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Abstract 

Alzheimer’s disease (AD) is a slowly progressing disease for which there is no known therapeutic cure at present. 
Ongoing research around the world is actively engaged in the quest for identifying markers that can help predict 
the future cognitive state of individuals so that measures can be taken to prevent the onset or arrest the progression 
of the disease. Researchers are interested in both biological and neuropsychological markers that can serve as good 
predictors of the future cognitive state of individuals. The goal of this study is to identify non-invasive, inexpensive 
markers and develop neural network models that learn the relationship between those markers and the future cogni-
tive state. To that end, we use the renowned Alzheimer’s Disease Neuroimaging Initiative (ADNI) data for a handful of 
neuropsychological tests to train Recurrent Neural Network (RNN) models to predict future neuropsychological test 
results and Multi-Level Perceptron (MLP) models to diagnose the future cognitive states of trial participants based on 
those predicted results. The results demonstrate that the predicted cognitive states match the actual cognitive states 
of ADNI test subjects with a high level of accuracy. Therefore, this novel two-step technique can serve as an effective 
tool for the prediction of Alzheimer’s disease progression. The reliance of the results on inexpensive, non-invasive 
tests implies that this technique can be used in countries around the world including those with limited financial 
resources.
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1  Introduction
Alzheimer’s disease (AD) is a neurodegenerative disease 
that affects around 50 million people globally [1]. Projec-
tions show that 1 in 85 people will develop AD by 2050. 
In spite of the scale of the problem, there is no cure for 
the disease and countless clinical trials have been unsuc-
cessful in finding effective treatment [2, 3]. In 2018, the 
Alzheimer’s Association estimated that the average cost 
of caring for an Alzheimer’s disease patient is $350,174—
making it the most expensive disease in the United States.

Research shows that AD is an incredibly slowly pro-
gressing disease [4–6] and takes many years from initial 
cognitive decline to full-blown disease development. 
Due to this slow progression, early detection of AD can 
be crucial in both its treatment and prevention. Cur-
rently, the detection of AD relies on invasive and expen-
sive tests—spinal taps for CSF Tau protein, brain scans, 
and blood biomarker detections [7–9]. These tests con-
tribute to the overall costs associated with AD assess-
ment and treatment mentioned above. It is therefore 
critical to develop an effective, less expensive, and non-
intrusive screening method to identify people who are 
at risk of developing AD so that the expensive and intru-
sive tests can be used only for those patients. Moreo-
ver, multiple ongoing global efforts aim to identify the 
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optimal candidates for their clinical trials (cohorts) to 
test new therapies and understand disease progres-
sion. The cohorts selected for these trials often include 
patients who do not develop cognitive impairment dur-
ing their participation and result in an unfortunate waste 
of resources [8, 10].

It has been shown that neuropsychological tests are 
effective in the diagnosis of AD and in the identification 
of patients that are likely to experience AD progression 
[11–17]. These tests are much cheaper to administer 
than CSF spinal taps and brain scans and can be used to 
identify patients at risk of developing cognitive decline. 
The goal of this study is to use multiple Long Short-Term 
Memory Recurrent Neural Networks (LSTM RNNs, for 
their ability to handle the vanishing gradients problem 
and capture long-term dependencies efficiently) on a set 
of well-established neuropsychological tests such as the 
ones used by [18] to assess the current cognitive state 
of a subject and use current and past test score data to 
predict if a subject is likely to develop cognitive impair-
ment within the next 2 to 4 years. This segmentation of 
subjects into those who are expected to remain cogni-
tively normal and those likely to develop problems allows 
doctors and researchers to select appropriate subjects 
for clinical trials. Access to inexpensive assessments of 
cognitive state can be of great benefit to people around 
the world, especially those in underdeveloped coun-
tries where low-cost diagnosis methods can be used for 
screening and more expensive tests can be preserved for 
only the most high-risk patients.

All data for this study were obtained from the Alzhei-
mer’s Disease Neuroimaging Initiative (ADNI) data-
base. ADNI was launched in 2003 in cooperation with 
the National Institutes of Health (NIH) and the National 
Institute on Aging to better understand AD development 
and discover new therapeutic techniques. This database 
includes data on neuropsychological tests, along with 
many other metrics used to monitor AD progression. 
Based on the research on neuropsychological tests in AD 
detection and prediction, five different neuropsychologi-
cal tests (MMSE, ADAS Q4, ADAS Cog11, ADAS Cog13, 
and FAQ) were chosen for this study—[12] offers a brief 
description of these tests. The ADNI database includes 
data on all of these tests. Another study [19], assessed dif-
ferent neuropsychological tests to determine which have 
good prediction power.

Neural networks have been used in the medical field 
for several years, and recently data from the ADNI data-
base have been used by many researchers to predict neu-
ropsychological test scores or cognitive status primarily 
based on brain scans and volumes of different parts of the 
brain that have been identified as correlated to AD pro-
gression [20–30]. Even though our work differs from this 

body of research in its goal to utilize inexpensive mark-
ers like neuropsychological test scores, it does strengthen 
our hypothesis that ADNI’s data on neuropsychological 
tests capture the subtle influences of important biomark-
ers like brain volume and can be used on their own to 
predict cognitive status.

An interesting research work that reinforces the rela-
tive contribution of the ADNI neuropsychological tests 
on the cognitive status of the trial participants is [31]. 
The authors use the Fuzzy-Rough Feature Selection tech-
nique to determine the most effective set of features that 
makes the largest contribution towards the cognitive sta-
tus outcomes arrived at by ADNI. They use two search 
strategies and three similarity functions to determine the 
set of features that contribute the most in determining 
the ADNI outcome. They use a forward search in which 
features are inserted one at a time and a backward search 
in which features are removed iteratively. The best for-
ward search feature set includes seven neuropsychologi-
cal tests of which three are used in our work. The best 
backward search feature set contains no neuropsycho-
logical tests. Moreover, they use eight neural network 
models (no RNNs) to find the accuracy of these features 
in modeling the ADNI outcomes. The best forward-pass 
feature set yields the highest average accuracy of around 
85% (Table  4 in the paper) and the best backward-pass 
feature set yields the lowest average accuracy of around 
39% (Table 5 in the paper). The 85 percent accuracy num-
ber indicates that the neuropsychological tests contribute 
disproportionately to the accuracy of the ADNI cognitive 
status determinations. The 39 percent accuracy number 
indicates that the absence of neuropsychological tests has 
a disproportionately adverse effect on the determination 
of the ADNI cognitive status. Both outcomes corroborate 
the suitability of using neuropsychological tests on their 
own in any AD modeling work and reinforce the motiva-
tion behind our work.

Other research that uses past test data to predict future 
patient outcomes includes [32] where a five-step proce-
dure is developed to record the impact of an auditory 
task on the EEG recordings of schizophrenia patients. 
The paper attempts to automate the decision-making 
process of whether to continue therapy for these patients 
in the future or to stop it. Two databases are used to store 
therapy outputs over multiple time steps and correlations 
between decisions made for those time steps. In contrast, 
our work captures the relationship between the input 
markers and the normal/abnormal status in the trained 
neural network models and we do not need any explicit 
equation to model the relationship between inputs and 
the predicted future state. Also, there is no storage of any 
data in a database for future lookup.
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As mentioned before, this study uses LSTM RNNs 
(LSTMs, henceforth) for prediction and Multi-Layer Per-
ceptrons (MLPs) for diagnosis. MLPs are a class of Artifi-
cial Neural Networks (ANNs) that use multiple layers of 
neurons and can be used to classify input data. LSTMs 
are machine learning models that use sequences of data 
to predict future values [33–36]. LSTMs have been used 
effectively in many domains ranging from language rec-
ognition to marketing to healthcare. In the context of 
AD, [37] uses sequence prediction models in which 
irregularity in time series data are handled by a neural 
network layer that models a continuous-time autoregres-
sive (CAR) model followed by either an RNN, LSTM, or 
GRU layer to predict future test values for several mark-
ers from the ADNI database. Since our data have no 
time irregularities, we used just an LSTM to predict the 
sequence values, and, unlike [37], used the predicted val-
ues to perform diagnosis using MLPs. [18] is one of the 
recent studies that used LSTM in AD prediction. Using 
National Alzheimer’s Coordinating Center (NACC) data, 
[18] used 78 features and a global CDR (Clinical Demen-
tia Rating) score to identify patients that are likely to 
experience AD progression based on changes in CDR 
scores. Unlike ADNI, the NACC data are not collected 
at equal intervals for all subjects necessitating [18] to 
introduce time between visits as a separate feature. The 
paper utilized a large number of features (78) in a multi-
feature model to identify patients that are likely to experi-
ence worsening of the disease in the future. In contrast, 
the LSTMs used in the current study are developed indi-
vidually for each of the chosen tests, and their output is 
analyzed using MLPs to diagnose a patient as likely to 
remain cognitively normal or not in the next 2 to 4 years. 
Consequently, this paper can be viewed as a less expen-
sive step that should be conducted before a full-blown 
LSTM that uses a comprehensive and expensive set of 
features is used to determine how rapidly a patient’s cog-
nitive decline is expected to progress in the future. The 
objectives of this study are: 

1.	 To develop LSTMs, one for each of the chosen neu-
ropsychological tests in the ADNI dataset, that can 
predict future test scores based on past values.

2.	 To develop MLPs that use all predicted test scores 
from step 1 above to diagnose whether the patient 
has cognitive impairment.

3.	 To combine the above two sets of neural network 
models to predict test scores for each test over the 
next 2–4 years and diagnose upon those predictions.

All of these objectives were met in this study. In the pro-
cess of meeting the objectives, we have demonstrated 
that neuropsychological tests can be used on their own 

to predict the cognitive state of individuals. The goal of 
this work was not to supersede the cognitive assess-
ments made by ADNI. Instead, the goal was to determine 
whether the cognitive assessments made by ADNI could 
be used as outputs to train MLPs which relied only on a 
subset of the set of features that ADNI gathers for each 
participant (namely, neuropsychological tests). Data for 
these features can be easily gathered and the two-step 
neural network algorithm can be used to forecast cog-
nitive status for a 2- to 4-year window. In addition, our 
innovative approach of using predicted test results for 
diagnosing can be utilized for any set of markers from 
other established trials going on around the world. There 
are other studies that have predicted multiple feature val-
ues using neural networks, but we think that this work is 
the first one that used such predicted values as collective 
inputs to MLPs to diagnose cognitive status.

2 � Methods
2.1 � Data
2.1.1 � Data, software, and packages
All data used in this project were obtained from the 
ADNI database. ADNI is a longitudinal study launched 
in 2003 in cooperation with the National Institutes of 
Health (NIH) and the National Institute on Aging. ADNI 
uses adult volunteers between the ages of 55 and 90. 
The initial cohort included 200 cognitively normal (CN) 
subjects, 400 subjects with mild cognitive impairment 
(MCI), and 200 subjects diagnosed with Alzheimer’s 
disease (AD). Each individual is assigned a unique iden-
tification number or RID. CN subjects have a Clinical 
Dementia Rating (CDR) of 0 and MMSE score between 
24 and 30; MCI subjects show signs of memory loss, have 
a CDR score of 0.5, and are at least one standard devia-
tion below the mean score on the delayed recall por-
tion of the Wechsler Memory Scale’s Logical Memory 
II. Those who are diagnosed with AD are diagnosed in 
accordance with the National Institute of Neurological 
and Communicative Disorders and Stroke-Alzheimer’s 
Disease and Related Disorders Association (NINCDS-
ADRDA) [38]. The ADNI study has completed three 
phases to date and is currently in its ADNI3 phase. The 
first phase, ADNI1, started in October 2004 and spanned 
5 years. ADNI-GO was the second phase and lasted 
2 years after its launch in September 2009, and ADNI2 
spanned 5 years since its launch in September 2011. In 
each phase, new participants were recruited, and par-
ticipants from the previous phases continued. The ADNI 
dataset contains demographic data of the subjects as well 
as results of various neuropsychological tests, results 
of brain scans, and other physiological tests conducted 
at various intervals. The relevant data for this study 
are obtained from a subset of the ADNI dataset called 
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ADNIMERGE which was downloaded on May 14, 2019. 
Data extraction and processing were conducted using the 
R programming language running in RStudio version 1.2. 
The recurrent neural network analysis was conducted 
using the Keras package version 2.2.5.0 running in RStu-
dio. Descriptive statistical analysis was conducted using 
the statistical software package Stata 14.

Since the objectives of this paper are based on LSTMs 
that use past neuropsychological test scores to pre-
dict future test scores, it is important to select subjects 
who have sufficient time series data for the chosen tests. 
ADNI subjects undergo an initial assessment that deter-
mines their baseline cognitive states and then have fol-
low-up tests at months 6, 12, 18, 24, 36, 48, 60, 72, 84, 
and so on. The data for this study are primarily derived 
from the baseline, months 6, 12, 24, 36, 48, 60, and 72. 
(Months missing in this interval, such as 18, do not have 
any neuropsychological test values in the ADNI data-
base.) A sequence of length four uses the baseline, and 
months 6, 12, and 24 data; a sequence of length six also 
includes months 36 and 48, and a sequence of length 
eight includes months 60 and 72.

2.1.2 � Neuropsychological test selections
Five neuropsychological test scores were used to assess 
the cognitive state of the subjects. The tests are MMSE, 
ADAS Q4, ADAS Cog-11, ADAS Cog-13, and FAQ. 
These tests have been used to demonstrate their effective-
ness in the diagnosis and prediction of cognitive impair-
ment [12]. Additionally, neuropsychological tests were 
used in a regression model [39] to determine the impact 
on change in CDR sum of scores, and “MMSE, FAQ, and 
ADAS-cog were identified as prognostic factors to detect 
cognitive decline in CDR-SB”. Other test scores, such as 
the Wechsler Logical Memory Delay (LDELTOTAL), are 
also available. However, the number of missing values of 
the latter test was greater than for the other tests, and the 
test was given less frequently (every 2 years as opposed to 
half-yearly or yearly). As a result, LDELTOTAL could not 
be used as a marker in this study.

2.2 � Training, validation and test data set creation
As noted earlier, the battery of neuropsychological tests 
is administered during scheduled visits that occur at the 
initial visit (baseline) and then at months 6, 12, 24, and 
beyond. All participants do not attend all of the sched-
uled visits, and even when they do, results for all sched-
uled tests are not available. Consequently, there are 
many missing values for all of the tests that are part of 
the ADNI study. In order to predict the cognitive status 
2–4 years ahead, a minimum of four past test scores is 
needed for each test subject. As a result, sequences of 
lengths four, six, and eight were extracted for each of the 
five neuropsychological tests separately from the ADNI1, 

Table 1  Descriptive statistics of the 66 test dataset subjects

Age # Gender # Education # Race # Marital status #

58–68 8 Female 29 8–11 3 Asian 2 Divorced 4

68–78 41 Male 37 12–15 22 Black 4 Married 49

78–88 17 16–20 41 White 60 Never married 1

Widowed 12

Table 2  Test score cutoffs and normalizations

Test Normal cutoff Min Max Normalization

MMSE ≥ 28 0 30 Value/30

ADAS4 ≤ 5 0 10 Value/10

ADAS11 ≤ 10 0 70 Value/70

ADAS13 ≤ 13 0 85 Value/85

FAQ ≤ 2 0 30 Value/30

Table 3  Number of observations for training and validation of sequence prediction RNNs

Test Training 36th and Training 60th and Validation 36th and Validation 60th and
48th months 72nd months 48th months 72nd months

MMSE 458 230 115 57

ADAS4 458 220 115 55

ADAS11 441 202 110 50

ADAS13 437 209 109 52

FAQ 466 250 116 63
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ADNI-GO, and ADNI2 data sets and combined to form 
the training and validation data for the test-score predic-
tion LSTM models. No special care was taken to collect 
sequences for the same patient across the neuropsycho-
logical tests since the generic pattern of disease progres-
sion is what the LSTMs need to learn, not the progression 
pattern of the same patient across the tests.

Special care had to be taken to re-create or impute 
missing values. To use mostly real data values and reduce 

the number of imputations, it was ensured that subjects 
had no more than two missing test scores. Moreover, 
subjects who had a missing value on the last visit of a 
sequence of lengths four, six, or eight were also dropped. 
This constraint ensured that no model would learn the 
generic trend of disease progression using imputed val-
ues as the most recent data point. A simple average 
method was used to impute missing values. As an exam-
ple, for a model of length four, a subject with missing data 
for month 12 was assigned the average of the baseline, 
month 6, and month 24 values. It is one of the many ways 
in which missing data can be imputed. This imputation 
method is advantageous since this method preserves the 
average of the sequence.

Imputed sequences of length six from the combined 
data set were used to generate the training and valida-
tion data for the LSTM models used to predict the fifth 
and sixth values. For example, for the LSTM model for 
predicting the fifth value, the model was trained with 
sequence values one through four as input data and 
sequence value five as the output data value. The model 
learned how the fifth value was associated with the previ-
ous four values using the training data and tested what it 
learned on the validation data to determine its accuracy. 

Table 4  Number of observations for training and validation of 
diagnosis MLPs

Diagnosis time Training Validation

Month 24 632 156

Month 48 428 156

Month 72 264 104

L1 L2 L3 L4

xb x6 x12 x24

x36Pred

L1 L2 L3 L4 L5

xb x6 x12 x24 x36Pred

x48Pred

(a) x36 and x48 Prediction RNN

MMSE x48Pred

ADAS4 x48Pred

ADAS11 x48Pred

ADAS13 x48Pred

FAQ x48Pred

M
L
P

Month 48
Diagnosis
for RID N

(b) x48 Diagnosis MLP

Fig. 1  48-month sequence prediction for a neuropsychological test 
for RID N 

L1 L2 L3 L4 L5 L6

xb x6 x12 x24 x36Pred x48Pred

x60Pred

L1 L2 L3 L4 L5 L6 L7

xb x6 x12 x24 x36Pred x48Pred x60Pred

x72Pred

(a) x60 and x72 Prediction RNN

MMSE x72Pred

ADAS4 x72Pred

ADAS11 x72Pred

ADAS13 x72Pred

FAQ x72Pred

M
L
P

Month 72
Diagnosis
for RID N

(b) x72 Diagnosis MLP

Fig. 2  72-month sequence prediction for a neuropsychological test 
for RID N 
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Similarly, for the sixth value prediction model, sequence 
values one through five were used as the input data, and 
value six was used as the output data value. Eighty per-
cent of the rows were used to create the training set and 

the remaining 20% of rows made up the validation set. 
For the seventh and eighth element prediction models, 
a similar set of steps were followed using the combined 
data set containing sequences of length eight.

(a) Diagnosis MLP for Month 48

(b) Diagnosis MLP for Month 72

(c) Sequence Prediction RNN

Fig. 3  Summary of diagnosis MLPs and sequence prediction RNN models
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The MLPs need to learn to diagnose the cognitive state 
of a single patient given the predicted test score val-
ues of the five neuropsychological tests of that patient. 
Sequences of lengths four, six, and eight were extracted 
for a given RID for each of the five neuropsychological 
tests separately from the ADNI1, ADNI-GO, and ADNI2 
datasets, yielding 15 different collections. The ADNI 
diagnosis values (CN, MCI, or AD) were also saved for 
each RID and for each sequence at the fourth, sixth, and 
eighth visits from the three data sets (ADNI1, ADNI-GO, 
and ADNI2). If the test score of any of the five tests at vis-
its four, six, or eight and the corresponding ADNI diag-
nosis was not available, the RID was removed from the 
data set. Among the RIDs that remained, if any sequence 
for the five tests contained more than two unavailable 
scores, the RID was removed from the data set. The 
remaining test scores formed the core for generating the 
training and validation data for the diagnosis MLP mod-
els. A classification output value of 0, cognitively normal 
(CN), was generated for an ADNI diagnosis value of CN 
and a classification output value of 1, non-CN, was gener-
ated for ADNI diagnosis values of MCI and AD. For each 
sequence length, the data were then sorted according to 
the classification value (0 or 1), and 80% of the smaller 
of the two classified sets was combined with a matching 
number of sequences from the other set of sequences 
to create the training set. This procedure was carefully 
incorporated due to the models’ enhanced ability to learn 
if there are an equal number of 0s and 1s. Finally, the 
remaining sequences were pulled together to form the 
validation data set.

To determine if a combination of neuropsychological 
tests can be used to predict the future cognitive state of 
an individual, it is necessary to create a test data set of 
individuals for whom longitudinal data of length eight 
(baseline to 72 months) are available for all of the five 
tests chosen for this study. After applying the same cri-
terion of no more than two missing values, no missing 
diagnosis value, and ensuring that these sequences were 
not used as training or validation data for any LSTM or 
MLP model, only 66 patients who had values for all the 
five neurological tests could be obtained from the oldest 
cohort—ADNI1. Descriptive statistics for this cohort are 
given in Table 1.

Table 2 provides the range of test score values for each 
test, along with their cutoff scores for normal values 
which were obtained from the different references dis-
cussed in Sects. 1 and 2. The last column of the table pro-
vides the normalization calculations used for each test to 
convert the values to a scale of 0 to 1. Even though the 
cutoff values were not used to determine the classifica-
tion output values of the MLP models, these cutoff val-
ues were used to determine the efficacy of the sequence 

prediction LSTM models and to determine the contri-
bution of the normal and abnormal patients towards the 
overall diagnosis as discussed in a later section.

2.2.1 � Model creation and application
Each diagnosis and sequence prediction model was 
trained using its training data and validated using its vali-
dation data. The loss curve was plotted for each model, 
and the model and the loss curve were saved. The models 
with the highest prediction accuracy were saved for later 
use in the test data prediction phase.

Table 3 gives the number of unique RIDs used to train 
and validate the sequence prediction models. Table  4 
gives the number of unique RIDs used to train and vali-
date the fourth step, sixth step, and eighth step diag-
nosis models. The numbers show that for each test, the 
number of observations for the data sets decreases when 
going from sequences of length six to sequences of length 
eight since the number of RIDs that have missing values 
over a 72-month period is much higher than it is over a 
48-month period.

Figures 1 and 2 show the schematic of how the differ-
ent neural network models were used. The main goal of 
this study lies in the combination of the predictive and 
diagnostic models. The combination of the models is 
used on the final test data created for each neuropsycho-
logical test. The final test data set is the set of RIDs that 
is used to test the accuracy and practicality of the study, 
and it consists of 66 patients who all have test scores for 
each of the neuropsychological tests. As shown in Fig. 1a, 
the first four values of a sequence for a specific test and 
for a specific RID, N, say, were fed into the best fifth-ele-
ment sequence prediction model to predict the month 
36 value for the test ( x36Pred ). Then, the same four values 
along with x36Pred were fed into the best sixth-element 
sequence prediction model to predict the month 48 value 
for the test ( x48Pred ). This process was repeated for every 
test for RID N to obtain the x48Pred values for all tests. 
Then, as shown in Fig.  1b, all of the x48Pred values were 
fed to the best month-48 diagnosis model to diagnose the 
CN–non-CN status of RID N. Figure  2 shows the same 
process repeated for the generation of ( x72Pred ) for all the 
tests and the corresponding diagnosis of the CN–non-
CN status for RID N. Then these diagnosis predictions, 

Table 5  Diagnosis models’ accuracies

Diagnosis time Accuracy (%)

Month 24 85.25

Month 48 78.85

Month 72 77.88
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(a) MMSE (b) ADAS4

(c) ADAS11 (d) ADAS13

(e) FAQ

(f) Boxplot and Descriptive Statistics

CN or Non-CN Test Low Adj Value p25 Median p75 Up Adj Value Mean Min Max
CN MMSE 25 28 29 30 30 29 25 30
Non-CN MMSE 17 23 26 28 30 25 11 30
CN ADAS4 0 1 2 3 5 2 0 5
Non-CN ADAS4 2 5 7 9 10 7 2 10
CN ADAS11 1 5 7 9 14 7 1 14
Non-CN ADAS11 4 9 13 17 29 15 4 41
CN ADAS13 1 6 10 12 20 10 1 20
Non-CN ADAS13 8 16 20 27 42 23 8 56
CN FAQ 0 0 0 1 2 1 0 4
Non-CN FAQ 0 2 6 13 29 9 0 30

Fig. 4  Ranges of validation data split by the predicted diagnosis (CN or non-CN) assigned by the diagnosis model at month 48 (with normal 
cutoffs)
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for months 48 and 72, were compared to the real diagno-
sis given by ADNI for RID N (using DX values) at months 
48 and 72, respectively, to determine the accuracy of the 
combined model.

Figure  3 summarizes the parametric structure of the 
three types of neural network models that were used in 
this study. Figure  3a shows the structure of the diagno-
sis MLP that was used to diagnose the five neurological 
test scores at month 48. The neural network has an input 
layer, a “sigmoid” output later, and four hidden layers. 
Figure 3b shows the structure of the diagnosis MLP that 
was used to diagnose the five neurological test scores at 
month 72. It also has an input layer, a “sigmoid” output 
later, and four hidden layers but uses a different number 
of neurons in each hidden layer. The ‘relu’ activation was 
used for every non-output layer and the “mean-squared-
error” loss function and the ‘adam’ optimizer were used 
to compile the models. Figure  3c shows the common 
structure of the sequence prediction LSTMs that were 
used to predict the five neurological test scores. Two lay-
ers of LSTMs were used followed by a dense output layer. 
The ‘relu’ activation was used for every layer and the 
“mean-squared-error” loss function and the ‘adam’ opti-
mizer were used to compile the models.

3 � Results
There are three sets of results for this work, and they 
relate to (1) accuracies of the diagnosis of cognitive states, 
(2) how closely the predicted values of the test scores fol-
low the trend of the actual values in the validation data 
set 2 years (sixth value) and 4 years (eighth value) after 
month 24, and (3) accuracies of the diagnosis when the 
sequence prediction LSTMs and the diagnosis MLPs are 
combined to predict on the test data set.

3.1 � Diagnosis models’ accuracies
The diagnosis models learn from the training data to 
determine which combination of the five test scores 
should be assigned a CN (0) value and which combina-
tion should be assigned a non-CN (1) value. When the 
trained models are applied to the validation data, the 
models’ assignments of 0 and 1 are compared with the 
labeling of 0 (ADNI diagnosis CN, DX = 1) and 1 (ADNI 
diagnosis MCI/AD, DX = 2/3) of the validation data 
sequences to arrive at the accuracy results.

Table  5 gives the accuracies of the diagnosis models. 
The diagnosis at month 48 is 78.85% accurate and the 
diagnosis at month 72 is 77.88% accurate. The accuracy 

values were determined by taking the proportion of cor-
rect diagnoses to the total number of diagnoses.

The boxplots of Figs. 4 and 5 serve as a corroboration 
of the accuracies noted above. The plots also corrobo-
rate the accuracy of the normal–abnormal cutoff values 
shown in Table  2. The boxplots for each graph are split 
into two groups, CN and non-CN. CN depicts the range 
of scores diagnosed as 0 by the diagnosis models, and 
non-CN depicts those diagnosed as 1. The stark contrast 
in the ranges of the CN and non-CN boxplots shows that 
the diagnosis models were able to effectively learn for all 
of the five tests. The tables in Figs. 4f and 5f contain the 
descriptive statistics of the boxplots along with the mini-
mum value, maximum value, and the mean of the box-
plot ranges for each of the five tests.

An aspect of the boxplots of Fig. 4 that deserves special 
mention is that even though the prediction accuracies are 
in the high seventies, there are still some RIDs that are 
incorrectly classified. For example, for MMSE (Fig.  4a), 
the CN group contains some RIDs that are in the abnor-
mal range ( < 28 ) and the non-CN group contains some 
RIDs that are in the normal range (≥ 28). Figure 6a shows 
a bar graph for all the five tests in which the CN and non-
CN groups are further split into normal and abnormal 
percentage values based on the cutoff values for the test 
from Table  2. For example, for MMSE, the CN group 
contains 88% RIDs that are in the normal range and 
12% RIDs that are in the abnormal range. It is these 12% 
abnormal RIDs that run the risk of being misdiagnosed 
as normal and hence dropped from further monitoring 
and treatment. Similarly, for MMSE, the non-CN group 
contains 31% RIDs that are in the normal range and 69% 
RIDs that are in the abnormal range. Once again, it is 
the 31% normal RIDs that run the risk of being moni-
tored and treated causing a waste of valuable resources. 
Such misdiagnosis is inevitable in the context of machine 
learning approaches, especially when training data are 
scarce. But one important observation that should be 
made in regard to the diagnosis reached by ADNI, as 
shown in Fig.  6b, is that the mix of normal−abnor-
mal misdiagnosis percentages are not any better when 
we consider the validation data and group them by the 
ADNI DX value (CN and non-CN, that is, MCI/AD). As 
seen in Fig. 6b, for MMSE, say, the non-CN group con-
tains 43% RIDs that are in the normal range (compared 
to 27% using the predicted diagnosis of our models) and 
run the risk of being monitored and treated causing a 
waste of valuable resources. All the tests in Fig. 6a, when 

Fig. 5  Ranges of validation data split by the predicted diagnosis (CN or non-CN) assigned by the diagnosis model at month 72 (with normal 
cutoffs)

(See figure on next page.)
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(a) MMSE (b) ADAS4

(c) ADAS11 (d) ADAS13

(e) FAQ

(f) Boxplot and Descriptive Statistics

CN or Non-CN Test Low Adj Value p25 Median p75 Up Adj Value Mean Min Max
CN MMSE 25 28 29 30 30 29 23 30
Non-CN MMSE 15 22 25 27 30 24 9 30
CN ADAS4 0 1 2 4 5 2 0 5
Non-CN ADAS4 3 6 8 8 10 7 3 10
CN ADAS11 5 7 9 11 16 10 5 16
Non-CN ADAS11 8 14 17 23 35 19 8 40
CN ADAS13 5 9 13 16 23 13 5 23
Non-CN ADAS13 13 22 27 33 49 29 13 53
CN FAQ 0 0 0 0 0 0 0 3
Non-CN FAQ 0 2 9 20 26 11 0 26

Fig. 5  (See legend on previous page.)
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Fig. 6  Proportion of correct and incorrect diagnosis in CN and non-CN categories for validation data at month 48
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Fig. 7  Proportion of correct and incorrect diagnosis in CN and non-CN categories for validation data at month 72
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compared with the corresponding tests in Fig.  6b show 
that our prediction and diagnosis models perform better 
in reducing the misdiagnosis percentage values thereby 

promising to be a cost-effective solution for the initial 
screening of Alzheimer’s patients.

(a) MMSE Actual vs Predicted (b) ADAS4 Actual vs Predicted

(c) ADAS11 Actual vs Predicted (d) ADAS13 Actual vs Predicted

(e) FAQ Actual vs Predicted
(f) % of Scores on the Same Side
of the Cutoff Line for Month 48

Test % Same Side
of Cutoff

MMSE 83.0%
ADAS4 97.0%
ADAS11 99.0%
ADAS13 88.0%
FAQ 93.0%

Fig. 8  Comparison of actual and predicted values by sequence prediction models at month 48 for validation data (with normal cutoffs)
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(a) MMSE Actual vs Predicted (b) ADAS4 Actual vs Predicted

(c) ADAS11 Actual vs Predicted (d) ADAS13 Actual vs Predicted

(e) FAQ Actual vs Predicted (f) % of Scores on the Same Side
of the Cutoff Line for Month 48

Test % Same Side
of Cutoff

MMSE 81.0%
ADAS4 96.0%
ADAS11 94.0%
ADAS13 87.0%
FAQ 95.0%

Fig. 9  Comparison of actual and predicted values by sequence prediction models at month 72 for validation data (with normal cutoffs)
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(a) MMSE Actual vs Predicted (b) ADAS4 Actual vs Predicted

(c) ADAS11 Actual vs Predicted (d) ADAS13 Actual vs Predicted

(e) FAQ Actual vs Predicted

Fig. 10  95% confidence intervals of actual and predicted values for sequence prediction models for validation data (with normal cutoffs)
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(a) MMSE Actual vs Predicted (b) ADAS4 Actual vs Predicted

(c) ADAS11 Actual vs Predicted (d) ADAS13 Actual vs Predicted

(e) FAQ Actual vs Predicted
(f) % of Scores on the Same Side
of the Cutoff Line for Month 48

Test % Same Side
of Cutoff

MMSE 80.0%
ADAS4 91.0%
ADAS11 86.0%
ADAS13 76.0%
FAQ 88.0%

Fig. 11  Comparison of actual and predicted values by sequence prediction models at month 48 for 66 test dataset subjects (with normal cutoffs)
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(a) MMSE Actual vs Predicted (b) ADAS4 Actual vs Predicted

(c) ADAS11 Actual vs Predicted (d) ADAS13 Actual vs Predicted

(e) FAQ Actual vs Predicted
(f) % of Scores on the Same Side
of the Cutoff Line for Month 72

Test % Same Side
of Cutoff

MMSE 73.0%
ADAS4 82.0%
ADAS11 83.0%
ADAS13 76.0%
FAQ 79.0%

Fig. 12  Comparison of actual and predicted values by sequence prediction models at month 72 for 66 test dataset subjects (with normal cutoffs)
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Figure 7a and b similarly capture the misdiagnosis per-
centage values for predicted diagnosis and ADNI diagno-
sis outcomes at month 72 and it is clear once again that 
our prediction and diagnosis models perform better in 
reducing the misdiagnosis percentage values.

3.2 � Performance of the sequence prediction models
Figure  8 consists of a series of graphs that demonstrate 
the performance of the sequence prediction models when 
predicting the sixth value based on the first four actual 
values and the predicted fifth value. The validation data 
sets were chosen for these figures. The blue line depicts 
the actual sixth value of each of the subjects, while the 

(a) MMSE Actual vs Predicted (b) ADAS4 Actual vs Predicted

(c) ADAS11 Actual vs Predicted (d) ADAS13 Actual vs Predicted

(e) FAQ Actual vs Predicted

Fig. 13  95% confidence intervals of actual and predicted values for sequence prediction models for test data (with normal cutoffs)



Page 19 of 26Mukherji et al. Brain Informatics            (2022) 9:23 	

red line depicts the predicted sixth value using the best 
sequence prediction model. The horizontal yellow line 
represents the threshold that differentiates test scores 
defined as CN or non-CN from Table 2. The comparisons 
show that even if the predicted values are not exactly 
identical to the actual values, they are close and more 
importantly, follow the general trend of the actual data. If 
the predicted values did not follow the general trend, the 
diagnoses based on these values would not be accurate. 
Moreover, the inaccuracy is of greater concern if the pre-
dicted and actual values were on two different sides of the 
cutoff line. The percent values in the table in Fig. 8f show 
that the percentages of predicted scores on the same side 
of the cutoff lines are high for all tests for month 48.

Figure 9 displays the performance of the sequence pre-
diction models when predicting the eighth value, the 72nd 
month, based on the first four actual values and the pre-
dicted fifth, sixth, and seventh values. In this case, as well, 
the data are for the individuals in the validation data sets. 
The results are similar to those reported above for predict-
ing the sixth value. The percent values in the table in Fig. 9f 
show that the percentages of predicted scores on the same 
side of the cutoff lines are high for all tests for month 72.

Figure 10 shows the 95 percent confidence intervals of 
actual and predicted values for validation data for each 
test. Since the validation data sets for predicting the 
month 36 and month 48 values are different from that for 
predicting the month 60 and month 72 values, the means 
of the 48-month and 60-month intervals could not be 
connected and the two sections of each chart are sepa-
rated by a dashed line. The charts demonstrate that the 
predicted values follow the general trend of the actual 
data for each test and the spread of the predicted values 
are comparable to that of the actual data. 

Figures  11 and 12 display results, similar to those in 
Figs. 8 and 9, for the 66 individuals in the test data set. 
The percent values in the table in Fig. 11f show that the 
percentages of predicted scores on the same side of the 
cutoff lines are high for all tests for month 48. The same 
is true for month 72 as shown in the table in Fig. 12f.

Figure  13 shows the 95 percent confidence intervals 
of actual and predicted values for test data for each test. 
The charts demonstrate that the predicted values follow 
the general trend of the actual data for each test and the 
spread of the predicted values are comparable to that of 
the actual data.

3.3 � Combined model’s accuracy
The key objective of this study is to determine if neuropsy-
chological test scores can be used to predict if an individual 
will remain cognitively normal in the next 2–4 years. If the 
models, when combined together, predict that a patient 
will not remain CN over the next 2–4 years, then those 

individuals should be monitored more frequently and are 
likely to be recommended to undergo further testing.

Tables  6 and 7 collectively show that the combined 
model, when applied to the test data set, is successful 
in predicting that an individual will be cognitively nor-
mal at the end of the next 2 years with 84.62% accuracy. 
This accuracy drops to 83.33% for predictions that are 
4 years in the future. Similarly, the combined model is 
successful in predicting that an individual will be cog-
nitively abnormal at the end of the next 2 years with 
78.9% accuracy. This accuracy rises to 82.8% for predic-
tions that are 4 years in the future. Table  8 shows the 
overall accuracies of the combined model at months 48 
(82.76%) and 72 (83.08%) which reiterates the efficacy 
of this this novel, two-steptechnique. The subjects pre-
dicted to be cognitively abnormal are good candidates 
for more invasive testing and are likely to serve as good 
candidates for clinical trials for AD treatments. Hence, 
even though the ADNI diagnosis is not solely based 
on these five neuropsychological tests, our technique 
shows that if we use just the outcomes of these five 
tests, we can determine with a high degree of accuracy 
how the disease will progress for patients for whom 
there are no other data available to aid the diagnosis. 

Table 6  Combined model’s prediction accuracy by category at 
month 48

Combined model’s 
predictions

ADNI’s assessment Accuracy (%)

Diagnosis No. of 
subjects

CN Non-CN NA

CN 44 33 6 5 84.62

Non-CN 22 4 15 3 78.9

Table 7  Combined model’s prediction accuracy by category at 
month 72

Combined model’s 
predictions

ADNI’s assessment Accuracy (%)

Diagnosis No. of 
subjects

CN Non-CN NA

CN 37 30 6 1 83.33

Non-CN 29 5 24 0 82.8

Table 8  Combined model’s overall diagnosis accuracies

Diagnosis time Accuracy (%)

Month 48 82.76

Month 72 83.08
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(a) MMSE (b) ADAS4

(c) ADAS11 (d) ADAS13

(e) FAQ

(f) Boxplot and Descriptive Statistics

CN or Non-CN Test Low Adj Value p25 Median p75 Up Adj Value Mean Min Max
CN MMSE 28 29 29 30 30 29 28 30
Non-CN MMSE 24 26 28 29 30 27 13 30
CN ADAS4 1 2 2 3 4 2 1 4
Non-CN ADAS4 2 5 7 8 9 6 2 9
CN ADAS11 2 5 5 7 10 6 2 11
Non-CN ADAS11 5 8 11 17 23 13 5 38
CN ADAS13 2 6 7 10 15 8 2 18
Non-CN ADAS13 7 17 20 26 33 22 7 66
CN FAQ 0 0 0 0 0 0 0 3
Non-CN FAQ 0 1 3 12 19 6 0 19

Fig. 14  Ranges of test data split by the predicted diagnosis (CN or non-CN) assigned by the diagnosis model at month 48 (with normal cutoffs)
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Fig. 15  Proportion of correct and incorrect diagnosis in CN and non-CN categories for test data and predicted test data at month 48
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(a) MMSE (b) ADAS4

(c) ADAS11 (d) ADAS13

(e) FAQ

(f) Boxplot and Descriptive Statistics

CN or Non-CN Test Low Adj Value p25 Median p75 Up Adj Value Mean Min Max
CN MMSE 28 29 29 30 30 29 28 30
Non-CN MMSE 25 26 28 29 30 26 5 30
CN ADAS4 1 2 3 3 4 3 1 5
Non-CN ADAS4 2 6 8 9 10 7 2 10
CN ADAS11 3 6 6 8 10 7 1 15
Non-CN ADAS11 6 9 13 21 33 16 6 49
CN ADAS13 1 6 7.5 12 21 9 1 21
Non-CN ADAS13 6 19 22 31 48 27 6 90
CN FAQ 0 0 0 0 0 0 0 6
Non-CN FAQ 0 0 6.5 20 25 10 0 25

Fig. 16  Ranges of test data split by the predicted diagnosis (CN or non-CN) assigned by the diagnosis model at month 72 (with normal cutoffs)
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Fig. 17  Proportion of correct and incorrect diagnosis in CN and non-CN categories for test data and predicted test data at month 72
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The boxplots of Figs. 14 and 16 serve as a corrobora-
tion of the accuracies noted above. The plots also cor-
roborate the accuracy of the normal–abnormal cutoff 
values shown in Table  2. The boxplots for each graph 
are split into two groups, CN and non-CN. CN depicts 
the range of scores diagnosed as 0 by the diagnosis 
models, and non-CN depicts those diagnosed as 1. The 
stark contrast in the ranges of the CN and non-CN box-
plots shows that the diagnosis models were able to pre-
dict very effectively on data that it had not seen before 
during training and validation. The tables in Figs.  14f 
and 16f contain the descriptive statistics of the boxplots 
along with the minimum value, maximum value, and 
the mean of the boxplot ranges for each of the five tests.  

Figure  15a shows a bar graph for all the five tests in 
which the CN and non-CN groups are further split into 
normal and abnormal percentage values based on the 
cutoff values for the test from Table 2. For example, for 
MMSE, the CN group contains 98% RIDs that are in 
the normal range and 2% RIDs that are in the abnormal 
range. Similarly, for MMSE, the non-CN group contains 
41% RIDs that are in the normal range and 59% RIDs 
that are in the abnormal range. As before, in regard to 
the diagnosis reached by ADNI, as shown in Fig.  15b, 
the mix of normal–abnormal misdiagnosis percentages 
is not any better when we consider the test data and 
group them by the ADNI DX value (CN and non-CN, 
that is, MCI/AD). As seen in Fig.  15b, for MMSE, say, 
the non-CN group contains 57% RIDs that are in the 
normal range (compared to 41% using the predicted 
diagnosis of our models) and run the risk of being mon-
itored and treated causing a waste of valuable resources. 
All the tests in Fig.  15a, when compared with the cor-
responding tests in Fig.  15b show that our prediction 
and diagnosis models perform better in reducing the 
misdiagnosis percentage values thereby promising to be 
a cost-effective solution for the initial screening of Alz-
heimer’s patients.

Figures 16 and 17 similarly capture the misdiagnosis 
percentage values for predicted diagnosis and ADNI 
diagnosis outcomes at month 72 and it is clear once 
again that our prediction and diagnosis models per-
form better in reducing the misdiagnosis percentage 
values.

4 � Conclusion
The contribution of this work is the demonstration that 
simple neuropsychological tests can be used on their 
own to predict the future cognitive state of individuals. 
Using data from hundreds of subjects who participated 
in the ADNI project, this study used LSTM models 
to predict future values of their tests and used MLPs 
to diagnose individuals as CN or non-CN at a future 

date. For a cohort of 66 test subjects, the test scores of 
all five tests were combined to generate a prediction 
of their future cognitive states. These predictions were 
then compared with the actual CN or MCI/AD status 
assigned by ADNI. The results show that individuals 
who are predicted by the model to continue to remain 
CN in all of the tests are highly likely to remain cogni-
tively normal in real life over the next 2 to 4 years. Indi-
viduals who are predicted to have test scores outside of 
normal ranges are likely to experience cognitive impair-
ment in the future. These individuals should be moni-
tored and treated.

The goal of this work was not to supersede the cogni-
tive assessments made by ADNI. Instead, the goal was 
to determine whether the cognitive assessments made 
by ADNI could be used as outputs to train MLPs which 
relied only on a subset of the set of features that ADNI 
gathers for each participant (namely, the five neuropsy-
chological tests). Data for these five features are relatively 
easy to collect and the two-step neural network algo-
rithm can be used to forecast cognitive status for a 2- to 
4-year window.

The analysis of this paper focused on only five tests for 
which data over at least a 72-month period was available 
in the ADNI database for a large number of individuals 
and there were no more than two missing values for each 
participant. The combined model’s structure allows one 
to introduce any test for which sufficient longitudinal 
data are available from ADNI or any other data source 
such as NACC (National Alzheimer’s Coordinating 
Center).

The benefit of developing a tool based on neuropsy-
chological test scores that can predict with high accuracy 
the likelihood of an individual experiencing cognitive 
difficulties in the next few years derives from the low 
cost of administering these tests. If these tests become 
routine for individuals above a certain age or who have 
some risk factors for developing cognitive impair-
ment, longitudinal performance data can be used with a 
high level of accuracy to determine which patients will 
require close monitoring. As treatments for Alzheimer’s 
disease continue to develop, this ability to determine 
who will require close monitoring can allow more inva-
sive and expensive tests to be reserved for them. This can 
also allow for early intervention, which can be crucial in 
the treatment or prevention of the disease.
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