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Abstract

Background: Identifying differentially expressed genes (DEG) is a fundamental step in studies that perform genome
wide expression profiling. Typically, DEG are identified by univariate approaches such as Significance Analysis of
Microarrays (SAM) or Linear Models for Microarray Data (LIMMA) for processing cDNA microarrays, and differential
gene expression analysis based on the negative binomial distribution (DESeq) or Empirical analysis of Digital Gene
Expression data in R (edgeR) for RNA-seq profiling.

Results: Here we present a new geometrical multivariate approach to identify DEG called the Characteristic Direction.
We demonstrate that the Characteristic Direction method is significantly more sensitive than existing methods for
identifying DEG in the context of transcription factor (TF) and drug perturbation responses over a large number of
microarray experiments. We also benchmarked the Characteristic Direction method using synthetic data, as well as
RNA-Seq data. A large collection of microarray expression data from TF perturbations (73 experiments) and drug
perturbations (130 experiments) extracted from the Gene Expression Omnibus (GEO), as well as an RNA-Seq study that
profiled genome-wide gene expression and STAT3 DNA binding in two subtypes of diffuse large B-cell Lymphoma,
were used for benchmarking the method using real data. ChIP-Seq data identifying DNA binding sites of the perturbed
TFs, as well as known drug targets of the perturbing drugs, were used as prior knowledge silver-standard for validation.
In all cases the Characteristic Direction DEG calling method outperformed other methods. We find that when drugs are
applied to cells in various contexts, the proteins that interact with the drug-targets are differentially expressed and
more of the corresponding genes are discovered by the Characteristic Direction method. In addition, we show that the
Characteristic Direction conceptualization can be used to perform improved gene set enrichment analyses when
compared with the gene-set enrichment analysis (GSEA) and the hypergeometric test.

Conclusions: The application of the Characteristic Direction method may shed new light on relevant biological
mechanisms that would have remained undiscovered by the current state-of-the-art DEG methods. The method is
freely accessible via various open source code implementations using four popular programming languages: R, Python,
MATLAB and Mathematica, all available at: http://www.maayanlab.net/CD.
Background
Genome-wide transcriptional profiling, the parallel mea-
surement of the expression of tens of thousands of
genes, is a powerful tool which, for example, aids in the
development of clinical biomarkers for disease diagnosis,
reveals the heterogeneity of histologically identical can-
cers, and sheds light on diverse biological mechanisms.
After estimating the relative or absolute expression level
of all transcripts, the next step is to test statistical
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hypotheses [1]. Typically, these hypotheses are con-
cerned with the difference between two biological condi-
tions, for example, normal verses diseased tissue, or
perturbed verses unperturbed cells. One of the most im-
portant aims of such tests is to identify the genes which
are mostly responsible for the difference between the
biological states under investigation, the so called differ-
entially expressed genes (DEG).
Genes do not function in isolation but are part of a

complex regulatory and functional network, and this can
be reflected in the significant observed correlations be-
tween their expression levels. However, the most widely
used methods for identifying DEG are univariate; typically
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tests are performed gene-by-gene without regarding gene-
gene statistical dependencies. The fold-change, an early
approach that is not recommended by statisticians but still
popular among experimental biologists due to its simpli-
city, does not take into account the variance which arises
from biological and experimental sources, and as such the
fold-change measure does not offer any estimate of confi-
dence [2,3]. Because of this, the fold-change is regarded as
an insufficient statistic for identifying DEG [3,4]. Other
univariate methods include, Welsh’s t test, Significance
Analysis of Microarrays (SAM) [5], and Linear Models for
Microarray Data (limma) [6], and, in the case of high-
throughput sequencing data, differential gene expression
analysis based on the negative binomial distribution
(DESeq2) [7]. However, since there are significant statis-
tical dependencies between the expression levels of most
genes, multivariate approaches may be more appropriate
for genome-wide profiling analyses that identify DEG; for
example, multivariate analysis is able to find significant
differential expression in cases where there is no marginal
differential expression for individual genes (Figure 1).
There have been a number of attempts to apply multi-

variate analyses to identify DEG [8,9]. For example, Lu
et al. [10] proposed an application of Hotellings T2 test,
which is a multivariate generalization of Welsh’s t-test.
However, these approaches remain little-used because
they are sensitive to the fact that typically microarray or
RNA-Seq gene expression profiles have fewer samples
than genes. A small sample size compared to the dimen-
sionality of the measured variables brings difficulties to
the analysis [11]. A significant step towards the reso-
lution of such problems was the realization that variance
Figure 1 Illustration of a case where there is no marginal differential
setting the differential expression becomes clear. Projecting the data o
between the classes.
shrinkage improves statistical power [5,12,13]. Also,
methods that directly attempt to identify differentially
expressed gene-sets as opposed to individual genes have
been developed [14-19]. In addition, to increase statis-
tical power, these approaches also attempt to facilitate
biological interpretation, which can be challenging when
faced with a long list of DEG [15,20].
There are currently two main principle technologies to

perform whole-genome transcriptional profiling: micro-
arrays and RNA-Seq. The later has a number of advan-
tages such as greater dynamic range, and an ability to
measure previously unknown transcripts. The RNA-Seq
technology also presents some challenges such as poten-
tial non-uniform read coverage and transcript length
biases, and recently there has been a flurry of publica-
tions approaching these important issues [21-24]. One of
the differences between microarray and RNA-Seq data is
that microarrays result in continuous measures of expres-
sion, often log-normally distributed, whereas RNA-Seq
data results in positive integer read counts with discrete
probability distributions. For this reason, established
methods of differential expression analysis for microarray
data are not immediately transferable to RNA-Seq data
but this challenge can be overcome as demonstrated by
Soneson et al. [25] who showed how to transform RNA-
Seq counts to continuous values. The approach we shall
take here relies on minimal assumptions about the dis-
tributions of the data and should apply to RNA-Seq,
microarray or any other similar situation where the di-
mensionality of the data far exceeds the sample size.
We propose a new multivariate approach called the

Characteristic Direction which is better able to identify
expression of individual genes, however in the multivariate
nto the appropriate direction in this case leads to a clear separation
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DEG than univariate approaches including the methods:
fold change, SAM, the Welch’s t test, LIMMA and
DESeq. Our approach naturally incorporates a regularization
scheme to deal with the problem of dimensionality, and
also provides an intuitive geometrical picture of differential
expression in terms of a single direction. We show how this
geometrical picture reliably characterizes the differential
expression and also leads to some natural extensions of the
approach such as improved gene-set enrichment analysis. In
addition, we take advantage of a neat mathematical trick to
make the Characteristic Direction method fast to compute.
Previous attempts to validate expression analyses have

tended to rely on simulated data due to the general lack
of ground truth with which to compare the results when
applying the methods to real data. However, simulated
data can only contain a simplified reproduction of the
rich structure of expression data and so can only provide
an incomplete picture of the effectiveness of the method
under investigation. We benchmarked our method using
simulated data, but we also developed original methods
to benchmark DEG calling using real data (Figure 2).
Firstly, we extracted a large number (73) of gene expres-
sion microarray profiles from the Gene Expression
Omnibus (GEO) before and after the perturbation of in-
dividual TF. We then used ChIP-Seq data, which pro-
vides information on the DNA binding sites of the TFs
to provide prior information by which we were able to
Figure 2 Schematic of the validation pipeline: 1) Expression data from
samples; 2) The various approaches to differential expression are use
lists, for example genes associated with ChIP-Seq binding sites of the
distribution is calculated; 4) The perturbation of the cumulative distribu
scale of φ, indicate significant prioritization of the prior knowledge genes. A
evaluate the Characteristic Direction method and make
comparisons to other approaches. We are aware that tar-
get genes for a TF, as determined by ChIP-Seq, does not
necessarily mean that the binding is functional. However,
identifying more DEG from a list of putative target genes
determined by ChIP-Seq can be used as a silver standard
to compare DEG calling methods. In a similar way, we
were also able to do this for drug perturbations (130) in
combination with knowledge about the drug targets and
their known protein-protein interactions. For validation
and evaluation of the Characteristic Direction method
ability to identify DEG from RNA-Seq data, there are
currently fewer available studies from including set up
similar test-beds, mostly because the technology is
newer and cost prevents many studies from including
more than two repeats. However, we did find an ideal
study that measured binding sites for the TF STAT3 and
relevant RNA-Seq expression data in the same cells.
Apart from being able to assess the analysis methods,

these results are interesting in themselves as they show
that we are able to infer information about TF and drug
perturbations from expression data. For example, we
find that proteins that are known to interact with the TFs
and the drug targets tend to be also within the DEG.
Finally, we show how a natural extension of the Charac-
teristic Direction method can be used to perform po-
tentially improved gene-set enrichment analysis. We
a large number of experiments with control vs. perturbation
d to rank genes in order of significance; 3) Prior knowledge gene
perturbed TF, are identified in the ranked list and the cumulative
tion from uniform is examined. Large deviations from zero, on the
lso, the AUC distributions are examined across the various methods.
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compared enriched terms for DEG identified in human
cancer stem cells and show that the Characteristic Direc-
tion enrichment method recovers more relevant Gene
Ontology (GO) terms as compared with GO terms recov-
ered by the hypergeometric test, or GSEA.

Methods
Computing the characteristic direction and identifying
differentially expressed genes
Classification approaches, for example those that predict
clinical outcome from gene expression data, are inher-
ently multivariate as they use the structure of the gene
expression profiles as a whole in order to distinguish be-
tween biological conditions or classes. Our approach is
to repurpose linear classification methods in order to
characterize differential expression and identify DEG.
We use a linear classification scheme, which defines a
separating hyper-plane; the orientation of which we
show can be interpreted to identify DEG. We also find
that the direction normal to the separating hyper-plane
provides a simple geometrical conceptualization of the
differential expression, which naturally leads to exten-
sions of the approach, such as a new formulation of gene
set enrichment analysis.
Suppose we have gene expression data from a number

of samples N, in which the expression of p genes is mea-
sured, and then let each expression profile sample form
a row of the matrix X (a N × p matrix). For generality at
this point we shall consider the case where each of the
expression samples comes from one of K classes belong-
ing to the set G. In linear discriminant analysis (LDA)
the log-ratio of class posteriors P (G|X), is written as fol-
lows (see Additional file 1 for a derivation),

log
PrðG ¼ kjX ¼ xÞ
PrðG ¼ ljX ¼ xÞ ¼ log

πk

πl
−
1
2

μk−μl
� �T

Σ−1 μk−μl
� �

þxTΣ−1 μk−μl
� �

ð1Þ
where, πk, is the class mean, and it is assumed that both
classes have the same covariance matrix, Σ. Then the
orientation of the separating hyper-plane (between clas-
ses k and l) is defined by the normal p-vector, in the
third term on the right hand side, that we label b,

b ¼ Σ−1 μk−μl
� �

: ð2Þ
The estimation, from the data, of the terms in this

equation is explained in the Additional file 1. Below we
will interpret the direction of the p-vector, b, as the dir-
ection in expression space that best characterizes the
differential expression, and show how the components
of this vector can be used to identify differentially
expressed genes. However, first we note a few potential
issues: the calculation involves the inverse of a very large
p × p matrix which is not only expensive to compute
but also the elements must be estimated from a rela-
tively small sample-size (p >> N), which means that the
matrix is singular and this leads to large variance in the
results even when using the generalized inverse.
The issue of singularity and large variance can be tack-

led with a regularization procedure, for example, the co-
variance matrix can be shrunk to the scalar variance as
follows,

Σ̂ γð Þ ¼ γΣ̂þ 1−γð Þσ2Ip;with γϵ 0; 1½ � ð3Þ

where Σ̂ is the estimated covariance matrix, and σ2 is
the scalar covariance (see Additional file 1 for elabor-
ation). The inclusion of a constant on the diagonal re-
solves the singularity problem, and the modulation of
the off-diagonal terms helps to reduce noise arising from
the estimation of covariance from few samples.
The problem of computational expense is efficiently

overcome with the singular-value decomposition trick
[26-28] which also admits a solution in the limit of zero
shrinkage by working in the subspace spanned by the data,
rather than the full expression space (see the Additional

file 1). The normalized vector b̂ contains only information
about the direction of the normal to the separating hyper-

plane. The components of b̂ are the direction cosines, and
their magnitude quantifies the degree of alignment of the
direction to axes corresponding to each gene. The sign of
each component can be interpreted as the sign of the con-
tribution of each gene to the differential expression. An-
other way to picture this interpretation of gene
significance is to consider the identity,

Xp

i¼1

b̂2i ≡1 ð4Þ

Then the contribution of each b̂21 to this sum can be
interpreted as quantifying the relative contribution of
each component to the total differential expression giv-
ing the significance of the corresponding gene. The
above interpretation provides a quantitative measure of
the relative, but not absolute, significance of each gene
to the differential expression, and as such can be used to
rank the genes in order of significance. However, we also
want to identify a shortlist of significant DEGs. This
could be done completely within the framework we have
outlined by using a L1 regularization scheme in place of
that used in the shrinkage equation above; such a pen-
alty results in automatic feature selection because many
components fall to zero; the genes corresponding to the
features retained would then comprise the DEGs. An al-
ternative method to deriving a significance threshold is
described below.
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Generating synthetic data
We generate synthetic normalized expression data which
incorporates multivariate structure. The multivariate
structure of real biological expression data is not fully
known, we therefore use a simple approach which incor-
porates some of the best established properties of such
data: 1) large number of features (genes) with a relatively
small number of samples; 2) significant dependencies be-
tween the expression levels of the genes, leading to di-
mensionality which is much smaller than the number of
features. In addition to these properties we require con-
trol over the number and identity of genes which are dif-
ferentially expressed between two datasets. There are a
number of ways that datasets with these properties may
be generated, but we chose the simplest, with the fewest
free parameters. In a nutshell, we use a multi-variate
normal distribution distributed throughout a random
subspace of the full expression space, the dimension of
which reflects the dimension of the dataset. By ensuring
that this subspace spans a predefined vector of differen-
tially expressed genes we can perturb the mean of the
normal distribution, preserving the covariance matrix, to
generate data with pre-defined differentially expressed
genes. An explicit description of the algorithm follows:
The parameters input into the synthetic data gener-

ation algorithm are: the total number of genes on the
array, p, the total number of differentially expressed
genes, nd, the dimension of the data sets, D, the number
of samples in each class, N, and a scale parameter which
controls the magnitude of the difference between the
“control” and “perturbed” data sets, Δ. First we deter-
mine which genes are to be differentially expressed and
in which direction – this is done by generating a random
unit p-vector with nd non-zero components, correspond-
ing to the differentially expressed genes. We refer to this
vector as m̂ . This vector, when normalized, provides the
seed for the generation of a set of D isotropic random
orthonormal vectors which provide a basis for a random
subspace of expression space. This is generated by itera-
tively generating a random isotopic vector bi at step i,
then calculating that part of bi which is parallel to the
subspace spanned by the previously generated vectors
{bj |j < i},

bi;∥ ¼
Xi−1

j¼1

bi:bj
� �

bj ð5Þ

This is then subtracted from bi, resulting in a new vec-
tor which is perpendicular to the previous members of
the set; this is normalized before being included in the
set and moving on to the next iteration. The result is a
set of orthonormal basis vectors for an isotropic sub-
space of dimension D which also includes the pre-
defined vector of differentially expressed genes. For each
class: “control” and “perturbed” we next generate ran-
dom data within this subspace by drawing from a multi-
dimensional normal distribution. To do this we must
first define the mean and covariance matrices for each
class. If, for simplicity, we assume linearity, then we may
think of our random subspace as being the Principal
Component space, and the data should be uncorrelated
in this space, so we set the off diagonal elements of the
covariance matrix to be zero and it only remains to de-
termine the variances. We do this in such a way as to re-
flect a general property of biological expression data
where the first principal component captures the most
variance, and subsequent principal component capture
successively smaller variances. We model this property
very simply by setting the variance in the ith, principal
component direction to be equal to e-(i-1), such that the
variance in the first principal direction is 1, and in the
second e-1 etc. We assign the same covariance matrix to
both the “control” and “perturbed” samples. We choose
the mean of the “control” samples to be zero, and the
mean of the “perturbed” samples to reflect the pre-
defined differentially expressed genes by setting it equal
to m̂ scaled by Δ to control the magnitude of the differ-
ence between the “control” and “perturbed” expression
data. An illustration of the synthetic data generated in a
low-dimensional space with the parameters p = 3, nd =
2, D = 2, N = 3, and Δ = 3.0 with gene 1 and 3 chosen
to be differentially expressed, is shown in Figure 3.
These parameters were chosen to give an impression of
the structure of the data in higher dimensions, and to
result in a clear difference between the two classes of
samples.

Estimating significant DEG applied to the synthetic data
The Characteristic Direction method is represented by a
vector in expression space, each component of which
corresponds to a gene. We interpret this vector by tak-
ing the square of each component to be a measure of
the importance of the corresponding gene in the differ-
ential expression; the larger the squared component the
more significant the gene. In order to determine the ap-
propriate threshold above which to accept genes as dif-
ferentially expressed we derive a null distribution for the
ranks of the squared components as follows:
Given a null hypothesis that there are no differentially

expressed genes we would like to compare the distribu-
tion of squared component values to those that would
be expected under the null hypothesis. One way to gen-
erate the null distribution would be to use permutations
of the data, which would require sample sizes to be large
enough to permit a sizable number of permutations. An
alternative which does not require such large sample size
is to use the same multivariate normal model of the
data distribution used in the classification calculation to



Figure 3 Illustration of the structure of the synthetic data with parameters: p = 3, nd = 2, D = 2, N = 3, and Δ = 3.0. The differentially
expressed genes are gene1 and gene3. The two different colors of points indicate the two classes of samples: “control” and “perturbed”.
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generate the null distribution. Under the null hypothesis
we assume that there is no difference between the two
classes of samples and that they both derive from a
multivariate normal distribution with covariance matrix:
Σ, the same as used in the classification calculation, and
mean m0. We use the following algorithm to generate
the null distribution of ranked squared coefficients:

1. Generate two random sample means by drawing
from the multivariate student t distribution with
N - 1 degrees of freedom and find their difference.

2. Calculate the null characteristic direction bnull = Σ-1 Δm

3. Calculate b2null and rank the components into
descending order of magnitude

4. Repeat steps 1–3 100 times, and take the mean, to
give b2null

To compare the real distribution the null we take the ra-
tio: b2=b2null. The simplest and most conservative approach
would be to accept into the set of differentially expressed

genes all those genes for which the ratio: b2

b2null
> 1. A less

conservative method to derive the threshold from the data
is to consider the inflection in the curves which can be
isolated with the cumulative distributions.

Performing characteristic direction enrichment analysis
The geometrical picture of differential expression as a
single direction obtained by the Characteristic Direction
naturally leads to some extensions. The natural distance
measure for two directions is the cosine distance, or
equivalently, the angle between the two directions. In
this way we can picture the similarity between two bio-
logical perturbations as the alignment between two di-
rections (Figure 4a). Furthermore, a gene-set defines a
subspace within expression space; we can use the angle
subtended between this subspace and the direction char-
acterizing the differential expression, the first principal
angle (Figure 4b), as a quantitation of the significance of
a pre-defined gene set for the differential expression. In
the Additional file 1 we derive the appropriate null-
distribution with which to compare this subtended
angle, and with such a statistical test we can identify
significantly differentially expressed gene-sets. In the
Results section we compare this new method of enrich-
ment analysis to existing methods such as gene set en-
richment analysis (GSEA) [29,30] and find a suggestion
that this new enrichment analysis leads to the inference
of more relevant biological processes.

Results
Benchmarking the characteristic direction method with
transcription factor perturbations followed by microarray
genome-wide expression profiling
We collected 73 experiments from GEO (Additional file 1:
Table S1) which contain expression data for control verses
TF perturbation with at least three biological replicates in
each of these classes. The TF perturbations consisted of
knockdowns (32), knockouts (29), over-expressions (5),
and other types of perturbation (7) such as partial muta-
tions for example. A complete list with the details about
these experiments can be found in the Additional file 1.
We extracted processed expression values from the SOFT
files downloaded from the GEO database. For each experi-
ment, we compared control and perturbed classes with
four different methods: the fold change, Welsh’s t test,
SAM, and the geometrical approach described above
which we shall refer to as the “characteristic direction” ap-
proach. Each experiment and method pair resulted in a
ranked list of all genes on the particular array chip in
order of their estimated significance in the differential
expression.



Figure 4 Illustration of gene set enrichment with the characteristic direction concept. a) Similarity between two perturbations can be
interpreted as the angle subtended between two characteristic directions. b) Gene set enrichment analysis can be formulated as the principal
angle between the characteristic direction and the subspace spanned by the genes in a gene set.
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To evaluate the ability of each method to prioritize
DEG we used ChIP-Seq data reporting DNA binding
sites for the each TF from one of two databases: ChEA
[31] and ENCODE [32]. There is little overlap between
these databases and so they constitute independent vali-
dations (see Additional file 1). Using this data we derived
lists of genes which are associated with each TF by the
identification that the TF bind to these genes’ promoters.
Then, by assuming that genes from these lists are more
likely to be regulated by the perturbed TF than the com-
plementary genes, we reasoned that the degree to which
an analysis method prioritizes the ChIP-Seq derived
genes is a measure of its effectiveness. In addition, in a
similar way we used lists of genes/proteins which are
known to physically interact with each TF. We reasoned
that genes for which their protein product physically in-
teracts with the TF are more likely to be differentially
expressed after the TF perturbation. As a final compari-
son, we examined the priority given to the perturbed TF
itself, since it is known that many TF tend to auto-
regulate their expression.
We took two approaches to examining and displaying

the distributions of the rankings of these gene lists by
the various methods: the cumulative distribution func-
tion over all experiments; and the distribution of the
area under the curve (AUC) scores from each experi-
ment. Before proceeding, we describe these two methods
in more detail. Expression data from each experiment Ej,
with a total number of genes pj, is analyzed for
differential expression, according to one of the methods
described above, resulting in rankings for each gene
which are scaled by pj to give rji, the scaled rank of gene
i in experiment j, such that a value of rji = 0 is taken by
the most significant gene in experiment Ej and rji = 1 is
taken by the least significant gene. For each experiment
we have a corresponding subset of genes Sj which may,
for example, consist of genes which are putative target
genes of the TF that was knocked down in the specific
experiment, as determined by an independent ChIP-Seq
experiment. We examine the rankings of the genes Sj.
The set of rank values of the genes Sj corresponding to
experiment Ej are identified for all j,

A ¼ [j;k∈Sj rjk ð6Þ

Then the cumulative distribution function of A, which
we label D(r), is examined. If the gene sets Sj contain
genes which are neither preferentially significant or in-
significant then we expect a uniform distribution and

D rð Þ ¼ r ð7Þ
Any significant deviation from this indicates that the

gene sets are significant in the differential expression
analysis, therefore we examine D(r) - r for significant de-
viations from zero in order to evaluate the various
methods. A significant positive value corresponds to the
genes in Sj being concentrated at the smaller scaled
ranks and therefore having greater significance than a
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uniform random distribution. The entire process is visu-
alized in Figure 2.
Random fluctuations from zero are to be expected and

we can estimate the scale for these fluctuations, φ, by a
premise similar to that behind the Kolmogorov-Smirnov
test (see the Additional file 1 for details). When plotting
D(r) - r we also include a right-hand scale to the plots
which have the values scaled by φ to give an impression
of how the deviation compares to what might be ex-
pected from random fluctuations under the null hypoth-
esis of a uniform distribution of rankings. Values >> 1
on this scale indicate significant non-uniformity in the
distribution of ranks.
Hence, this method allows us to visually and quantita-

tively compare the perturbation of cumulative distribu-
tion functions from uniform, D(r) - r, for each ranking
method and each gene list type (Figure 5a-d). Apart
from Figure 5a, which shows that all the methods are
equally able to identify the TF directly perturbed in each
experiment, the relative performance of the methods are
Figure 5 Comparison of the distributions of the scaled rankings of the
perturbations. Each sub-plot shows the deviation of the cumulative distribu
(a) the TF perturbed by each experiment; b) genes associated with binding s
genes interacting with the TF or the gene that encodes the TF; d) genes asso
from ENCODE; The perturbation of the cumulative distribution of the ranking
to interact with the drug targets.
quite consistent across the gene lists. The Characteristic
Direction method prioritizes genes in the differential ex-
pression which are also associated with the perturbed
TF in ChIP-Seq data, and also genes which interact with
the TF, and it does so to a significantly higher degree
than the other methods (Kolmogorov-Smirnov test p
values comparing all the distributions can be found in
Additional file 1: Tables S3 to S6). Limma is the next
best performing method by this measure, followed by
SAM and Welsh’s t test. The fold change method does
not seem to successfully prioritize the gene list. We also
found that the degree of shrinkage has little effect on the
rankings generated by the Characteristic Direction ap-
proach and thus choose a representative value (y = 1).

Benchmarking the characteristic direction method with
drug perturbations followed by microarray genome-wide
expression profiling
Next we collected 130 experiments from GEO (Additional
file 1: Table S2) consisting of control verses FDA approved
gene sets for the various methods for the TF (a-d) and drug (e-f)
tion from uniform of the rankings of each gene set and analysis method,
ites of the TF as measured in ChIP-Seq experiments from ChEA; c) the
ciated with binding sites of the TF as measured in ChIP-Seq experiments
s of (e) drug targets, and (f) genes that their protein product are known



Figure 6 Distribution of the top 500 genes associated with
differential STAT3 binding in the ranked list of differentially
expressed genes as determined by DESeq or the characteristic
direction.
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drug perturbed samples, with at least three biological rep-
licates in each sample. The genes were ranked in the same
way as in the previous subsection, using the same
methods. Due to the different mechanisms of action be-
tween TFs and drugs, instead of using ChIP-Seq for valid-
ation we assessed the rankings of known drug targets, and
separately, genes which are known to have their protein
products directly physically interact with those drug tar-
gets using known protein-protein interactions available
from the NCBI Gene database and drug targets from
DrugBank [33]. We assess the prioritization of the genes
with the DEG calling methods in the same way as for the
TFs otherwise. It should be noted that ChIP-Seq data in-
forms the validation with relatively unbiased and objective
data whereas the knowledge of drug targets is rather more
biased and incomplete. In addition, it is not known
whether targeting a drug target with a drug will alter the
mRNA expression of the target. So we do not expect to
see the same strength of signal in this form of validation
as compared with the validation for TF perturbation
followed by expression with ChIP-Seq prior data. The per-
formance of each method seems to be in the same relation
as for the TFs, with the characteristic direction giving
higher priority to the genes encoding drug targets of the
relevant drugs and genes which their products interact
with those targets (Figure 5e-f) (Kolmogorov-Smirnov test
p-values comparing all the distributions can be found in
Additional file 1: Tables S7 and S8).

Comparing the characteristic direction method to DESeq
In a recent study Hardee et al. [34] studied the relation-
ship between differential STAT3 binding and differential
gene expression in two subtypes: germinal center B-cell-
like (GCB) and activated B-cell-like (ABC) of diffuse
large B-cell lymphoma (DLBCL). The Illumina Genome
Analyzer IIx high-throughput sequencing platform was
used to perform ChIP-Seq experiments identifying the
DNA binding of the TF STAT3 and also RNA-Seq ex-
periments were performed on eight patient-derived cell
lines: four from each subtype of DLBCL. The binding of
STAT3 was studied because deregulation of this TF is
known to be an important discriminant between the two
subtypes of cancer. The ChIP-Seq data was condensed
into 10337 binding regions (BR) for each cell line and
the authors identify differential binding of STAT3
between the two subtypes using DESeq analysis. In
addition, the authors identify differentially expressed
genes, again using DESeq. One of the central findings of
their work is that there is a strong relationship between
the differential binding of STAT3 and the differential
gene expression between the two subtypes of BLBCL.
Stated another way, genes associated with binding re-
gions which are differentially bound by STAT3 also tend
to be identified as differentially expressed. This study
provides an opportunity to compare the performance of
the Characteristic Direction approach in the setting of
deep sequencing technologies to one of the most popu-
lar differential expression methods in the field (DESeq).
To do this, we repeated the differential analysis of both
the ChIP-Seq data and the RNA-Seq data, but where the
authors used DESeq, we use the Characteristic Direction;
we then re-examined the association between differential
STAT3 binding and differential gene expression. Taking
the top 500 genes associated with differential STAT3
binding as determined by the Characteristic Direction
and DESeq respectively, we examined the distribution of
the DEG in the same way as we did for the TFs (Figure 6).
We see that the Characteristic Direction results in a
higher ranking of the genes associated with differential
binding of STAT3. More genes associated with differential
binding of STAT3 are recovered from the differential
expression analysis when the Characteristic Direction
method was used. The result further demonstrates the
greater apparent degree of consistency between DNA
binding data and differential expression analysis uncov-
ered when using the Characteristic Direction.
Benchmarking the characteristic direction method with
synthetic data
We used the following parameters to generate synthetic
data as described in the Methods: p = 104, nd = 2 × 103,
as these are of the same order of magnitude of whole
genome profiles and we used Δ = 0.3 as this resulted in
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data for which it was not too difficult and not too easy
to identify the differentially expressed genes. We re-
peated each simulation 10 times. We investigated two
different values of the sample size (3 and 10) as these
are two common sample sizes found in GEO datasets,
and we also examined two different values for the di-
mensionality (10 and 20). The resulting ROC curves
show that the characteristic direction outperforms the
other methods in recovering the differentially expressed
genes from the synthetic data (Figure 7).

Estimating significant DEG applied to the synthetic data
In many cases prioritization of differentially expressed
genes is not the only aim – a discrete list of genes which
are to be regarded as differentially expressed is required.
We next use the synthetic data described above in order
to demonstrate an approach for setting a threshold that
would determine significant differential expression. Un-
less stated otherwise, all results in this section are aver-
aged over three datasets. We first create a synthetic
dataset where the number of differentially expressed
genes is either 0, 500, 1000 or 2000. The set of genes we
aim to identify as differentially expressed genes are those
with particularly large squared components. However, by
plotting the ranked squared components for each gene it
is not clear where it would be appropriate to apply a
threshold (Figure 8a). By applying the method that cre-
ates a null distribution for these ranked components,
based on the null hypothesis that there are no differentially
expressed genes, as described in the Methods (Figure 8b),
Figure 7 ROC curves comparing the various DEG ranking methods fo
following parameters: p = 104, nd = 2 × 103, and Δ=0.3; the remaining
we notice that when there are no differentially expressed
genes the scaled components are uniformly distributed,
with no components standing out (Figure 8c). However,
when there are differentially expressed genes we observed
a peak with a width which reflects the number of differen-
tially expressed genes in the synthetic data (Figure 8c). By
examining these curves we should be able to see whether
there are any differentially expressed genes at all and if so
how many; we therefore take the approach of allowing the
data to decide the threshold as described in the Methods
using two types of thresholds: one stringent and the other
less stringent.
The points on the curve which are closest to the top

left corner capture more of the total differential expres-
sion with fewer genes. We label a new coordinate: s.
which is perpendicular to the diagonal, and plot its value
for each of the synthetic datasets (Figure 8d). The peaks
of these curves correspond to the inflections in the
curves in Figure 8c. Their height indicates the degree of
differential expression – values which are a significant
fraction of unity indicate a significant differential expres-
sion (Figure 8e). Note that this criterion is satisfied by
all the synthetic datasets shown with the exception of
the dataset with no differentially expressed genes. The
position of the peak may also be taken as the threshold
for acceptance into the set of differentially expressed
genes. Finally, we indicate the position of the thresholds
on ROC curves to demonstrate that we have indeed
found good thresholds for identifying DEG (Figure 9).
The sets of differentially expressed genes thus identified
r the ability to identify DEG from synthetic data created by the
parameters are as indicated in the figure panels.



Figure 8 Deciding where to place the cutoff using synthetic data. a) Sorted squared characteristic direction components for the various
synthetic datasets. Dashed lines indicate the top 500, 1000, and 2000 genes. b) The null ranked squared coefficient distribution for the synthetic
datasets. c) The ratio of the ranked squared coefficient distribution for the synthetic datasets to the null distribution assuming no difference
between the classes. Dashed lines indicate the top 500, 1000, and 2000 genes. d) The cumulative distribution of the ratio between the squared
coefficient distribution and the null distribution. The variable, s, which is indicated with an arrow, measures the distance perpendicular to the
diagonal. e) The value of s for each of the synthetic datasets. The dashed lines indicate the top 500, 1000, and 2000 genes.
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have sensible values of the false and true positive rates
while also having the advantage that they are derived
from the data itself rather than from the application of
an arbitrary threshold.

Characteristic direction enrichment analysis
In the case study presented in this section we attempt to
compare the various biological contexts that emerge
when examining differentially expressed genes identified
from mRNA profiling of CD44+ CD24-/low breast can-
cer cells as compared with normal breast epithelium tis-
sue. The data used in this case study for evaluation and
validation comes primarily from a study that profiled
and compared normal breast epithelium tissue obtained
from reduction mammoplasties and highly tumorigenic
breast cancer cells isolated from tumors (ESA+ CD44+
CD24-/low Lin-) [35]. The various approaches to iden-
tify DEGs from this dataset may provide different



Figure 9 ROC curves for the synthetic datasets with points indicating the FPR and TPR values at the various thresholds. Red points
show the values for the more conservative threshold value of b^2=b_null^2 and the black points indicate the values correspond to the peak of
the curves in Figure 8.
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pictures of the biological mechanisms which are relevant
to the disease. When comparing CD44+ CD24-/low
breast cancer stem cells with normal breast epithelium
tissue we expect to detect biological processes such as
cell motility, cell proliferation, wound healing [36], and
extra cellular matrix (ECM) remodeling which are
known to be up-regulated in cancer stem cells and are
activated in aggressive tumors.
One commonly used approach to obtain a picture of

the biology from the analysis of differential expression is
the evaluation of the DEG for enrichment given previ-
ously annotated gene sets. Gene Set Enrichment Ana-
lysis (GSEA) mentioned in the introduction, is one of
the most popular approaches to accomplish this task. A
more basic and widely used approach is to use Welsh’s t
test, or SAM, to identify differentially expressed genes
and then apply the Hypergeomtric test to examine en-
richment of gene sets deriving from various gene-set li-
braries or the Gene Ontology [37]. We can use these
methods, as well as the characteristic direction approach
to evaluate and compare significant biologically mean-
ingful gene sets. We first manually construct six subsets
of GO biological processes corresponding to the six hall-
mark characteristics of cancer as defined by Hanahan
and Weinberg [38]: 1) regulation of cell proliferation; 2)
evasion of growth suppression; 3) resisting cell death; 4)
enabling replicative senescence; 5) induction of angio-
genesis; and 6) enabling invasion and metastasis [38,39].
We then performed enrichment analyses for genes in-
volved in these GO biological processes, using the DEG
obtained with each of the methods and compared
the resulting picture of the biology that develops in
each case (Figure 10). In the case of the characteristic
direction, enrichment was calculated using the geomet-
rical concept of the principal angle described above (see
Additional file 1 for more detail). In the case of Welsh’s
t test and SAM a representative FDR threshold was set,
resulting in a set of DEG and the significance of the
overlap of the DEG with GO biological process gene sets
was evaluated with the hypergeometric test with an FDR
threshold of 10%. We also include the results of using
GSEA [15], though we found it necessary to increase the
FDR threshold to the rather larger size of 60% in this
case in order to observe a comparable number of sig-
nificant processes. We observe complete agreement
between all the methods in the GO categories of mono-
nuclear cell proliferation (GO: 0032943) and response to
estrogen stimulus (GO: 0043627); cell proliferative pro-
cesses are known to be fundamental to carcinogenesis
and estrogen signaling is known to play a significant role
in breast cancer. The characteristic direction approach
with principal angle enrichment finds more processes to
be significant in the differential expression in all the hall-
mark categories. It is possible that this is because this
approach leads to a clearer picture of the differential ex-
pression, however, it would require further exploration
before a more categorical statement can be made on this
matter.

Discussion and conclusions
We have described a new multivariate approach to dif-
ferential expression which is better able to identify DEG
while also addressing the issues associated with the high
dimensionality of expression data. The Characteristic
Direction approach uses the orientation of the separat-
ing hyperplane from a linear classification scheme, linear



Figure 10 (See legend on next page.)
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(See figure on previous page.)
Figure 10 Comparison of hallmark GO biological processes identified as significant in the differential expression of tumorigenic verses
normal samples by enrichment of the significant genes called by various the methods. Results of GSEA [15,30] analysis are included for
comparison. Colored boxes indicate that the GO category is identified as significant with an FDR of 10% (60% for GSEA), and deeper red colors
have a smaller mean rank of the gene set, corresponding to more up-regulation of the set, while deeper blue colors have a larger mean rank,
corresponding to more down-regulation of the set. The GO categories are sub-categorized corresponding to the six hallmark characteristics of
cancer as indicated in the inset box. The seventh category is included to evaluate the significance of the hypoxia GO category.
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discriminant analysis, to define a direction which charac-
terizes the differential expression. This results in a simple,
highly-regularized characterization which is appropriate
for genome-wide expression analysis. We compared the
performance of this approach to established univariate ap-
proaches, with real and synthetic data. The validation
scheme in the context of TF and drug perturbations is in
itself valuable for benchmarking both computational and
experimental methods. Extracting a large number of con-
trol verses perturbation expression datasets from GEO
and prioritizing the genes with the various methods, we
were able to show that the Characteristic Direction ap-
proach prioritizes genes which are associated with the
binding sites of the perturbed TF and targets of drugs re-
spectively; and it does so to significantly greater degree
than a selection of popular methods. We took advantage
of the opportunity to use independent prior knowledge
datasets to validate our method. It is established that bind-
ing and unbinding of transcription factors to the pro-
moters of genes is, in general, used for gene expression
regulation. However, it is also clear that binding to the
promoter does not necessarily result in differential expres-
sion. This is especially true when considering different cel-
lular contexts. In most cases of our validation scheme the
ChIP and array do not come from the same cell lines.
However, there is some correlation/overlap between DEG
after TF knockdowns and TF putative binding based on
ChIP for the same TF in most cases. We do not know the
true positives but we know that more overlap is likely due
to a more accurate method to identify the DEG. We name
this a silver standard for validation as it is not as good as a
gold standard but it is good enough to compare DEG call-
ing methods. The fact that we were able to recover genes
associated with the binding sites of the perturbed TF is in-
teresting on its own as it reveals a relation between DNA
interactions identified by ChIP-Seq experiments and
mRNA levels from expression profiling. Similarly, the abil-
ity of the method to identify a clear relationship between
drug targets and the differential expression of their inter-
actors in a systematic way is also noteworthy because for
many drugs we do not know the targeted pathways while
differential expression signatures are readily available. For
the RNA-Seq validation we used a single study which
compares differential binding of a TF, to differential ex-
pression, in the context of high-throughput sequencing.
We found a stronger apparent relationship between differ-
ential binding and differential expression when using the
Characteristic Direction approach as compared to the
DESeq method. Like all statistical methods, the Character-
istic Direction method works best when there are many
repeats of the same condition. In principle, the method re-
quires at least two repeats, but at least three repeats are
needed for practical applications. The microarray and
RNA-seq data used for validation of the method always
had at least three repeats for each condition. It is true that
in most RNA-seq studies so far investigators do not have
that many repeats (1 or 2), but this is likely to change as
the cost of such experiments rapidly drops. To make the
Characteristic Direction method accessible, we imple-
mented it in Python, R, MATLAB and Mathematica.
Readers that are interested in applying the method to their
own data should refer to the open source scripts and ex-
amples available at: http://www.maayanlab.net/CD.
Availability and requirements
Implementations of the method are provided in Python,
R, MATLAB, and Mathematica freely available at: http://
www.maayanlab.net/CD.
Additional file

Additional file 1: The Characteristic Direction: A Geometrical
Approach to Identify Differentially Expressed Genes.
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