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Abstract: Pulmonary subsolid nodules (SSNs) are observed not infrequently on thin-section chest
computed tomography (CT) images. SSNs persisting after a follow-up period of three to six months
have a high likelihood of being pre-malignant or malignant lesions. Malignant SSNs usually represent
the histologic spectrum of pulmonary adenocarcinomas, and pulmonary adenocarcinomas presenting
as SSNs exhibit quite heterogeneous behavior. In fact, while most lesions show an indolent course
and may grow very slowly or remain stable for many years, others may exhibit significant growth
in a relatively short time. Therefore, it is not yet clear which persistent SSNs should be surgically
removed and for how many years stable SSNs should be monitored. In order to solve these two open
issues, the use of quantitative analysis has been proposed to define the “tailored” management of
persistent SSNs. The main purpose of this review was to summarize recent results about quantitative
CT analysis as a diagnostic tool for predicting the behavior of persistent SSNs. Thus, a literature
search was conducted in PubMed/MEDLINE, Scopus, and Web of Science databases to find original
articles published from January 2014 to October 2019. The results of the selected studies are presented
and compared in a narrative way.

Keywords: pulmonary nodule; subsolid nodule; ground-glass nodule; non-solid nodule; part-solid
nodule; multidetector computed tomography; computer-assisted image analysis

1. Introduction

On thin-section chest computed tomography (CT) images, a subsolid nodule (SSN) is a nuanced
nodular opacity that does not completely erase the underlying bronco-vascular structures of the
lung [1]. SSNs, also called ground-glass nodules, are observed not infrequently in clinical practice and
lung cancer screening programs [2–5], and their incidence is constantly increasing, particularly with the
technological improvement of multidetector CT scanners and the broad availability of computer-aided
detection software [5–7].

SSNs can be the expression of both benign and malignant lesions, such as inflammation, organizing
pneumonia/focal interstitial fibrosis, or pre-invasive and invasive neoplasms [8–10]. SSNs are
conventionally divided into non-solid (NSNs) and part-solid nodules (PSNs) according to the absence or
presence of an intralesional solid component (Figure 1) [11,12]. PSNs can be further classified into two
or three different groups according to the size of the intralesional solid component (Figure 1) [11–13].
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Society and Lung CT Screening Reporting and Data System (Lung-RADS) guidelines recommend 
different management for these different SSN subtypes [11,13]. 

Regardless of the route of presentation (clinical practice or lung cancer screening), SSNs with a 
solid component less than 6 mm in diameter (Figures 1a and 1b) are considered to have a very low 
or low probability of becoming aggressive cancer [13]. Therefore, conservative management with CT 
surveillance is justified for this subtype of SSN [11–14]. 

On the other hand, SSNs with a solid component greater than 6 or 8 mm (Figure 1c) are 
considered suspicious or very suspicious, with a high probability to be or to become aggressive 
cancers. In this last scenario, a more aggressive approach with additional imaging tests (such as CT 
at three to six months and/or PET/CT), nonsurgical tissue sampling, and/or surgical resection should 
be recommended, particularly for SSNs with suspicious morphology, such as irregular or spiculated 
margins and intralesional bubbly lucencies [11–13]. 

 

Figure 1. Cropped axial computed tomography (CT) images showing the different subtypes of 
pulmonary subsolid nodules: (a) non-solid nodule; (b) part-solid nodule with small solid component 
(less than 6 mm in diameter); (c) part-solid nodule with a large solid component. 

SSNs that persist after a follow-up period of three to six months have a high likelihood of being 
pre-malignant or malignant lesions [8–15]. Malignant SSNs usually represent the histologic spectrum 
of pulmonary adenocarcinoma with lepidic growth pattern, including pre-invasive (adenocarcinoma 
in situ) and invasive lesions (minimally invasive and lepidic-predominant adenocarcinoma) [16]. 
Very rarely, malignant SSNs may be the manifestation of primitive pulmonary lymphomas [17] and 
pulmonary metastases from extrapulmonary malignancies [18,19]. 

Pulmonary adenocarcinomas presenting as SSNs exhibit quite heterogeneous behavior [20]. 
While most lesions show an indolent course and may grow very slowly or remain stable for many 
years (especially NSNs), others (particularly PSNs with a solid component ≥ 8 mm) may exhibit a 
significant growth in size and/or density in a relatively short period of time (few years) [8,11–15]. 
However, it has been reported that some pulmonary adenocarcinomas presenting as NSNs can grow 
faster than PSNs, while some pulmonary adenocarcinoma presenting as PSNs can remain unchanged 
for a long period of time, similarly to NSNs [14,20]. Moreover, it is well known that not all 
adenocarcinomas presenting as SSNs will become clinically evident cancer in the course of life [8,11–
15]. 

From a clinical point of view, the two main open questions about persistent SSNs still awaiting 
full resolution are: What SSNs should be surgically resected? How long should a stable or slow-
growing SSN be followed? 

With regard to these questions, the most fascinating goal of the radiological evaluation is 
undoubtedly to extract from radiological images quantitative features that may help in the early 
discrimination between aggressive and indolent SSNs. 

Figure 1. Cropped axial computed tomography (CT) images showing the different subtypes of
pulmonary subsolid nodules: (a) non-solid nodule; (b) part-solid nodule with small solid component
(less than 6 mm in diameter); (c) part-solid nodule with a large solid component.

In these different groups of SSNs, the risk of aggressive behavior is strongly associated with the
presence and size of the intralesional solid component [11–14]. Therefore, the updated Fleischner
Society and Lung CT Screening Reporting and Data System (Lung-RADS) guidelines recommend
different management for these different SSN subtypes [11,13].

Regardless of the route of presentation (clinical practice or lung cancer screening), SSNs with
a solid component less than 6 mm in diameter (Figure 1a,b) are considered to have a very low or
low probability of becoming aggressive cancer [13]. Therefore, conservative management with CT
surveillance is justified for this subtype of SSN [11–14].

On the other hand, SSNs with a solid component greater than 6 or 8 mm (Figure 1c) are considered
suspicious or very suspicious, with a high probability to be or to become aggressive cancers. In
this last scenario, a more aggressive approach with additional imaging tests (such as CT at three
to six months and/or PET/CT), nonsurgical tissue sampling, and/or surgical resection should be
recommended, particularly for SSNs with suspicious morphology, such as irregular or spiculated
margins and intralesional bubbly lucencies [11–13].

SSNs that persist after a follow-up period of three to six months have a high likelihood of being
pre-malignant or malignant lesions [8–15]. Malignant SSNs usually represent the histologic spectrum
of pulmonary adenocarcinoma with lepidic growth pattern, including pre-invasive (adenocarcinoma
in situ) and invasive lesions (minimally invasive and lepidic-predominant adenocarcinoma) [16].
Very rarely, malignant SSNs may be the manifestation of primitive pulmonary lymphomas [17] and
pulmonary metastases from extrapulmonary malignancies [18,19].

Pulmonary adenocarcinomas presenting as SSNs exhibit quite heterogeneous behavior [20].
While most lesions show an indolent course and may grow very slowly or remain stable for many years
(especially NSNs), others (particularly PSNs with a solid component ≥ 8 mm) may exhibit a significant
growth in size and/or density in a relatively short period of time (few years) [8,11–15]. However, it has
been reported that some pulmonary adenocarcinomas presenting as NSNs can grow faster than PSNs,
while some pulmonary adenocarcinoma presenting as PSNs can remain unchanged for a long period
of time, similarly to NSNs [14,20]. Moreover, it is well known that not all adenocarcinomas presenting
as SSNs will become clinically evident cancer in the course of life [8,11–15].

From a clinical point of view, the two main open questions about persistent SSNs still awaiting full
resolution are: What SSNs should be surgically resected? How long should a stable or slow-growing
SSN be followed?
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With regard to these questions, the most fascinating goal of the radiological evaluation is
undoubtedly to extract from radiological images quantitative features that may help in the early
discrimination between aggressive and indolent SSNs.

Among the radiological diagnostic methods applied in the thoracic field, CT is the most widely
used for quantitative analysis [21]. While the effectiveness of quantitative CT applications for
predicting malignancy in solid nodules is well established and widely described in the literature [22,23],
those related to SSN growth prediction are much more recent and, therefore, less well-known.

Therefore, the main purpose of this review is to summarize in a narrative way the recently
emerged novelties about quantitative CT analysis as a diagnostic tool for predicting the behavior of
persistent SSNs.

2. Materials and Methods

2.1. Literature Search

A literature search on three main databases (PubMed, Scopus, and Web of Science) was conducted
to find relevant articles about the role of quantitative CT analysis in predicting the growth of persistent
SSNs. Different combinations of the following keywords were used for this search: (a) subsolid
nodule; (b) non-solid nodule; (c) part-solid nodule; (d) ground-glass nodule; (e) ground-glass opacity;
(f) computed tomography; (g) quantitative analysis; (h) computer-assisted; (i) computer-aided;
(j) growth; and (k) behavior. The literature search was completed on October 31st, 2019.

2.2. Selection Criteria

Only articles in English published from January 2014 to October 2019 that assessed the role of
quantitative/computer-assisted CT analysis as a tool to predict the growth/behavior of persistent SSNs
were selected and retrieved for this review.

Articles that only used nodule size as a quantitative parameter to predict nodule growth and those
without a clear distinction between NSNs and PSNs were excluded. Articles that evaluated the role of
quantitative CT analysis only for predicting histological invasiveness of SSNs were also excluded.

In addition, the following types of articles were also excluded from the selection: (a) review
articles; (b) case reports/case series; (c) editorials/commentaries; and (d) letters. In order to permit the
selection of the largest number of related articles, the references and citations of the retrieved articles
were analyzed to find additional relevant studies.

All selected articles were reviewed and analyzed by two radiologists with different levels of
experience in chest CT imaging and quantitative analysis (A.B and S.M. who had 15 and 8 years of
experience, respectively).

2.3. Data Extraction

For each selected article, the following data were collected: (a) study details (first author, year,
design); (b) patient characteristics (number, age, gender, smoking habits, oncologic history, country of
origin); (c) SSN characteristics (number, subtype, size, location); (d) CT technical parameters (radiation
dose, slice thickness); (e) quantitative CT analysis (software, segmentation modality, definition of
growth); (f) quantitative CT features/parameters used as predictors of growth/behavior. The results of
each study are presented in chronological order and in a narrative manner.

3. Results

According to the literature search and selection criteria, only seven original articles met the
inclusion criteria and were considered for this review. The main characteristics of the included studies
are listed in Tables 1 and 2.
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Table 1. Study details and patient characteristics.

First Author Year Design
Patient Characteristics

Country
No. Age *

(Years)
Gender
(M:F)

Smoking
Habit (%)

Lung Cancer
History (%)

Tamura [24] 2014 Retrospective 53 70.8 ± 9.3 23:40 † 33.3 † 38.1 † Japan

Eguchi [25] 2014 Retrospective 124 64.5 ± 10.4 37:87 20.2 50.8 Japan

Bak [26] 2016 Retrospective 49 58.9 ± 8.1 26:23 40.8 NA South Korea

Sun [27] 2019 Retrospective 86 55 (41–75) 47:39 100 0 China

Shi [28] 2019 Retrospective 59 61 (40–85) 19:40 33.9 0 China

Borghesi [29] 2019 Retrospective 50 65.5 ± 10.5 24:26 70.0 20.0 § Italy

Qi [30] 2019 Retrospective 110 54.3 ± 9.7 38:72 NA 9.1 ˆ China

* Age is presented as mean ± standard deviation or median (range); † Characteristics of the 63 nodules included
in the study; § 23/50 (46%) patients had an oncologic history (20% lung and 26% other cancers); ˆ 23/110 (20.9%)
patients had an oncologic history (9.1% lung and 11.8% other cancers); NA, not available.

Table 2. Subsolid nodule characteristics, technical aspects, and quantitative features.

First Author
Subsolid Nodule Characteristics CT Technical Parameters

Quantitative CT Feature(s)
Predictive of GrowthNo.

Subtype
Size * (mm) Slice (mm) X-ray Dose

NSN PSN

Tamura [24] 63 63 0 11.4 ± 4.2 2.0 SD Mean CTA

Eguchi [25] NA ◦ NA ◦ 0 7.4 ± 2.8 1.25 32 LD
92 SD Mean CTA

Bak [26] 54 54 0 11.7 ± 5.4 2.0–2.5 SD
97.5th PCTL of CTA

Slope of CTA (from 2.5th to
97.5thPCTL)

Sun [27] 89 42 47 14.3 § 1.25 LD Uniformity ˆ

Shi [28] 101 101 0 8.9 ± 2.6 (S)
14.3 ± 3.6 (G) 1.0 SD 3D maximum diameter

Standard deviation of CTA

Borghesi [29] 50 0 50 † 11 (8.3–13.2) 1.0 SD Area, perimeter, diameter,
LMD, circularity, solidity

Qi [30] 110 110 0 8.7 ± 3.2 1.0–1.25 LD or SD ‡ Diameter, volume, mass

NSN, nonsolid nodule; PSN, part-solid nodule; SD, standard dose; LD, low dose; CTA, CT attenuation value;
PCTL, percentile; S, stable NSNs; G, growing NSNs; LMD, linear mass density; NA, not available. * Nodule size is
presented as mean ± standard deviation or median (range); § Approximately derived from available data; ◦ The exact
number of NSNs is not available (75 patients with single and 49 patients with multiple NSNs); † PSNs with a solid
component <6 mm; ˆ Only in NSNs. ‡ The CT protocol was heterogeneous (LD or SD, and unenhanced or enhanced
CT scan).

In 2014, Tamura et al. [24] and Eguchi et al. [25] published two independent retrospective studies
including a total of 177 patients with single or multiple NSNs. Both studies tested some clinical
and quantitative features, such as smoking history, lung cancer history, number of NSNs per patient,
NSN diameter, and mean CT attenuation (m-CTA) [24,25]. In both studies, nodule segmentation
was performed manually only on the cross-sectional image containing the largest nodule diameter.
With regard to the definition of growth, both studies defined nodule growth as an increase in the
nodule diameter by ≥2 mm or the emergence of an intralesional solid component [24,25].

In multivariable analysis, these studies found that m-CTA was an independent predictive factor
for nodule growth (p ≤ 0.002) [24,25]. In both studies, the maximum sensitivity and specificity for
predicting the growth in NSNs were obtained using a similar density cutoff value (m-CTA of about
−670 UH). However, while in the paper of Eguchi et al. [25] the values of sensitivity (SE) and specificity
(SP) at this cutoff value and the area under the curve (AUC) were reported (SE, 78.1%; SP, 80.0%; AUC,
0.81), these data were not available from the paper of Tamura et al. [24].

Among the clinical features, Tamura et al. [24] found that a previous history of lung cancer was the
only patient characteristic strongly associated with nodule growth, whereas Eguchi et al. [25] observed
that only smoking history was predictive of growth.
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In another retrospective study published in 2016, Bak et al. [26] investigated some quantitative
features (such as nodule diameter, volume, mass, and density) in a group of 54 histologically
confirmed NSNs (six adenocarcinomas in situ, 16 minimally invasive adenocarcinomas, and 32 invasive
adenocarcinomas). Regarding the computerized analysis, the segmentation process was performed
manually on cross-sectional images containing the entire nodule; nodule growth, similarly to previous
studies, was defined as an increase in diameter by ≥2 mm or the emergence of an internal solid
component. In their three-dimensional analysis, the authors found that NSNs with a higher 97.5th
percentile CTA value and steeper slope of the increase of CTA values from the 2.5th to the 97.5th
percentile exhibited a propensity for higher growth rate and the development of an intralesional solid
component. They also found that the combination of these two predictive factors provided an AUC of
0.78. In this study, no statistical comparison was made between patient characteristics or the number
of NSNs per patient and nodule growth.

The other four original articles were published in 2019 [27–30]. Two articles, published by
Shi et al. [28] and Qi et al. [30], focused exclusively on NSNs. Among the remaining two articles, while
the study of Sun et al. [27] included both NSNs and PSNs, the one by Borghesi et al. [29] included only
PSNs with a solid component less than 6 mm and diameter between 6 and 15 mm.

Shi et al. [28] included 59 patients with 101 NSNs. In their sample, the authors assessed
several quantitative features (volumetric and histogram parameters) in order to identify the factors
predictive of nodule growth. Nodule segmentation was performed in a semiautomatic mode using
three-dimensional (3D) open-source software including the entire nodule. In this quantitative analysis,
the authors defined growth as an increase in NSN diameter and volume/mass by at least 2 mm and
30%, respectively.

Based on multivariable analysis, Shi et al. [28] found that only 3D maximum diameter and CTA
standard deviation were independent predictors of nodule growth (p = 0.001). In particular, the optimal
cutoff values were 10.2 mm (for 3D maximum diameter) and 50 HU (for CTA standard deviation),
and the AUC values were 0.896 and 0.813, respectively [28]. No correlation was observed between
clinical features (such as patient age, sex, and smoking habits) or the number of NSNs per patient and
nodule growth [28].

Qi et al. included 110 NSNs from 110 patients [30]. In this sample, they evaluated the natural
history of persistent NSNs with deep learning-assisted nodule segmentation. For this analysis,
some quantitative (nodule diameter, m-CTA, volume and mass) and non-quantitative morphological
features (lobulated sign, spiculated sign, vacuole sign, air bronchogram, pleural adhesion and retraction)
were considered. Nodule segmentation was performed automatically using the Dr. Wise system based
on convolution neural networks [30]. The non-quantitative morphological features were assessed by
two radiologists with different experience in chest CT. The authors defined the nodule growth as an
increase in nodule volume ≥20% or the emergence of an intralesional solid component. In multivariable
analysis, the authors found that initial diameter, volume, and mass were the main quantitative factors
predicting nodule growth (p ≤ 0.023). Among the non-quantitative morphological features, only the
lobulated sign was an independent predictor of growth. No correlation was observed between nodule
growth and other characteristics, such as patient age, sex, oncologic history, number of NSNs per
patient, and nodule location.

The study of Sun et al. [27] included 86 patients with 89 SSNs (42 NSNs and 47 PSNs). The authors
assessed the effectiveness of four quantitative features (m-CTA, entropy, uniformity, and energy) in
predicting malignancy and growth trends of SSNs detected during a low-dose CT lung cancer screening
program. The nodule segmentation was performed manually using texture analysis software on
the cross-sectional images containing the most representative area of the SSNs. The authors defined
growth as an increase in SSN volume by at least 20% and calculated the volume and volume doubling
time (DT) of the nodules using commercial CT lung analysis software. With regard to the analysis of
the growth trend (performed in 61/89 SSNs), Sun et al. [27] found that only uniformity is useful in
predicting growth in NSNs (p = 0.026), and NSNs with low uniformity exhibiting faster growth. On
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the other hand, no correlation was observed between PSN growth and quantitative features. In this
study, no statistical comparison was made between patient characteristics and nodule growth.

Borghesi et al. [29] included 50 patients with a single PSN and assessed several quantitative features
(dimensional, densitometric, and shape parameters) in order to find useful factors for predicting
nodule growth. Nodule segmentation was performed manually using an open-source software
package on the largest cross-sectional area of each PSN. In their quantitative analysis, the authors
defined growth as an increase by more than 11.3% (i.e., more than the coefficient of repeatability of
intraobserver variability) of the linear mass density (LMD), a viable two-dimensional alternative to the
mass. Moreover, to determine the nodule growth rate, the authors also calculated the LMD-DT by
matching the baseline with the last available follow-up CT. Based on the results obtained in their study,
Borghesi et al. [29] found that both dimensional (area, perimeter, diameter, LMD) and shape features
(circularity and solidity) were significantly related to nodule growth, and the strongest association
was observed with circularity and solidity (p < 0.001). Among the clinical features (patient age, sex,
smoking habits, oncologic history, emphysema status, and PSN lobe location), only oncologic history
(lung or other cancers) was strongly associated with nodule growth (p = 0.007).

4. Discussion

The progressive improvement in the spatial and temporal resolution of multidetector CT scanners
and the increased availability of quantitative imaging methods have led to a significant change in
the way CT images are analyzed. The effects of computer-aided diagnosis software on radiologist
performance are well known. Therefore, their use in the diagnosis and management of several diseases
is constantly expanding.

Among quantitative CT methods, those related to thoracic imaging are the most
studied [20,22,23,31–43]. In particular, the applications related to the classification and management of
lung nodules are the most well-known and are used in both clinical practice and lung cancer screening
programs [20,22,23,31–34].

While solid pulmonary nodules are the most common, subsolid nodules are the ones with the
highest malignancy rate [44]. Moreover, many authors consider persistent SSNs to represent early-stage
adenocarcinoma or its precursor [8–15].

The stepwise progression of a persistent SSN from a preinvasive lesion (adenomatous atypical
hyperplasia and adenocarcinoma in situ) to an invasive lesion (lepidic-predominant adenocarcinoma),
is quite similar to the multistep progression of colorectal cancer from a premalignant (adenomatous
polyp) into a malignant lesion (carcinoma). However, while colorectal adenomas are usually removed
during a colonoscopy, pulmonary preinvasive lesions presenting as SSNs require thoracic surgery
(video or robotic-assisted). Moreover, the intra-operative localization of SSNs during thoracoscopic
surgery is difficult without preoperative marking techniques [45,46]. Furthermore, due to the typical
indolent course of SSNs and their slow growth rate, it is possible that most SSNs will never become
active cancer [8,11–15]. Therefore, it is not yet clear which persistent SSNs should be surgically removed
and for how many years stable SSNs should be monitored [8,47–49].

In order to solve these two-open issues, the use of quantitative analysis has been proposed to
improve the risk stratification of persistent SSNs and the definition of “tailored” management [50–52].

The appropriate knowledge of which quantitative methods are useful for predicting the
aggressiveness of persistent SSNs is crucial in this respect, as their application could affect nodule
management and future guidelines.

From this point of view, this review focuses on recent innovations in quantitative CT analysis
applied as a tool to predict the future growth of SSNs.

In our literature search, limited to the last few years (from January 2014 to October 2019),
we found only seven original studies, all retrospective, meeting our selection criteria (Tables 1 and 2).
All studies but one were conducted on Asian patients, and only one included a European (Italian)
cohort. Five papers investigated the role of quantitative analysis in NSNs [24–26,28,30], while one
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included both PSNs and NSNs [27] and the remaining paper considered only PSNs with a solid
component <6 mm [29].

The results on quantitative CT analysis retrieved from the selected articles were rather
heterogeneous because different quantitative features were tested and different scanners and
acquisition/reconstruction protocols (different slice thickness and radiation dose) were used for
CT analysis (Table 2). Considering these differences and the limited number of articles included in this
review, the comparison between the different studies was performed in a narrative manner.

Among the five papers that focused only on NSNs, 2/5 (40%) of studies found that m-CTA was
an independent predictive factor of nodule growth [24,25], whereas the other 3/5 (60%) of studies
did not confirm this strong association [26,28,30]. Among these three studies, two found that other
density-related CT features (the 97.5th percentile of CTA, the slope of the CTA values from the 2.5th to
the 97.5th percentile, and the CTA standard deviation) could be useful predictors of future nodule
change [26,28]. On the other hand, the remaining study found that only size-related CT features
(diameter, volume, and mass) could be useful predictors of nodule growth; however, in this paper,
only m-CTA was tested [29].

In agreement with these studies, even the one that focused on both NSNs and PSNs did not confirm
the usefulness of m-CTA in predicting growth [27]. The authors of this study only demonstrated the
usefulness of uniformity in the group of NSNs (Table 2) [27], specifically showing that the uniformity
of growing NSNs was significantly lower than that of stable NSNs.

Uniformity is a texture feature providing information on the homogeneity vs heterogeneity of the
nodules. Similarly, the density-related features found in the study of Bak et al. (i.e., the slope of the
CTA values from the 2.5th to the 97.5th percentile) [26] and Shi et al. (i.e., the standard deviation of the
CTA) reflect the intralesional heterogeneity of NSNs. Therefore, we can conclude that heterogeneity
should be an effective parameter for predicting NSN growth.

To confirm the leading role of heterogeneity in predicting NSN behavior, a promising computerized
method of analysis capable of an early discrimination between growing and stable NSNs was tested
in a small case series [51]. This method of analysis, performed using commercial software, provides
information on the nodule heterogeneity in a very clear and straightforward manner, by creating a
colored 3D surface model (named mesh plot) of the density/grayscale values within the NSN [51]. If an
NSN has high heterogeneity (i.e., greater tendency to grow), the software will create a mesh plot with
irregular surface morphology and several peaks, similar to a mountainous area; on the contrary, for an
NSN with high homogeneity (i.e., lower trend to grow), the software will create a mesh plot with regular
surface morphology and no peaks, similar to a hilly area [51].

In the remaining paper, which focused only on PSNs with small solid component (<6 mm) in
a group of 50 European (Italian) patients, the authors found that size and shape-related features
(circularity and solidity) were useful in predicting growth. Circularity is a dimensionless quantitative
feature that provides information about the degree to which a nodule resembles a circle [29]. Solidity is
also a dimensionless quantitative feature that measures the overall concavity of a nodule [29]. Based on
the results of their study, the authors concluded that PSNs with non-spherical and/or irregular shapes,
especially when associated with large size, exhibited a greater tendency to grow.

Compared to the previous literature on persistent SSNs [9], the introduction of a computerized
method to assess the shape of SSNs is a real innovation, as it eliminates all the limitations of subjective
analysis, thus improving the risk stratification of SSNs.

Regarding clinical features, the comparison between the selected studies is even more difficult,
as some data were not available. A strong correlation between clinical features and nodule growth
has only been observed in 3/7 (42.9%) of studies. According to some authors [3,15], Eguchi et al. [25]
observed a strong correlation with smoking history. Differently, as reported in other studies [47,53,54]
Tamura et al. [24] and Borghesi et al. [29] found that an oncological history (lung or other cancers) was
a significant risk factor for growth.
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Our review has three main limitations. First, it was not systematic; however, the search strategy
was well defined. Second, the number of selected studies was small; however, the literature search
was conducted on the three main databases (PubMed/MEDLINE, Scopus and Web of Science).
Third, the limited number of selected studies and the heterogeneity of their results did not allow
statistical comparison.

5. Conclusions

In conclusion, the results of this literature review can be summarized as follows: (a) quantitative
CT analysis can be a useful tool for predicting SSN growth; (b) the role of m-CTA in predicting the
growth of NSNs is controversial, as it has only been observed in two studies; (c) quantitative features
reflecting nodule heterogeneity can be effective in predicting NSN growth; (d) circularity and solidity
are two innovative and robust quantitative shape-related features for predicting the behavior of PSNs
with a solid component <6 mm; (e) oncologic and/or smoking history could be used in combination
with quantitative features to improve the risk stratification of SSNs.
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