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A recent outbreak of Zika virus (ZIKV) in Brazil is associated with microcephaly
in infants born of infected mothers. As this pandemic spreads, rapid scientific
investigation is shedding new light on how prenatal infection with ZIKV causes
microcephaly. In this analysis we provide an overview of both microcephaly and
ZIKV, explore the connection between prenatal ZIKV infection and microceph-
aly, and highlight recent insights into how prenatal ZIKV infection depletes the
pool of neural progenitors in the developing brain. © 2017 The Authors. WIREs Develop-
mental Biology published by Wiley Periodicals, Inc.
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MICROCEPHALY, BRAIN GROWTH,
AND DEVELOPMENT

Microcephaly is a disease that can arise from
defects in brain development or from degenera-

tive events following normal brain development. Micro-
cephaly and microencephaly (small brain) are often
used synonymously. Microcephaly is characterized by
an extremely small head and associated with intellectual
disability. Microcephalic individuals typically exhibit
head circumferences that are more than two standard
deviations below the mean of age-matched controls
with dramatic reductions in size of the cerebral
cortex.1–4 Primary microcephaly, the focus of this
primer, describes a group of brain development diseases
in which fewer neurons are produced and the resulting
smaller brains generally maintain neurotypical gyral
patterns.2,5 Primary microcephaly may arise from a
variety of genetic and environmental changes, including
maternal viral infections.1,2,5 Insights into the cellular
and molecular mechanisms governing proliferation of
neuronal progenitors and their subsequent differentia-
tion into neurons provide the foundation for under-
standing the etiology of microcephaly.

The most dramatic loss of neurons in all types
of microcephaly occurs in the cerebral cortex, a mul-
tilayered collection of neurons and glia in the

forebrain that comprises nearly 80% of total brain
mass in humans.6 Although all mammals have a cor-
tex, the human cortex is dramatically expanded, and
without a fully formed cortex, higher-order processes
such as those required for cognition and sensation
are impaired.7 The cortex, like the rest of the brain,
originates from the pseudostratified epithelium of the
neural tube. In the developing neural tube, progenitor
cells initially stretch between the apical (ventricular)
and basal (pial) surfaces. These cells undergo three
possible modes of division: symmetric proliferative
divisions that produce two progenitors, asymmetric
divisions that produce one progenitor and one neu-
ron, and symmetric differentiating divisions that pro-
duce two neurons. A balance between symmetric
proliferative divisions and asymmetric divisions dom-
inates early development. Later, the cell cycle length-
ens and progenitors are more likely to undergo
symmetric differentiating divisions. Together with
programmed cell death, the relative proportions of
these modes of division are precisely controlled, ulti-
mately determining the final number of neurons.
Early changes in the balance of asymmetric and sym-
metric divisions impact central nervous system (CNS)
development, resulting in pathologies that arise from
either too many or too few neurons (reviewed in Ref
8). These basic principles apply to development of all
regions of the brain, including the cortex.

During the earliest stages of forebrain develop-
ment, neuroepithelial cells lining the ventricles divide

*Correspondence to: cervenyk@reed.edu

Biology Department, Reed College, Portland, OR, USA

Volume 6, Ju ly /August 2017 1 of 14
© 2017 The Authors. WIREs Developmental Biology published by Wiley Periodicals, Inc.
This is an open access article under the terms of the Creative Commons Attribution-NonCommercial License, which permits use, distribution and
reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes.

http://orcid.org/0000-0003-0667-827X
http://creativecommons.org/licenses/by-nc/4.0/


symmetrically, expanding the pool of neural stem
cells (NSCs) that will ultimately generate all neurons
and glia. As development proceeds and the cortex
begins to emerge, these neuroepithelial cells divide
asymmetrically, establishing a pool of NSCs and
beginning the production of postmitotic neurons.
The NSCs that give rise to the majority of neurons in
the cerebral cortex are radial glia (RG). RG are spe-
cialized cells that share hallmarks of both glia and
neuronal progenitor cells.9–13 As neuroepithelial cells
and RG proliferate, their nuclei migrate along the
apicobasal axis through a process termed interkinetic
nuclear migration (INM). The nuclear position along
the apicobasal axis provides a read-out for cell cycle
progression, with mitotic nuclei positioned apically
and G1/S nuclei basally.14 Studies of developing neu-
roepithelia, primarily in the zebrafish retina
(e.g., Refs 15–17), and also in the mammalian cortex
(e.g., Refs 18,19), suggest that the kinetics of INM
and nuclear dwell time near the basal surface may
influence whether progenitors produce differentiating
daughter cells.

During corticogenesis, which begins around
eight weeks postconception in humans, NSCs divide
asymmetrically.13,20 In primates, NSCs are found in
two distinct proliferative regions—the ventricular
zone (VZ) and the outer subventricular zone (SVZ; ).
In the VZ, each RG extends a short apical process
toward the ventricular surface and a long basally
directed process toward the pial surface, providing a
migratory track for newly-born neuronal progeny.21

In the SVZ, transit amplifying non-RG cells (also
known as intermediate progenitors) reside in the
inner SVZ while RG-like cells, termed outer RG
(oRG), occupy the outer SVZ.22 Despite retaining
only a basal process and no apical process, oRG
divide asymmetrically, producing another proliferat-
ing oRG progenitor and a differentiating neuron. As
they progress through the cell cycle, oRG exhibit
mitotic soma translocation, a process somewhat simi-
lar to INM,23,24 that is essential for balancing prolif-
eration and differentiation in the outer SVZ. Once
established, the SVZ expands dramatically, especially
in humans, and supports extended and extensive cor-
tical neurogenesis.12,23 Over the next 7 weeks of
development, RG and oRG divide asymmetrically
and transit amplifying cells divide symmetrically,
together generating postmitotic progeny that differ-
entiate into nearly 13 billion excitatory neurons
which comprise approximately 80% of all neurons in
the cortex (reviewed in Refs 13,20). The other
approximately 20% of neurons in the cortex are
inhibitory local circuit neurons that arrive in their
final location by migrating radially from the VZ and

SVZ or tangentially from the ganglionic eminence of
the ventral forebrain.25,26 By 22 weeks postconcep-
tion, nearly all RG and oRG have undergone differ-
entiating divisions and cortical neurogenesis slows to
undetectable levels, but continued gliogenesis, myeli-
nation, and dendrite dynamics support brain growth
for years after birth.1,20 Deviations in these patterns
of cell behaviors that support neurogenesis, especially
those that negatively influence renewing divisions of
RG and oRG, can lead to microcephaly (for example,
see Figure 1a).

CELLULAR AND MOLECULAR
MECHANISMS OF MICROCEPHALY

Although many features of neural progenitor behav-
ior are conserved among mammals, the human cere-
bral cortex contains gene expression patterns and cell
populations (e.g., oRG) that enable extended prolif-
eration and neurogenesis during development
(reviewed in Ref 20). Modeling microcephaly in tra-
ditional animal models, therefore, poses a number of
challenges. Nonetheless, studies in mice with altera-
tions in genetic loci that have been linked to micro-
cephaly in humans reveal that elevated levels of
neuronal and/or neuronal progenitor apoptosis as
well as precocious differentiation of neuronal pro-
genitors underlie a number of cortical defects, includ-
ing microcephaly (reviewed in Refs 20,27,28). In
addition, recent advances in induced pluripotent stem
cell (iPSC) and embryonic stem cell (ESC) technolo-
gies enable analyses of neural cells and tissues grown
in vitro (e.g., Ref 29). These three-dimensional cul-
ture protocols can generate neurospheres and cere-
bral organoids that mimic neural growth and
development,30 providing a powerful complement to
in vivo mouse studies.

Human genetic studies have identified a clear
link between mutations in 12 different genes and pri-
mary microcephaly (see Table 1). Many of these gene
products are enriched in neuronal progenitor cells
and impact mitotic cell behaviors that center on the
centrosome (e.g., chromosome segregation) and
DNA repair (see Table 1 and references therein).
Mutations in genes that regulate passage through M-
phase and/or promote differentiation likely underlie
many cases of primary microcephaly. Microcephalin
(MCPH1) is important for passage through the
G2/M checkpoint, influencing both centrosome and
DNA repair functions.43 Another microcephaly-
linked gene, CENPJ/CPAP, is important for centro-
some integrity and duplication.44,45 Disruption of
this gene is linked to randomization of cell division
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planes and decreased number of proliferating progen-
itor cells.36,46 Another centrosome gene product,
CDK5RAP2, is also linked to microcephaly, with
decreased/loss of CDK5RAP2 function associated
with reduced numbers of neural progenitor cells
(NPCs) caused by a switch from symmetric prolifera-
tive divisions to asymmetric divisions, most likely by
randomizing the cleavage plane.31,36 Indeed, cerebral
organoids made from human cells with truncated
CDK5RAP2 were smaller, contained fewer progeni-
tors, and exhibited disruptions cell polarity.29 At
least 5 of the 12 genes linked to primary microceph-
aly are required for centrosome activity, suggesting
that the developing brain has a more pronounced
need for centrosome function than other tissues.

Environmental factors, especially vertical trans-
mission of viruses from mother to child, have also
been associated with microcephaly. Prenatal infection
with cytomegalovirus (CMV), herpes simplex (HSV),
and rubella have been shown to cause microcephaly
and other neurological disorders, with CMV contri-
buting the majority of noninherited cases of primary
microcephaly.47 Recent high-profile examples also
link prenatal Zika virus (ZIKV) infection to primary
microcephaly.48–50 Recent surveys of gene expression
reveal that 11 microcephaly-linked genes are downre-
gulated in tissues from ZIKV-associated microceph-
aly.51,52 All of these genes are cell cycle regulated
and because ZIKV perturbs cell cycle progression, it
is likely decreased expression of these genes is an
indirect effect of ZIKV infection.52,53 Nonetheless,

these data raise the possibility that prenatal ZIKV
infection may trigger many of the same cellular
defects associated with primary microcephaly
(Table 1).

ZIKV OVERVIEW

ZIKV is a flavivirus endemic to Africa and Asia. It con-
tains a positive-strand, RNA genome that encodes a
single long open reading frame that is posttranslation-
ally modified to generate structural and nonstructural
ZIKV proteins.54–56 ZIKV can and has evolved rap-
idly, with distinct strains isolated from numerous loca-
tions throughout the world (Refs 57,58; see also
Box 1). Structural studies of ZIKV indicate that its pro-
tein coat, comprised primarily of envelope (E) protein,
is similar to other flaviviruses.59,60 There may be
ZIKV-specific and/or strain-specific changes associated
with ten polymorphic amino acids around an
asparagine-linked carbohydrate moiety in the E pro-
tein, as this region appears to be subject to selective
pressure upon multiple passages in insect cell lines.60,61

Traditionally, ZIKV was thought to be a mild
vector-borne disease that is transmitted by mosqui-
toes, primarily Aedes aegypti or Aedes albopictus
(both of which are found throughout tropical and
subtropical climates, including the contiguous USA).
ZIKV can also be sexually transmitted, and high viral
titers have been found in semen.50,62,63 Animal stud-
ies suggest that ZIKV may also be transmitted via

TABLE 1 | Genes Disrupted by Both Zika Virus and Microcephaly

Gene Proposed Gene Product Function

CDK5RAP2 (CDK5 regulatory subunit-associated
protein 2)

Centrosome protein, localizes to centrosome during mitosis31

MCPH1 (MICROCEPHALIN) G2/M checkpoint regulator32

CASC5 (cancer susceptibility candidate 5) Formation of kinetochore-microtubule attachments, chromosome segregation33

WDR62 (WD repeat-containing protein 62) Regulation of brain development, localizes to the nucleus and centrosome
during mitosis34

ASPM (abnormal spindle-like microcephaly-
associated protein)

Regulation of mitotic spindle in neuroprogenitor cells35

CENPJ/CPAP (centromere protein J) Regulation of centrosome integrity and spindle morphology36

STIL (SCL/TAL1-interrupting locus) Regulation of mitotic spindle checkpoint37

CEP135 (centrosome protein of 135 kDa) Maintains structure and organization of the centrosome38

CEP152 (centrosome protein of 152 kDa) Localizes to centrioles, involved in cell progression through mitosis39

ZNF335 (zinc finger protein 335) Controls neural progenitor self-renewal, neurogenesis, and neuronal
differentiation40

PHC1 (polyhomeotic-like protein 1) Involved in chromatin remodeling/cell cycle regulation41

CDK6 (cyclin-depenent kinase 6)a Associates with centrosome during mitosis and regulates centrosome number42

a The only microcephaly-linked gene with expression unchanged by ZIKV infection of animals or cerebral organoids.
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ocular secretions including tears.64 ZIKV appears to
target cells with an inherent immune privilege such
as NPCs,65 retinal cells,66 and testicular cells67; its
compact, stable structure enables its survival in rela-
tively harsh physiological conditions including
semen, saliva, and urine.59,63,68,69 Most relevant to
this primer, a number of recent studies have isolated
ZIKV from amniotic fluid, placentae, and tissues of
microcephalic infants48,50,70–73 illustrating that ZIKV
can pass from the maternal blood stream into the
developing CNS in her fetus. For additional details
about ZIKV detection and diagnosis, see Box 2.

HOW DOES ZIKV ENTER CELLS?

Despite its initial isolation in the mid-20th century,
the mechanisms of ZIKV infection are poorly under-
stood. How ZIKV enters human cells is an active
area of investigation. Like other flaviruses, ZIKV
infects cells when it interacts with cell surface recep-
tors and is then internalized via endocytosis. Poten-
tial candidate receptors for ZIKV on human cells
include receptor tyrosine kinases (RTKs) in the
TYRO, AXL, and MER (TAM) family. Members of
the TAM family typically interact with ligands that
bind phosphotidylserine, a lipid found predomi-
nantly on the surfaces of apoptotic cells and envel-
oped viruses. The TAM RTKs were originally
thought to only regulate homeostasis of mature
tissues,74,75 but additional evidence shows that
TAM receptors are also found on proliferating pro-
genitor cells in developing neural tissues.76,77 For
example, one member of the TAM family, AXL, is
expressed on proliferating neuroepithelial cells in the
brain and retina but not on mature neurons. AXL
receptors appear to be enriched in neuroepithelial
VZ areas in mice, ferrets, and human cerebral
organoids,77 and may serve as one entry route for a
number of flaviviruses.78 Recent studies have
demonstrated that depletion of AXL reduces ZIKV
infection of cultured fibroblasts79and astrocytes.80

Although these data raise the possibility that AXL
may provide a route for ZIKV entry, recent work
shows that ZIKV infection rate and cell viability
were the same in iPSC-derived neural progenitors
and cerebral organoids with or without AXL.81

Moreover, depletion of AXL in an immunodeficient
mouse model did not inhibit eye or brain infection
by ZIKV.82 Alternative candidate ZIKV entry recep-
tors include other TAM RTKs—TYRO3 and
MER—as well as other receptors known to facilitate
entry of enveloped viruses such as those in the T-cell
and immunoglobulin and mucin domain family

(e.g., TIM1). These receptors can promote infection
by other flaviviruses including Dengue (DENV) and
West Nile Virus (WNV)78,83 and have been found
to facilitate ZIKV infection in cultured cells
(e.g., Refs 79,81,84). Together, these data suggest
that Zika virions likely use multiple methods for
entry dependent on cell type and context of
infection.

Current evidence demonstrates that ZIKV
induces microcephaly in humans when passed verti-
cally from mother to fetus, particularly when the
mother is infected during the first trimester of preg-
nancy. The mechanism by which ZIKV attaches to
and crosses the placenta remains unclear, and the
likelihood of viral infection may change based on
placental age. One study exposed a variety of human
placental cells to Zika virions, finding that placental
trophoblastic cells (PTCs) from full-term placentae
were resistant to ZIKV infection, protected by the
type III interferon they constitutively secrete. How-
ever, placental cell lines were sensitive to ZIKV infec-
tion, but were protected by conditioned media from
noninfected PTCs. ZIKV infection of primary placen-
tal cells and chorionic villus explants is strongly
linked to the enveloped virus receptor, TIM-1.85

Consistent with this finding, administration of dura-
mycin, a compound that prevents binding between
TIM1 protein and enveloped viruses, was highly
effective in decreasing ZIKV infection in cell cul-
ture.84 Whether levels of TIM1 decrease as type III
interferon secretion increases in PTCs has not yet
been determined.

HOW DOES ZIKV CAUSE
MICROCEPHALY?

Reports from Brazil in 2016 first correlated mater-
nal ZIKV infection with an increased likelihood of
congenital defects, especially microcephaly. It has
since become clear that ZIKV exhibits tropism for
NPCs and that prenatal infection with this virus
induces cell cycle arrest, apoptosis, and differentia-
tion defects in the developing nervous sys-
tem.51,53,86,87 To cross from the maternal blood
stream into the developing fetal brain, ZIKV must
cross the placental barrier and the developing
blood–brain barrier (BBB). Studies that model the
BBB in culture (hBMEC) or investigate ZIKV infec-
tion in adult mice suggest that ZIKV can infect BBB
cells and cross the mature BBB, but it remains
unclear exactly how.87,88

Primary microcephaly is established during the
first trimester of pregnancy when cortical
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neurogenesis is most pronounced. The same appears
to be true for ZIKV-linked microcephaly, with the
most severe cases of ZIKV-associated microcephaly
correlating with maternal infection during the first
trimester.99,100 Embryonic and fetal neural progeni-
tors in the developing forebrain appear to be espe-
cially susceptible to adverse effects of ZIKV
infection. A number of reports correlate maternal
ZIKV infection with microcephaly as well as develop-
mental ocular abnormalities.50,101–103 Unlike related
flaviviruses, such as WNV and DENV, which can
infect neural cells but either target mature neurons
(WNV) or elicit a less cytotoxic response (DENV),
ZIKV exhibits clear tropism for proliferative neural
cells, often with cytotoxic effects.53,104 ZIKV also
productively and detrimentally infects cranial neural

crest cells (CNCC), which give rise to cranial bones
and can exert paracrine effects on the developing
brain.105

Once Zika virions enter neurogenic regions in
the brain, they reduce the number of mitotic progeni-
tor cells by promoting cell cycle arrest and apoptotic
cell death,51,52,86,87,106,107 autophagy,55,88 or possi-
bly by precocious differentiation (Figure 1b). ZIKV is
not the only flavivirus that triggers apoptosis and
autophagy. For example, both DENV and WNV can
trigger caspase activation to induce apoptosis.108,109

In addition, a number of flaviviruses have been
shown to increase autophagy, presumably in an
effort to evade the host immune system and further-
ing their own replication.110–113 Thus, ZIKV appears
to cause microcephaly not because it elicits ZIKV-
specific responses but because it triggers cell beha-
viors that perturb proliferation and survival of NPCs
during critical periods of brain development. ZIKV
may also nonautonomously promote microcephaly
by promoting precocious cell cycle exit and differen-
tiation of cortical progenitors, as infection of CNCC
causes secretion of proteins that promote neuronal
differentiation.105

ZIKV infection after the first trimester can also
detrimentally impact neural development. Some
infants, who were not classified as microcephalic at
birth and who may have been infected during the
second or even third trimester of development, have
been shown to develop microcephaly and other neu-
rological disorders. In fact, of 12 infants diagnosed
with microcephaly within months after birth, only
three showed prenatal ultrasound abnormalities con-
sistent with ZIKV infection.114 In addition, ZIKV
infection has been associated with an increased like-
lihood of Guillain–Barré Syndrome,115,116 an auto-
immune disorder that targets the peripheral nervous
system in children and adults.

INSIGHTS FROM MODELING ZIKV-
LINKED MICROCEPHALY

Given the neurotropic tendency of the virus and the
particularly devastating effects of embryonic and
early fetal ZIKV infection, in vitro studies examining
NPCs are particularly necessary. To determine
whether and how prenatal ZIKV infection causes
microcephaly, researchers have employed a number
of cell culture and animal models. Neural cell culture
experiments have provided insight into ZIKV infec-
tion, and recently yielded an extensive list of genes
dysregulated upon ZIKV infection. A study compar-
ing the transcriptomes of human neural progenitors

BOX 1

A BRIEF HISTORY OF ZIKV STRAINS AND
INFECTIONS

ZIKV strains can be grouped into two major
groups based on sequence similarities—African
and Asian.89 ZIKV was first isolated from a rhe-
sus monkey in 1947 in the Zika forest in
Uganda, and human cases of ZIKV were docu-
mented there and in other areas of East Africa
beginning in the 1950s.57 By the mid-1950s,
ZIKV was found scattered throughout East and
West Africa, India, and Southeast Asia. A
unique strain isolated in Malaysia in 1966 is the
most likely parent of currently circulating,
microcephaly-linked Asian strains.57 The first
large-scale human infections were associated
with Asian strains in Micronesia and French
Polynesia.90–92 In March 2015, ZIKV was
detected in the Americas and reached epidemic
levels in Brazil in December 2015, with upwards
of 1.3 million reported cases.50 The strains circu-
lating in Brazil are most closely related to an
Asian strain isolated in 2013 in French Polyne-
sia. Multiple ZIKV isolates, especially those of
the Asian group, exhibit evidence of rapid
mutation, including adaptive changes for
human infection.57,89,93 Analyses of 50 currently
circulating Asian strains (isolated from Microne-
sia as well as South and Central America)
exhibit conserved variation when compared to
African strains, especially within structural pro-
teins and this may be linked to increased ZIKV
virulence over the past 10 years.89,94,95 For addi-
tional information about the diverging and
myriad ZIKV strains, see also Refs 96–98.
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infected with a microcephaly-associated Asian ZIKV
strain with other closely related flaviviruses
(an African ZIKV and DENV) highlights the impor-
tance of apoptotic regulators and viral response
genes.121 For instance, the tumor suppressor and
pro-apoptotic gene, tp53 is elevated only in NPCs
infected with the microcephaly-associated strain.
Infection with this same strain of ZIKV also alters
expression of immune system genes, including eleva-
tion of the Toll-like receptor 3 (TLR3) and its tar-
gets. TLR3 is present in neurons and NPCs and has
been shown to modulate proliferation of NPCs and
promote apoptosis (e.g., Refs 122,123).

A number of studies using three-dimensional
culture protocols to generate neurospheres and cere-
bral organoids have yielded important insight into
the unique pathogenicity of ZIKV. For example, fore-
brain mini-organoids were infected with ZIKV and
observed at 4 and 14 days postinfection (dpi) to sim-
ulate prenatal ZIKV infection during the first trimes-
ter.124 At 4 dpi, a negligible number of neurons were

infected but many neural progenitors showed signs
of active ZIKV infection. By 14 dpi, many more cells
were infected, indicative of a productive viral infec-
tion. The 14-dpi forebrain organoids contained fewer
proliferating cells and increased numbers of apop-
totic progenitors and neurons. ZIKV infection of
older forebrain organoids, resembling second trimes-
ter fetal brains with oRG in the SVZ, showed ZIKV-
positive RG and oRG, consistent with ZIKV tropism
for NSCs.124 To examine the early consequences of
ZIKV infection, another study exposed NSCs, neuro-
spheres, and cerebral organoids to ZIKV or a closely
related flavivirus, DENV.107 Both viruses were
detected in NSCs 24 hours postinfection, but only
ZIKV-containing cells exhibited hallmarks of apopto-
sis. Neurospheres cultured from ZIKV-infected NSCs
failed to thrive, containing numerous Zika virions
and apoptotic cell bodies. Similarly, brain organoids
derived from human iPSCs and then exposed to
ZIKV manifested signs of defective growth and neu-
rogenesis, contained the remnants of apoptotic cells,

FIGURE 1 | (a) The human cortex develops and grows primarily from two populations of neural stem cells—radial glia [RG; light purple soma
with dark purple nucleus positioned near the ventricle in the ventricular zone (VZ)] and outer radial glia [oRG; dark purple soma with light purple
nucleus more basally located in the subventricular zone (SVZ)]. These cell types undergo self-renewing asymmetric divisions, giving rise to either
transit amplifying (intermediate progenitor) cells (dark purple) or postmitotic migratory neurons. (b) ZIKV preferentially targets proliferating neural
cells including RG, oRG, and neural crest cells. It is likely that a combination of viral-triggered apoptosis (left arrows) and precocious differentiation
(right arrows) contribute to ZIKV-liked microcephaly. Candidate receptors for Zika virions entry include a number of phosphotidylserine receptors
(e.g., AXL, Mer, Tyro3, and TIM1) and are symbolized with a basic domain structure including Ig-repeats (gray boxes) and kinase domains (green
ovals). (Reprinted with permission from 60. Copyright 2016 The American Association for the Advancement of Science)
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and were 40% smaller than mock-treated controls.
Because none of these defects were observed when
cells were exposed to DENV, the authors concluded
that ZIKV, not flaviviruses in general, promote aber-
rant proliferation, differentiation, and death in neural
stem and progenitor cells.107 Coupled with analyses
of human microcephaly patients, these two founda-
tional studies indicate that neuronal progenitors are
especially susceptible to ZIKV infection, with data
supporting the hypothesis that loss of neural progeni-
tors, especially during early development, underlies
dramatic changes in brain size.

Despite the power of organoids and cell culture,
animal models provide a vital tool for fully under-
standing ZIKV and developing methods that will
combat infection. Studies have shown that laboratory
mice respond to ZIKV infection differently depending
on mouse strain and mode of infection. For instance,
wild-type C57BL/6 mice can be infected by Zika
(e.g., Ref 93), but the virus has only been detected in
pups of mothers infected by vaginal swab.125 A num-
ber of studies, however, provide evidence that
C57BL/6 mice become more susceptible to ZIKV

infection upon suppression of interferon signaling.
Specifically, disrupting the function of interferon α/β
either through genetic deletion87,125,126 or adminis-
tration of an interferon-blocking antibody during
early development126 confers susceptibility to ZIKV.
When female mice lacking the receptor for interferon
α/β, IFNAR, were crossed to wild-type male mice,
these Ifnar−/− pregnant mothers showed signs of pla-
cental damage and their Ifnar+/− pups exhibited
extensive spread of Zika virions and brain defects
consistent with microcephaly.127 Moreover, direct
vaginal infection with ZIKV in Ifnar−/− mothers can
be vertically transmitted to developing pups that
often die in utero due to extensive viral-induced mor-
phogenetic defects.125 Further supporting a protec-
tive role for interferon signaling, mice in which the
receptors for both interferon α/β and γ are genetically
deleted (AG129 mice), are even more susceptible to
ZIKV infection.128 When adult AG129 mice are
injected with Asian strains of ZIKV, they die a week
after infection from viral-induced pathologies (includ-
ing extensive cell death) in the brain and muscle.
These mice were also susceptible to ZIKV transmit-
ted from eye secretions and homogenates.64 To fur-
ther investigate the role of interferon signaling in the
context of ZIKV, adult mice lacking interferon regu-
latory factor were infected with ZIKV. In these mice,
ZIKV infection negatively affected neurogenic
regions, the anterior SVZ of the forebrain and the
subgranular zone (SGZ) of the hippocampal dentate
gyrus.87 Cells in these regions showed elevated cas-
pase activation and reduced proliferative potential.
Creating a susceptible mouse model by disrupting
key components of the immune system may obfus-
cate the exact mechanisms by which ZIKV infects the
host. These models do, however, allow for recapitu-
lation of the ZIKV-associated phenotypes, and pro-
vide data suggestive of a protective role for
interferon signaling, at least in mice.

Other inbred mouse strains have been tested for
susceptibility to ZIKV-linked neural developmental
defects. ICR mice, which are often used as a model
for carcinogen-induced colon cancer, are also provid-
ing insight into how ZIKV causes microcephaly.51

Consistent with in vitro findings, ZIKV injection into
the brain of ICR mice induced activation of the apop-
totic caspase and immune response pathways, cell
cycle arrest, and increased expression of candidate
flavivirus entry receptors. Specifically, ZIKV infection
of RG and oRG triggered apoptosis of all classes of
cells examined, including cycling NPCs, immature,
and mature neurons.51 Another mouse strain, SJL,
which has functional interferon signaling and is used
to model spontaneous myopathies, may be most

BOX 2

ZIKV DETECTION AND DIAGNOSIS

Because ZIKV contains a positive-strand RNA
genome, which can simply be translated by
infected host cells, the incubation period is
short and the mutation rate can be rapid.
Symptoms of ZIKV infection are thought to be
minor in adults, including a transient rash and
arthralgia, and are similar to symptoms associ-
ated with infection by other flaviviruses such as
Dengue (DENV) or Chikungunya.91 ZIKV is usu-
ally detected from blood or urine samples with
RT-PCR, which identifies the presence of viral
RNA, or MAC-ELISA, which detects antibodies
to viral components. RT-PCR only works as long
as patients are actively infected with the virus,
typically 3–5 days after infection and MAC-
ELISA can yield false positives due to cross-
reactivity with other flaviviruses like
DENV.117,118 ELISA testing of neonatal sera and
cerebrospinal fluid for ZIKV-specific IgM has
confirmed congenital ZIKV infections in new-
borns with microcephaly.119 Most recently, a
reverse transcription loop mediated isothermal
amplification method for detecting ZIKV has
been reported as a more rapid and field-safe
test for ZIKV infection.120
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useful for studying vertical transmission of ZIKV as
pups born to ZIKV-infected mothers have Zika vir-
ons throughout their bodies and concentrated in their
brains.93 These pups exhibit brain and eye pheno-
types similar to ZIKV-infected fetuses, including cor-
tical malformations, fewer cells, and apoptotic
remnants throughout the CNS.

In addition to murine models, nonhuman pri-
mates such as rhesus macaque monkeys are particu-
larly important for studying primate-specific
consequences of ZIKV infection and for vaccine
development. Several recent studies revealed that
monkeys could be infected with ZIKV, highlighting
the multiorgan repercussions of ZIKV infection
(e.g., Ref 129). Two other studies provide additional
insight into ZIKV infection in primates and offer evi-
dence for protective immunity from previous infec-
tion with different130 or the same131 ZIKV strains.
Nonhuman primate models are also important for
understanding how the primate immune system
responds to infection with multiple flaviviruses, espe-
cially in the context of vaccine development (see final
section for more details).

In all of the animal models used to date, various
routes of ZIKV infection have been used throughout
these models, including vaginal swab,125 transmission
via ocular secretions,64 and injections into multiple
sites including the footpad,128 intraperitoneal space,126

retroorbital space,87 or cerebellar ventricles (e.g., Ref
51). While the injection into the cerebral ventricles
ensures that virions reach neural tissues of interest,
peripheral injections align more closely with the
mosquito–human route of administration. Vaginal
swab mimics sexual transmission. Existing mouse and
primate models will likely further our understanding of
ZIKV pathology and identify targets for the develop-
ment of vaccines and prophylactic treatments.

OPEN QUESTIONS AND FUTURE
DIRECTIONS

Current evidence demonstrates that ZIKV induces
microcephaly in humans when passed vertically from
mother to fetus, particularly when this transfer
occurs during the first trimester of pregnancy.
Although a flurry of recent experimentation has
begun to identify potential mechanisms by which
ZIKV-induced microcephaly emerges, much work
remains. Additional research is needed to understand
the molecular properties and infection mechanisms of
ZIKV. In particular, the genes that are dysregulated
by ZIKV infection should be more closely examined.
While studies have reported a host of genes that are

differentially expressed after Zika infection (e.g., Refs
52,93,104,121), it remains unclear how these catalo-
gued changes effect ZIKV pathogenesis. In particular,
it will be interesting to learn how virus-induced gene
expression changes influence how ZIKV gains access
to immune privileged areas, whether by crossing pla-
cental and BBBs or by unique transmission routes.
Moreover, identifying the cell surface receptor(s) for
ZIKV will provide valuable information for halting
ZIKV infection, especially in particularly vulnerable
tissues.

Another crucial goal of on-going work will be
to develop treatments and prophylactic measures to
halt the spread of ZIKV. Based on the protective cap-
abilities of interferons (as discussed earlier), it will be
important to examine whether boosting interferon
signaling can reduce the susceptibility of embryos to
Zika infection. In addition, several ZIKV vaccines
have been tested in mice and rhesus monkeys and
appear to provide protection from microcephaly-
associated ZIKV strains,132–134 and Phase I clinical
trials are beginning to evaluate the safety and efficacy
of a ZIKV vaccine.135 Despite this progress, immuno-
genic crosstalk between ZIKV and DENV complicate
the development of effective vaccines for each virus.
The amino acid sequence of ZIKV E protein, which
is associated with viral entry and host defense, is
more similar to that of DENV than any other flavivi-
rus.136 Thus, monoclonal antibodies produced in
response to DENV bind weakly to Zika virions at
levels that cause antibody-dependent enhancement
(ADE) rather than virus neutralization.137 Epidemio-
logical analyses will be necessary to determine
whether infection with any of the four DENV sero-
types raises the risk of ZIKV infection. One recent
study suggested that exposure to another flavivirus,
HSV-2, raises susceptibility to infection by ZIKV.138

Given this risk, and the fact that immunity to one
DENV serotype does not protect against other
serotypes and may increase risk of infection, it is
therefore paramount to develop a vaccine that is
cross-protective, with one potential target being the
fusion loop of the E protein.136

Scientists are also identifying pharmacological
approaches to treat Zika infection. One large-scale
screen identified 20 potential candidate FDA-
approved drugs that may stymie ZIKV infection.139

Another large-scale screen identified azithromycin, a
macrolide antibiotic, as capable of reducing both
viral proliferation and ZIKV-induced cytopathy in
developing human brain tissues.80 In addition, chlo-
roquine, a drug commonly used to prevent malarial
infection, can reduce ZIKV infection in several cell
lines regardless of ZIKV strain.88 Finally, the
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mechanism by which ZIKV neutralizing antibodies
work is also being actively investigated.140,141 Addi-
tional studies are needed to understand how these
various treatments work and whether they will be
efficacious in the clinic.

From all this recent work, most of it within a
short 16-month period, it is clear that basic research
into the molecular mechanisms of Zika infection will
pave the way for the development of effective treat-
ments and protective measures.

FURTHER READINGS
http://www.who.int/bulletin/online_first/zika_open/en/

http://www.cell.com/public-health-zika-virus

http://www.springernature.com/gp/group/zika-virus
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