialog/?doi=10.1016/j.bioflm.2022.100075&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/


Biofilm 4 (2022) 100075

2

[6]. Besides, these complex communities can harbor bacteria, viruses, 
yeasts, other fungi, microalgae, archaea, protists and can constitute 
reservoirs of pathogenic microorganisms [7,8]. The National Institutes 
of Health (NIH) have estimated that approximately 80% of human in-
fections are associated with microbial biofilms [9]. These biostructures 
generate dramatic health issues and intensive efforts are used in the 
medical field to find new control strategies [10–13]. In farms, biofilms 
are found on walls, floors as well as in drinkers, feeders and even on the 
animals themselves. Biofilms are frequently associated with disinfection 
failure and pathogen persistency on surfaces [14–16]. 

Currently, there is strong pressure from consumers and legislators to 
reduce chemical disinfectant inputs in livestock farming to limit envi-
ronmental impact and improve animal welfare and human health [17, 
18]. To ensure both farming sustainability and biosafety management, 
innovative solutions based on guided microbial ecology approaches 
have emerged recently in livestock production. The use of beneficial 
microorganisms to protect surfaces is applied under different usage 
names depending on the sector [7]: e.g. biocontrol for plants [19], bio-
preservation for food [20,21] or bioremediation for environmental is-
sues [22]. In livestock buildings the term “positive biofilms” is now 
widespread for biosafety issues [23]. In this review, “positive biofilms” 
refers to the application of defined mixtures of bacteria in livestock 
buildings, selected for their capacity to colonize this environment and 
generate biofilms able to outcompete undesirable microorganisms. This 
review describes the concept, functioning and current use of positive 
biofilms and how they can complement conventional antimicrobial in-
terventions. Because of their action to limit pathogens in animal pro-
duction systems, the use of positive biofilms fits well in the One Health 
concept [17]. This is intended to limit the use of antimicrobials in farms 
and to propose additional solutions to prevent zoonoses. 

2. Biosafety tools for the livestock sector 

2.1. Direct actions on animals to limit diseases 

2.1.1. Vaccines: successes and limitations 
Vaccines are considered one of the greatest public health successes, 

along with the discovery of antibiotics. Vaccination aims to induce 
protective immunity to a targeted pathogen, thereby limiting the risk of 
developing the disease and reducing its potential impact on health. The 
principle is to inject a live attenuated pathogen, inactivated pathogen or 
part of a pathogen into a host [24]. These can be cellular debris, surface 
proteins or other molecules specific to the presence of the pathogen such 
as RNA molecules that will be used by the host cell to produce a path-
ogenic protein. Vaccines allow the body to obtain a long-lasting immune 
memory against the injected product. Typically, the active agent of a 
vaccine is recognized by cells of the immune system, which will produce 
large quantities of antibodies specifically directed against the pathogen. 
When the virulent pathogen infects the host, it will be immediately 
taken care of by a large number of cells secreting antibodies against it. 
Vaccines can have beneficial effects against pathogens other than the 
one initially targeted [25]. The use of vaccines helps to prevent the 
proliferation of pathogens in farms. It is a prophylactic action performed 
under the prescription of veterinarians. Because a vaccination plan is 
preventive, a strategy linked to a global prevention and control plan 
must be undertaken. The latter comprises local and global health rec-
ommendations [26]. The price of global vaccination in one farm is high, 
but the cost of diseases is higher [27,28]. One limit of the utilization of 
vaccines is silent infection [29]. Administration protocols may also be a 
limitation for some species and vaccines are not available for all infec-
tious diseases in farms. 

2.1.2. Antibiotic use for animals 
Antibiotics are molecules that kill or inhibit the growth of susceptible 

bacteria. They are naturally secreted by fungi or other microorganisms 
and can be produced synthetically or by large-scale fermentation. The 

use of such molecules has saved countless lives, both human and animal, 
but their use is subject to worrying abuses [17]. Antibiotic sales increase 
in proportion to population growth. In some countries, they can be 
purchased without a medical prescription and in others they are used as 
growth promoters for livestock and aquaculture productions [30]. 
Antibiotic consumption may increase by 67% between 2010 and 2030 
worldwide [31]. 

Careless use of antibiotics leads to the emergence of resistance in 
bacteria that may be transmitted to human microbiota. Antibiotic 
resistance is a genetically encoded mechanism in bacteria that allows a 
change in the target of the antibiotic or a reduction in the concentration 
of the antibiotic in the cell, preventing destruction [32,33]. The World 
Health Organization characterizes antimicrobial resistance (AMR) as a 
global public health crisis that must be managed with the utmost ur-
gency [34]. Due to poor absorption by the body, 30–90% of antibiotics 
used in the animal food-producing industry are released into the envi-
ronment [35,36]. The intensive exposure of environmental microbial 
communities to antibiotics can promote the emergence of intrinsic 
resistance and the transfer of resistance genes between bacteria (ac-
quired resistance genes). Hence, animal carcasses can be contaminated 
in slaughterhouses with antibiotic-resistant pathogens [37]. As a 
consequence, food can contain bacteria harboring acquired antibiotic 
resistance genes that can be transmitted horizontally to bacteria from 
our gut microbiota [32]. The major health issue related to AMR is linked 
to the acquisition of resistance genes by bacteria capable of zoonosis. 
Some pathogenic bacteria such as S. aureus and Escherichia coli can 
become resistant to a very large spectrum of antibiotics [38,39]. 

According to the O’Neill report, more than 10 million deaths could 
have been caused by resistance to anti-infective drugs in 2016 which 
may become the leading cause of death in the world by 2050 if the 
situation does not change [40]. The economic cost could reach US $ 100 
billion in this case [40]. To address this risk, the European Union 
implemented a regulation to ban antibiotics as growth promoters in 
animal feed in 2003 (Regulation 1831/2003/EC) and in June 2022 a 
new regulation will ban the use of therapeutic dose of zinc oxide, which 
is known to contribute to the emergence of bacterial resistance. The goal 
is not to ban their curative usage but to foster more reasonable use to 
limit the spread of antibiotic-resistant bacteria in the food chain. This is 
of particular interest as antibiotics used in veterinary medicine are often 
the same molecules as in human medicine. In the European Union, 
legislation will oblige member states to transmit sales and usage data of 
antimicrobials by species, before January 28, 2024, for cattle (including 
cattle of less than a year in age), pigs, poultry (chickens and turkeys). 

2.1.3. Probiotics to maintain animals in good health 
Probiotics are defined by the World Health Organization and the 

Food and Agriculture Organization of the United Nations as live strains 
of strictly selected microorganisms which, when administered in 
adequate amounts, confer a health benefit on the host [41,42]. Pro-
biotics are given to animals or humans in aqueous solution, feed or in 
lyophilized form. They can be used to confer benefits such as promoting 
a beneficial microbiota and result in growth-promoting effects and 
morbidity reduction. The main microorganisms used as probiotics are 
Saccharomyces spp., Bifidobacterium spp., Pediococcus spp., Lactobacillus 
spp., Lactococcus spp., Bacillus spp., Streptococcus spp. Enterococcus spp. 
and Escherichia coli [43,44]. Research is under way to find new candi-
dates as live biotherapeutics with specific probiotic properties such as 
Faecalibacterium prausnitzii, which has shown anti-inflammatory activity 
in the gut [45,46]. Probiotics can have positive effects on animal wel-
fare, for instance by alleviating the stress of farming animals tran-
sitioning to a different production stage (such as the weaning phase in 
piglets). Probiotics can also stabilize animal intestinal flora and reduce 
the need for antibiotic treatments and associated propagation of AMR 
strains [47]. Probiotics are usually administrated to the host in 
“planktonic” form and are typically freeze-dried or spray dried. Recent 
reports have explored the possibility of formulating probiotics in a 
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biofilm form, allowing better tolerance to stressors encountered in the 
digestive tract and to boost the beneficial effect [48–50]. 

2.2. Management of undesirable microbes in the holobiont environment 

2.2.1. Microbial flows in the farm influence the equilibrium of the holobiont 
The holobiont is a biological organization composed of the host and 

the microbial communities associated with it, including viruses, and 
prokaryotic and eukaryotic organisms [51]. The whole genome of the 
holobiont is called a hologenome. If there is a disorder in the organi-
zation of the hologenome, it can affect the phenotype of the host and its 
microbiota. Comprehension of the relation between the host, its 
microbiota, and the environment is essential to understand how the 
addition of positive bacteria on farms can have beneficial effects on the 
host [52]. To safeguard animal health and holobiont balance, a set of 
biosecurity measures can be taken. Biosecurity is defined by the Food 
and Agriculture Organization as a strategic and integrated approach to 
the analysis and management of risks to the life and health of people, 
animals, plants and associated risks to the environment [53]. Good 
farming practices and effective biosecurity measures are essential, as 
they are the first barrier to the entry of pathogens into farms. External 
biosecurity measures designate strategies used to reduce disease intro-
duction like fencing, quarantine, movement restriction, cleaning and 

disinfection procedures, and transport. Internal biosecurity measures 
are strategies used to reduce disease spread with, for example, the 
isolation of sick animals, and the control of rodents and insects. Bio-
security management is complex but first involves daily animal moni-
toring. Humans and animals present in the farm (e.g. cats, dogs, insects, 
rodents) can be vectors of contamination and may be responsible for 
transmitting them [54]. For example, flies are carriers of Enterobacteria, 
which are possibly pathogenic e.g. Salmonella spp. [55]. For 20 flies 
caught in pig farms, 104 to 106 E. coli were quantified [56]. To control 
these vectors, semi-containment measures are used in certain farms, 
along with airlocks that limit the risk of external contamination. Next 
comes hygienic practices such as the use of overshoes, hand cleaning, 
taking a shower, or the management of inputs including water, feed, 
litter and effluents such as manure. Indeed, water and feed can also 
transmit diseases to animals, which can lead to zoonoses [57,58]. Bio-
security management measures must be taken until the end of the chain 
and not only during breeding. Organic waste from livestock can be used 
as fertilizer for crops and thus disseminate pathogens in the environment 
[59]. 

Among internal biosecurity measures to limit the persistence and 
proliferation of pathogenic bacteria in livestock buildings, cleaning and 
disinfection (C&D) protocols are applied between each breeding cycle. 
In addition to environmental and safety concerns associated with their 
use, several studies have shown that these chemical biocides are poorly 
effective on biofilms and only allow the elimination of a small fraction of 
the microbiota present on surfaces [3,60,61]. Hence, it has been shown 
in avian farms that C&D protocols are not totally effective in eradicating 
residual pathogens responsible for cross-contamination between 
different batches of animals such as Salmonella spp., Campylobacter 
jejuni, Enterococcus spp. and Escherichia coli [62–66]. This decrease in 
efficiency of C&D is directly associated with the formation of biofilms by 
these surface-associated communities. As shown in Table 1, microbial 
pathogens of major public health interest that can trigger zoonoses are 
able to form biofilms on surfaces typically encountered in livestock 
buildings [67]. 

2.2.2. Towards innovative biosecurity approaches in livestock buildings 
For more than two decades, the international scientific community 

has been searching for alternative strategies to chemical biocides to 
control unwanted microorganisms. While physical processes (e.g. 
pulsed-light or plasma gas decontamination devices) are promising for 
specific industrial applications, their high demand in energy and cost 
limit large-scale use [96]. Most of the alternative processes considered 
nowadays for livestock building applications are based on biological 
systems. For instance, enzyme-based detergents improve the cleaning 
and disinfection process [97]. Different enzymes can be used such as 
proteases, cellulases, polysaccharide depolymerases, alginate lyase, 
dispersin B, or DNAse [98,99]. In industrial environments, numerous 
microbial species can grow within the same biofilm, thus increasing the 
biochemical heterogeneity of the matrix composition. Therefore, for-
mulations used to destroy biofilm organization are generally composed 
of mixtures of enzymes with different substrate spectra. Novel anti-
biofilm approaches targeting quorum sensing systems are emerging 
[100]. Several quorum sensing inhibitors, such as brominated furanones, 
interfering with biofilm formation in lab conditions [101,102]. Simi-
larly, cyclic-di-GMP pathways that are involved in many biofilm for-
mation processes could be promising drug targets [102–104]. 
Antimicrobial molecules extracted from natural compounds are also 
considered for use in livestock buildings. These are screened for having a 
high antagonistic effect against undesirable microorganisms while 
having a very low environmental impact. Honey bee products (bee 
venom, propolis or honey), plant essential oils and microorganism me-
tabolites have shown antibacterial and antibiofilm activities [105–107]. 
A wide variety of organisms such as insects and amphibians can also 
secrete antimicrobial peptides with anti-biofilm activities against path-
ogenic bacteria [108–110]. The use of phages (viruses that infect 

Table 1 
Major microbial pathogens isolated from biofilms in animal farms.  

Zoonosis 
ranka 

Pathogens Place Surface of 
development 

Sources 

1 Campylobacter 
spp. 

poultry, 
slaughterhouse 

stainless steel, 
surface-water 
isolates, human 
epithelial cells 

[68–70] 

2 Salmonella spp. pig farm, poultry eggshells, glass, 
broiler bedding 
material, 
polystyrene 

[15, 
71–74] 

3 Escherichia coli broiler material broiler bedding 
material, air- 
handling 
system, water 

[75] 

4 Yersinia 
enterocolitica 

mammals flea intestine 
(vector of 
disease), 
polystyrene 

[76,77] 

5 Listeria 
monocytogenes 

pork processing 
industry, floor 
drain and drain 
water, poultry 
meat 

stainless steel, 
glass 

[78–82]  

Staphylococcus 
aureus 

bovines bovine magpie [83]  

Enterococcus 
faecalis 

cattle farm intestine [84]  

Mycoplasma 
hyopneumoniae 

pig farm tracheal 
epithelium from 
pigs, glass 

[85]  

Pseudomonas 
aeruginosa 

drinking water of 
broiler houses, 
floor drain 

stainless steel, 
glass 

[86]  

Clostridium 
perfringens 

poultry livestock 
building (water 
supply lines, 
wall, feed) 

[87,88]  

Pasteurella 
multocida 

pigs and poultry glass, calf 
trachea 

[89]  

Streptococcus 
suis 

pigs endothelial 
cells 

[90,91]  

Mycobacterium 
spp. 

cattle lung, liquid/air 
interface 

[92,93]  

Vibrio spp. aquaculture glass, surface of 
the digestive 
tract of shrimp 

[94,95]  

a The European Union One Health 2019 Zoonoses Report [67]. 
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bacteria) to attack target pathogens is a promising solution that is 
already used in different sectors in some countries [111]. Phages can 
diffuse through the biofilm matrix [112] and are active on established 
biofilms [113]. They are already used in livestock buildings in poultry 
farms [114,115], and increasing research is being carried out to find 
new candidates [116]. Bacteria themselves can be used to sensitize 
unwanted biofilms to antimicrobial action. In a proof of concept study, 
Houry et al. [117] demonstrated that selected bacilli were able to swim 
inside exogenic biofilm matrix of pathogens such as S. aureus. Their 
infiltration generated a network of transient pores vascularizing the 
biofilm and increasing the efficacy of biocides. The authors also 
demonstrated that swimming bacilli that produce antimicrobial com-
pounds could eradicate unwanted target biofilm [117]. 

None of these agents proved to be universal anti-biofilm molecules 
and combined approaches appear of value in limiting the emergence of 
resistance mechanisms [118]. Another way to use microorganisms in 
biosecurity applications is to guide the ecology of a surface by settling 
positive biofilms that will colonize and protect the surface from path-
ogen multiplication. 

3. Positive biofilms to protect surfaces 

3.1. Lessons from nature 

Multispecies biofilms colonize most ecological niches. Antagonistic 
but also synergistic interactions can take place between species in these 
natural communities. A disorder of host microbial diversity (dysbiosis) 
can lead to the emergence of pathogens and associated diseases. This 
phenomenon is described with Clostridium difficile gastrointestinal 
infection which occurs essentially after antibiotic treatment alters 
competitive microbiota [119]. Similar situations can occur on the sur-
face of livestock buildings after C&D protocols that leave free habitats on 
the surface for microbial pathogen settlement. 

Many examples of natural positive biofilms illustrate competition 
with microbial pathogens. Indeed, selected bacteria, such as some 
strains of Bacillus, can act as plant growth-promoting rhizobacteria with 
the capacity to form a biofilm on the root [120–122]. In this case, 
bacteria can actively migrate by chemotaxis directed by root exudate. 
There it will form a biofilm preventing pathogen settlement by a set of 

complementary mechanisms of competition and interference. Similarly, 
some lactic acid bacteria (LAB) can naturally colonize amphibian skin 
and form biofilms that exclude the fungal pathogen Batrachochytrium 
dendrobatidis [123]. Lactobacillus spp. and Bifidobacterium spp. can form 
biofilms on the wall of honey crops with beneficial effects on beehive 
health through antimicrobial secretion [124]. Bacterial biofilms are also 
able to colonize coastal reefs and attract or repulse opportunistic algae 
[125]. These few examples of complex synergic and antagonist in-
teractions inside a microbial community and its associated hosts are the 
subject of numerous mechanistic studies designed to decipher the mode 
of action of these positive biofilms against undesirable microorganisms. 

3.2. Practical use of positive biofilms 

3.2.1. Positive biofilms are already used in many sectors 
Natural properties of positive biofilms have been used for centuries 

for many applications, particularly in fermented food production 
[126–129]. Biopreservation of food can use positive microorganisms, 
fermentation processes, metabolites or purified molecules to preserve 
food against pathogens. For example, Lactococcus piscium, a bacterium 
isolated from rainbow trout, has shown anti-Listeria monocytogenes ac-
tivity in diverse foods [130]. Several products are commercialized as 
biocontrol agents for plants [131,132]. Bacteria from the rhizosphere 
used as biocontrol agents in plant culture have shown the capability to 
combat pathogens [133]. Pseudomonas spp. has shown anti-Phytophthora 
infestans activity in a potato model [134]. With the same principle, Ba-
cillus velezensis QST713 can form biofilm on Agaricus bisporus compost 
excluding the green mold pathogen Trichoderma aggressivum [135,136]. 
Using microbial solutions to maintain the microbiological quality of 
inert surfaces is also envisioned in specific sectors. Some Bacillus spp. 
strains used as cleaning products on hard surfaces in hospitals can 
reduce by 50–89% healthcare-associated infections in comparison with 
conventional cleaning protocols [137]. The application of positive 
bacteria on building surfaces is an innovative solution already used in 
several sectors to control the establishment of microbial pathogens and 
limit the spread of AMR while reducing the use of toxic chemicals [138, 
139]. 

Fig. 1. Schematic representation of the concept of 
positive biofilms to guide the microbial ecology on 
the surface of livestock buildings. Biofilm commu-
nities that colonize livestock buildings are composed 
of background microorganisms that may contain un-
desirable bacteria. When animals leave the building, 
the microbial density on the surface is at its highest 
level. C&D protocols are used to reduce microbial 
load on surfaces (black curve). After the C&D pro-
cedures, two situations are possible: i) a positive 
biofilm is applied to the surface (green curve), ii) no 
application (red curve). In the first situation, the 
bacteria that are sprayed in large quantity adhere to 
surface to initiate a positive biofilm. This biofilm has 
an antagonistic effect on pathogens and prevents their 
proliferation. The objective is to have a mature posi-
tive biofilm before the entrance of animals in the 
building. In the second situation symbolized by the 
red curve, only the residual community that persisted 
after C&D is initiating a biofilm from a very low 
contamination level. Organic matter including feces 
or food projection is brought into surfaces when an-
imals come into the livestock building. At that time, 
some undesirable bacteria that have survived the 
C&D protocols and that are competitive can prolif-
erate with low competitive pressure. Figure created 
with https://biorender.com/. (For interpretation of 

the references to colour in this figure legend, the reader is referred to the Web version of this article.)   
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3.2.2. The case of positive biofilms in livestock buildings 
Selected bacteria can be applied to building surfaces to guide the 

microbial ecology of biofilm after cleaning and disinfection procedures. 
As described previously, biosecurity is crucial for livestock production. 
Current C&D protocols have shown their limits due to the development 
of negative biofilms on surfaces e.g. biofilm with microbial pathogens. 
These biofilms can persist between two production batches despite the 
application of biosecurity measures [3,60,61]. After C&D protocols and 
before the entry of animals, positive bacteria can be sprayed on the 
building surface and material to colonize the “empty” biotope and help 
to prevent the settlement of undesirable microorganisms. This concept is 
illustrated in Fig. 1. 

This concept has already turned into practical products and appli-
cations. The products currently available on the market are composed of 
selected bacteria and form a biofilm on the surface of livestock buildings 
after application of the required C&D protocols. These positive biofilms 
limit the proliferation of undesirable microorganisms in the buildings 
through nutritional and spatial competition. Most products are 
composed of LAB, such as Lactococcus spp, Lactobacillus spp. or Ped-
iococcus spp., often in combination with Bacillus spp. [140]. Large-scale 
evaluation of those products in field is still sparce due to experimental 
limitations in livestock buildings, and demonstrations toward pathogens 
are still mainly performed at lab scale [141]. 

3.3. How does it work? 

Several mechanisms of exclusion of undesirable microorganisms by 
positive biofilms can be invoked. They are detailed in Fig. 2 and in the 
next sections. 

3.3.1. Competition for substrate 
Within a microbial community, bacteria with competitive advan-

tages to access and consume nutrients essential for their growth will be 
favored. Nutrients essential for pathogen growth can be consumed by 
the bacteria within the positive biofilm and thus prevent pathogen 
proliferation, a phenomenon called the Jamson effect [142]. Enzymes 
can be secreted to metabolize specific substrates in the environment and 
other secreted proteins can bind to the product before being recognized 
by the bacteria for transport into the cell [143,144]. Cheating bacteria 
that can produce cellular receptors homologous to other 
enzyme-producer bacteria to incorporate specific substrates through 
proteins will then have an advantage [145]. Substrate availability with 
coevolution of different species exerts selection pressure to find the most 
economical way to use substrates in the environment. Interactions like 
cooperation, competition, or cheating drive the diversity profile of 
bacteria in the natural environment, which is modified by the avail-
ability of the substrate [144]. 

3.3.2. Spatial competition 
Motility gives bacteria the capacity to find a favorable place to settle 

and multiply [146]. The ability to sense food gradients and orientate the 
cell movement along this gradient is a phenomenon called chemotaxis. It 
uses two-component systems that detect a molecule by specific chemo-
receptors on the membrane allowing the cell to move in the right di-
rection. For planktonic cells, swimming using flagella is the most 
widespread process of movement. Surface-associated bacteria can 
migrate through several mechanisms and use flagella to migrate in 
groups in a highly regulated process named swarming. Secretion of 
biosurfactants like cyclic lipopeptides can help bacteria to migrate on 
the surface by reducing the surface tension [147–149], preventing also 
the adhesion of other species. The most studied molecule is surfactin 
which can be secreted by Bacillus spp. and has been described in a 
biocontrol effect on plants [150,151]. Another example is Lysinibacillus 
fusiformis S9 which produces a biosurfactant that inhibits biofilm for-
mation and adhesion of other bacteria without any bactericidal activity 
[152]. Bacteria can also “twitch” on surfaces by anchoring and retrac-
tion of dedicated pili [153,154] or colonized surfaces only by cell divi-
sion [155]. 

Two-dimensional spatial competition on a surface is transformed 
into three-dimensional nutritional competition within biofilms; nutri-
ents are consumed faster than they can diffuse through the biofilm 
matrix, thus generating sharp nutrient gradients [156,157]. These gra-
dients, which influence the competition in biofilms, are influenced by 
their three-dimensional structures [158]. Flagella and pili participate in 
the adhesion step inherent in biofilm formation, as well as in biofilm 
structuration. For example, it has been reported that Lactococcus lactis 
has pili implicated in the structuring of the biofilm [159]. The apparent 
volume of the cell with a polysaccharide capsule is an advantage in 
space competition because it allows the bacteria to occupy a larger 
volume and increase cell fitness and this is implicated in biofilm for-
mation [160]. For the same number of bacteria of the same size, those 
that will produce a capsule will take up more space and will therefore 
have access to more nutrients. Bacteria that are able to grow faster will 
have an advantage in the mixed biofilm because they will colonize 
surfaces faster, preventing other community members from accessing 
nutrients [155]. 

3.3.3. Interspecies interference 
Interference includes all negative specific interactions other than 

those of bacterial cells of a given strain with themselves [161,162]. One 
of the best-known examples of microbial interference is the secretion of 
antimicrobials by bacteria [163,164]. Bacillus strains used as plant 
biocontrol agents typically contain between 5 and 8% of their total 
genome dedicated to the biosynthesis of antimicrobials [165]. LAB 
frequently used in the food industry produce a wide variety of antimi-
crobials such as bacteriocins [166] or organic acid preventing in 
particular fungal food spoilage [167]. Similarly, some LAB can inhibit 

Fig. 2. Schematic representation of the mechanisms 
triggering exclusion of undesirable microorganisms 
by the settlement of positive biofilms. A positive 
biofilm can reduce the implantation of undesirable 
bacteria by several complementary mechanisms. i) An 
antiadhesive effect: the presence of the positive bio-
film itself, or surface-active molecules it produces, 
can limit the initial adhesion of free planktonic 
pathogens on the surface. ii) A spatial and nutritional 
competition; by occupying the space and consuming 
available nutritional resources, the positive biofilm 
can limit the proliferation of pathogens recruited on 
the surface. iii) Microbial interference: through the 
secretion of specific effectors such as organic acids or 
antagonistic molecules, positive biofilm can reduce 
the presence of undesirable microorganisms on the 
surface. Figure created with https://biorender.com/.   
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biofilm formation of food-borne pathogens on abiotic surfaces by 
secretion of bacteriocins or hydrogen peroxide [168–170]. Some of 
these mechanisms require physical contact between the two cells as 
shown for a bacteriocin of Lactococcus piscium inhibiting Listeria mono-
cytogenes [171,172]. Lactococcus lactis used in cheesemaking can secrete 
nisin with strong anti-Listeria monocytogenes activity in milk [173]. 

All bacteria have a growth/no-growth interface in relation to envi-
ronmental physicochemical parameters (temperatures, pH and aw 
(water activity)). LAB can secrete organic acid such as lactic acid that 
lowers the pH value of their microenvironment thus limiting the growth 
of pathogens [174,175]. pH fluctuation can be modulated by gradients 
in biofilms or EPS secretion [176]. The activity of organic acids involves 
the pH, but also the effects of undissociated acids. For example, for a 
given pH, the growth of S. aureus is more affected if the acidification of 
the medium is due to the addition of lactic acid rather than HCl [177]. 

Another example of interspecies interference involves intercellular 
communication systems. Most virulence factors of Staphylococcus aureus 
are under the control of the agr quorum sensing system. Staphylococcus 
simulans, a commensal coagulase-negative Staphylococcus, can secrete a 
peptide that interferes with the agr system of S. aureus [178]. Similarly 
Bacillus licheniformis DAHB1 shows biofilm-inhibitory activity against 
the shrimp pathogen Vibrio parahaemolyticus by this mechanism [179], 
as described in several interspecies mechanisms [180,181]. 

All these competition phenomena can be involved in pathogen 
exclusion by positive biofilms on the surfaces of livestock buildings. 

4. Bottlenecks and trends for positive biofilms in livestock 

4.1. Regulatory positions on positive biofilms 

As microbial-based products used in animal surroundings can be in 
contact with the animals, it is appropriate in Europe to refer to the 
General Food Law (i.e. Regulation (EC) No 178/2002, as amended) as 
regards to the safety of those products. The Classification, Labelling, 
Packaging (CLP) regulation, the directive on safety of microorganisms as 
well as other elements such as those of the QSP (Qualified Presumption 
of Safety) list of the EFSA (European Food Safety Authority) guidance or 
the GRAS (generally recognized as safe) criteria of the FDA (U.S. Food 
and Drug Administration (i.e. qualified presumption of safety list) on the 
characterization of microorganisms used as feed additives or as pro-
duction organisms may also be taken into consideration [182]. Today, 
C&D in livestock buildings mainly involves chemical products based on 
detergents and disinfectants. The Biocidal Product Regulation (BPR) (i.e. 
Regulation (EC) no. 528/212) establishes the legal framework for 
placing on the market new C&D molecules. The chemically oriented 
requirements of the BPR are, however, not adapted to microbial solu-
tions such as positive biofilms. 

4.2. Point of vigilance with the use of positive biofilm 

The development of positive biofilm in livestock buildings has some 
limitations and points of vigilance to consider. The biosafety of the 
strains used as positive agents must be documented and must comply 
with national and international regulations (e.g. on the list of authorized 
strains, without AMR genes). Despite biosecurity efforts, bioprotective 
products can be spread outside the farm environment by water, insects, 
wind, manure, or humans, making it important to evaluate their safety 
with standards similar to those for food use. For example, the use of the 
biocontrol agent B. thuringiensis, which has been used for many years in 
the field, has recently raised questions in the scientific community on 
their possible involvement in human foodborne infections [183]. In 
addition, in some conditions, biofilms can protect microbial pathogens 
from C&D. It has been shown for example that the strain Bacillus subtilis 
NDmed isolated in an endoscope washer disinfector was able to protect 
S. aureus from biocide action in a mixed community [184]. A recent 
bioinformatics study highlighted the presence of acquired and 

potentially mobile AMR genes in commercial probiotic strains [185]. 
The demonstration of intrinsic versus acquired resistance is a complex 
topic with regulatory agencies around the world having different re-
quirements [185–187]. The identification and monitoring of these ge-
netic elements and the AMR genes are to be considered during the 
development of the products. 

4.3. Rational selection of strains able to form positive biofilms 

Environmental conditions on surface livestock buildings are far 
different from synthetic biofilms grown in laboratories. These synthetic 
ecosystems are of prime importance to simplify, control and model 
microbial interactions [188], but on-site field analyses are also required 
to identify and validate rational screening criteria for strain selection. 
Data describing natural biofilm structures and composition in livestock 
buildings are very scarce, due to the lack of adapted tools. Sampling 
methodology such as scrubbing, rinsing, sonication, scraping and 
grinding destroys the 3D structure of the biofilm, but is very dependent 
on the experimenter and leads to only limited community recovery 
[189]. In-situ sampling methodologies on coupons are emerging strate-
gies to capture the whole community with preserved spatial organiza-
tion [190]. Diversity studies using metabarcoding, metagenomics or 
other molecular methods such as PCR or qPCR are also interesting to 
pinpoint community members associated with pathogen prevalence 
[191–194]. Dynamic models of interaction networks such as the 
generalized Lotka-Volterra model can be used in an experiment of 
community dynamics to identify the species involved in a coexistence or 
species exclusion effect [195]. For example, it has been shown using the 
Lotka-Volterra model that the resistance of pathogen infection of Clos-
tridium difficile was associated with Clostridium scindens, a bile acid 
7-dehydroxylating intestinal bacterium [196]. One application of these 
models is to understand the relationship between surface-attached mi-
crobial communities and animal disease by studying the microbial 
communities of healthy livestock buildings and comparing them with 
buildings where pathogenic bacteria are reported to be present. If there 
are differences between the two, a selection of positive bacteria from 
“healthy” livestock buildings identified by the model as barrier effect 
bacteria against pathogens can be used to guide the microbial ecology in 
other buildings. 

One important criterion for selecting candidate strains for use in 
positive biofilms is their fitness in the farm environment. Bacterial strain 
selection is mainly done using laboratory conditions, which is optimal 
for growth. The physico-chemical and biological parameters of the farm 
environment, such as temperature, humidity, pH, composition of the 
culture medium, indigenous microbiota and material, must be taken into 
consideration to develop a more rational and field-like model [197]. 

Most current commercial products are mixtures of LAB and Bacillus 
spp., but there are few scientific studies demonstrating synergistic 
mechanisms between these species. Bacillus subtilis biofilm can protect 
LAB from desiccation and there is a synergy between them against 
S. aureus proliferation in laboratory models [198]. Multispecies positive 
biofilms can have enhanced properties in comparison to strains culti-
vated alone [199–201] and new methodologies are emerging to screen 
strains alone and in combination. High-throughput methods like kChip 
screening have been developed to screen around 100,000 different 
communities per day using droplet assay and different optical growth 
assays. In this case, the communities can be screened quickly for their 
capacity to inhibit pathogen growth [202]. 

The application methodology like spraying or atomizing of the 
agents has also to be carefully adapted to the strains and the environ-
ment of application. Nutrients can be added to the formulation to 
initiate the growth of the positive bacteria. Other molecules like sur-
factants and sugars can also help to enhance the initial adhesion or 
surface colonization. Recently, it has been shown that sucrose enhances 
root colonization by Bacillus subtilis by increasing surfactin secretion 
[203]. One other important parameter is that the selected strains must 
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be easy to produce on an industrial scale. For example, Bacillus can form 
spores that are less costly energetically to produce than the lyophiliza-
tion process used for LAB. 

4.4. Beyond excluding pathogens on livestock surfaces 

Positive biofilms used in livestock buildings prevent the settlement of 
undesirable microorganisms on the surfaces. Microorganisms from the 
positive biofilm may also have side effects outside the farm, e.g. by 
reducing the spreading of pathogenic organisms and by seeding bene-
ficial bacteria in the food chain (Fig. 3). In close contact with animals, 
especially in early life stages, they can modulate their microbiota and be 
beneficial for their health. In this regard, it has been demonstrated that a 
probiotic-based cleaning product applied to poultry farm litter can 
modify the litter’s microbial diversity, but also the chicken caeca 
microbiota compared with an un-exposed control group [204]. 

Natural surface communities in livestock buildings can harbor bac-
teria containing genes of antibiotic resistance [205]. The application of a 
positive biofilm with selected strains dilutes those organisms and limits 
the spread of antibiotic resistance genes in the food chain. 

The organic matter left at the end of a cycle in a livestock building 
(bedding, manure, slurry) can contain microbial pathogens and is 
frequently used as fertilizer in crop fields. Bacteria used in the formu-
lation of positive biofilms can enrich the population of strains able to 
ferment these products (e.g. LAB) and prevent the development of 
pathogens before spreading [206,207]. Bacteria from positive biofilms 
such as Bacillus spp. have also been shown to have beneficial effects on 
plants by producing growth-promoting factors or by excluding patho-
gens from the roots [131,165,208]. 

5. Conclusion 

Political and societal demand to reduce the use of chemical products 
and antibiotics in farms has triggered the development of alternative 
biosecurity approaches, including the use of microbial positive biofilms 
to protect surfaces. This biological approach has shifted from labs to 
farms in recent years with various commercial products now on the 
market in several countries. However, these promising approaches need 
a deeper understanding of the associated microbial interactions and 
their variability in different breeding contexts to be used successfully. 
Research is also needed to further assess their benefits from the farm to 

the fork, in particular by limiting the spread of undesirable bacteria in 
the food chain and the environment. Finally, national and international 
regulations should adapt to these innovative sustainable solutions to 
encourage research, development and their use on farms. 
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V. Guéneau et al.                                                                                                                                                                                                                               

https://doi.org/10.3390/ijerph16245023
https://doi.org/10.1371/journal.pone.0118230
https://doi.org/10.1371/journal.pone.0118230
https://doi.org/10.3390/microorganisms9010078

	Positive biofilms to guide surface microbial ecology in livestock buildings
	1 Introduction
	2 Biosafety tools for the livestock sector
	2.1 Direct actions on animals to limit diseases
	2.1.1 Vaccines: successes and limitations
	2.1.2 Antibiotic use for animals
	2.1.3 Probiotics to maintain animals in good health

	2.2 Management of undesirable microbes in the holobiont environment
	2.2.1 Microbial flows in the farm influence the equilibrium of the holobiont
	2.2.2 Towards innovative biosecurity approaches in livestock buildings


	3 Positive biofilms to protect surfaces
	3.1 Lessons from nature
	3.2 Practical use of positive biofilms
	3.2.1 Positive biofilms are already used in many sectors
	3.2.2 The case of positive biofilms in livestock buildings

	3.3 How does it work?
	3.3.1 Competition for substrate
	3.3.2 Spatial competition
	3.3.3 Interspecies interference


	4 Bottlenecks and trends for positive biofilms in livestock
	4.1 Regulatory positions on positive biofilms
	4.2 Point of vigilance with the use of positive biofilm
	4.3 Rational selection of strains able to form positive biofilms
	4.4 Beyond excluding pathogens on livestock surfaces

	5 Conclusion
	Declaration of competing interest
	Acknowledgments
	References


