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Abstract

The extent of dysfunction of the Eustachian tube (ET) is relevant in understanding the patho-

genesis of secondary otological diseases such as acute or chronic otitis media. The underly-

ing mechanism of ET dysfunction remains poorly understood except for an apparent

genesis such as a nasopharyngeal tumor or cleft palate. To better describe the ET, its func-

tional anatomy, and the biomechanical valve mechanism and subsequent development of

diagnostic and interventional tools, a three-dimensional model based on thin-layer histology

was created from an ET in this study. Blackface sheep was chosen as a donor. The 3-D

model was generated by the coherent alignment of the sections. It was then compared with

the cone-beam computed tomography dataset of the complete embedded specimen taken

before slicing. The model shows the topographic relation of the individual components, such

as the bone and cartilage, the muscles and connective tissue, as well as the lining epithe-

lium with the lumen. It indicates a limited spiraling rotation of the cartilaginous tube over its

length and relevant positional relationships of the tensor and levator veli palatine muscles.

Introduction

Inadequate function of the Eustachian tube (ET) causes middle ear ventilation disorders. In an

epidemiologically relevant disease with 2 million patients in the US every year, further research

into its pathogenesis is important [1]. The ET is a biomechanical valve between the nasophar-

ynx and the middle ear. Physiologically, it controls the passive adaptation of the middle ear air

pressure to the ambient air pressure primarily via direct muscular actions of the soft palate. In

the closed state it protects the middle ear [2]. Form and function are mutually dependent, and

this is evident in functional anatomy and biomechanics.

In some cases, pathogenesis is distinct. For example, adenoid vegetations and other benign

lesions [3] but also nasopharyngeal carcinoma and other malignant entities can additionally

increase the ET opening resistance by local pressure on the cartilaginous part of the ET [4] or

displacement of the entrance, by structural ingrowth with destruction, or neuromuscular

impairment [3]. Further, a cleft palate formation [4–7] as a result of an embryonic malforma-

tion in the palate area usually leads to a disturbed muscular action, such that the ET cannot
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open when yawning or swallowing to compensate for pressure differences between the tympa-

num and ambient air pressure. Other obvious reasons for tubal dysfunction can be impaired

nasal breathing due to enlarged nasal conchae, septal deviation or chronic sinusitis [8–10],

which can be detected endoscopically or by imaging. In addition, there is evidence for correla-

tions of decreased epitympanal middle ear ventilation of a narrower formation of the tympanic

isthmus [11]. But in many cases, the clinician has not such apparent local findings.

Due to its eminent clinical relevance, the ET has been investigated in various other studies

for descriptive issues. Macro- [12–15] and microscopic anatomical studies [16] were carried

out describing the compartments involved down to the cellular level. Endoscopic studies

enable the processing of functional questions in vivo, partly coupled with electromyographic,

acoustic, or pneumatic measurements [17–21]. Imaging procedures without dissecting proce-

dures increasingly provide insight into the anatomy and physiology of the tube [22–24].

Tomographic multiplanar imaging is especially the subject of static and dynamic functional

studies both from bony parts of the ear [25] and of the ET [11, 25–29]. In addition, optical

coherence tomography might present new possibilities for three dimensional imaging [30].

Also, three-dimensional modeling [25, 31, 32] and simulations such as finite element methods

[7, 33, 34] have been applied. 3D modeling now makes it possible to investigate functional

aspects in very small anatomical functional units, such as when examining the saccus endo-

lymphaticus in Meniere’s disease patients [25]. Furthermore, other endoluminal diagnostics

[35, 36] and therapies of the ET such as balloon dilatation [37–39] and stenting [40, 41] of the

ET are becoming increasingly important in clinic and research. The studies complement and

support each other in different ways. Although a large number of studies on the ET are avail-

able, a detailed and comprehensive functional description based on the anatomic structures is

not yet available.

A detailed three-dimensional microanatomy study was conducted in the present study to

better understand these functional aspects. The part controlling the function of the ET is the

cartilaginous part, which mainly consists of a lining of respiratory mucous membrane of the

lumen, supporting cartilage, Ostmann fat pad (OFP), musculature as well as connective tissue

attachment sites and positional relationships between each other. The muscular interaction

between the fixed points of the hard palate with the pterygoid process and the posterior attach-

ment to the base of the skull via the soft palate is essential, and is supplemented and supported

by actions of jaw movement and tongue-pharynx activity. The soft palate as a posterior contin-

uation of the hard palate is formed in a mirror-symmetrical construction [42, 43], an upper

muscle ring towards the base of the skull and a lower muscle ring towards the tongue and

pharynx sidewall. The essential muscles of the soft palate involved in ET opening are the tensor

veli palatini muscle (TVPM) and the levator veli palatini muscle (LVPM), which act on ele-

ments of the ET via divergent force vectors. Locally adjacent muscles, such as the tensor tym-

pani muscle with close positional relationship parallel to the bony part of the ET, are

insignificant for tube function [44].

To functionally decode the complex arrangement and, if necessary, to handle it for simula-

tion purposes, two essential prerequisites are required: (1) high-resolution imaging to differen-

tiate the individual compartments clearly and (2) a consistent and quantitatively evaluable

image data set in three dimensions. To date, transmitted light microscopy of thin sections is

the gold standard for histological examination in pathology. Here, quantitative analyses are

already established by digitizing sectional images [41]. Generating a three-dimensional volume

model from two-dimensional sections (in the sense of the slices) requires a relational assign-

ment of the individual sections. This proper allocation requires data of the correct spacing on

the different sections. Also, it is essential to stack the digitized image sections according to the

axis to prevent systematic errors due to torsion [45]. Blackface sheep were chosen as an animal
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model for this study due to the relative similarity of their ET to the human ET [46]. A quantita-

tively evaluable three-dimensional model of the ET and its functional elements in qualitative

spatial conformation might be an essential element in understanding the valve mechanism

and the subsequent development of new therapies.

Material and methods

Ethics approval

The State Office for Consumer Protection and Food Safety, Dept. of Animal Welfare approved

experiments with blackface sheep including the use of ET for histological evaluations following

German and European animal welfare legislation under the numbers 13/1089 and 13/1283.

Sample collection and preparation

An unscathed, untreated right ET of a fresh carcass of a blackface sheep (no. 211) from the

above-mentioned study 13/1283 was dissected. Preparation of the tissue followed the protocol

provided by Pohl et al. [36]. Briefly, after dissection, the specimen was fixed in formalin (3.5%,

pH 7.4; C. Roth, Karlsruhe, Germany) for two weeks. In contrast to the earlier published pro-

tocol [41], before embedding, three Sterican1 standard needles (0.9 mm x 70 mm; B. Braun

Melsungen AG, Melsungen, Germany) were placed by hand in the soft tissue as parallel as pos-

sible to the course of the tube as landmarks for the later reconstruction of the sample. Care was

taken to remain with the needles outside the cartilaginous ET. The tissue block was dehydrated

by using an increasing ethanol series (70%, 80%, 90%, 100%; Merck KGaA, Darmstadt, Ger-

many) and embedded in methyl methacrylate (MMA; Merck). The received block was addi-

tionally referenced for further control with the milling of three opposing grooves.

Series cutting, staining, and digitization

Due to the height of the block with the embedded ET, it had to be divided into two blocks of

half the height for cutting with the hole saw (Leica—SP16001, Leica Biosystems Nussloch

GmbH, Nussloch, Germany). Cone-beam computed tomography (CBCT) was performed with

both halves (XORAN xCAT1, Xoran technologies, MI, USA, ENT scan, high-resolution 0.3

mm). Subsequently, 100 sections of 33 μm thickness were produced with the hole saw at equal

distances of 330 μm (the thickness of the sawing blade). After each section, the remaining

thickness of the respective block was measured at the three grooves. Two sections were lost

due to mounting of the blocks on the sample holder (Fig 1a). Sections were stained with meth-

ylene blue (Loeffler’s Methylene blue solution; Merck) for 45 s at 80 ˚C and alizarin red (Aliza-

rin red S staining solution; Merck) for 1.5 min. Digitization of the sections was performed

using a digital microscope (Biorevo BZ-90001, KEYENCE, Osaka, Japan) at 2x magnification

and a resolution of 3094 x 4094 pixels.

Data preprocessing and image stacking

For each section, electronic white balancing was performed using the open source software

ImageJ (release 1.49m). For the data preprocessing, the positions of the three cannulas, placed

approximately parallel to the tube axis, were marked in each section for fiducial registration.

Additionally, compartments of histological structures were segmented such that musculature,

cartilage, mucosa, bone, and OFP were individually defined in each section.

To generate a 3D-model of the ET, all stained and segmented sections were serially merged

into a three-dimensional dataset in stereo lithography, or surface tessellation/triangulation lan-

guage-format (STL-format) and arranged based on the thickness of the individual parallel
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sections (33 μm) and the thickness of the saw blade (330 μm) as spacing between the individual

sections (z-axis). The open source software platform 3DSlicer1 (https://www.slicer.org/,

release 4.4) was used to work with this dataset. The orientation of the first section of each of

the two blocks was corrected due to the mounting in the hole saw. Next, the axial alignment of

the histological images was carried out utilizing the position of the three cannulas (x, y-axis)

(Fig 1b) in each image. The stacked sections were then registered with the CBCT scans. The

positions of the cannulas and the grooves were used as landmarks for the stacking and for the

registration. To achieve best fits between both datasets and least deviations from linearity of

Fig 1. Generation of the 3D model. From the embedded block to a coherent stack of sections. The block with the

embedded tube was cut into two halves. Grooves A to C and cannulas 1 to 3 were used to facilitate orientation after

sectioning. The positions of the cannulas are indicated by dotted lines in the volume of the acrylate block (a). Decisive

for the creation of a valid volume data set is the axially correct alignment of the digitized sections one after the other:

adjustment and stacking of the different sections according to position of the cannulas (b).

https://doi.org/10.1371/journal.pone.0244909.g001
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cannulas and grooves, individual sections had to be slightly tilted to account for not perfect

parallelism of the sections stemming from the sawing process.

Results

The segmented sections could be stacked into a consistent volume data set (Fig 2) that allowed

for multiplanar imaging and quantitative analysis. The thin section preparation and staining

(compare Fig 2B) allowed for proper differentiation and segmentation of the individual com-

partments in the different sections. Due to this segmentation, the different compartments

could be extracted and visualized from the 3D model of the ET (Fig 3). Sometimes compart-

ments appeared partly perforated. After checking the situation in adjacent sections these were,

where appropriate, combined to form a single functional unit. The registration of the three-

dimensional histological data set with the CBCT DICOM data set shows good agreement

throughout the whole stack (Fig 4). The close relationship between the cartilaginous ET and

the bony base of the skull can be seen together with the course in the sulcus tubarius as well as

the entry into the bony ET (Fig 4B). The positional alignment of the thin slice sections shows

relational regularities, such as the spatial configuration of the cartilaginous parts of the ET itself

and the positional relationship to the crucial muscles, TVPM, and LVPM. The quantitative

analysis of the tube cartilage, lumen and OFP is provided in Fig 5. The cross-sectional area of

the tube cartilage remains largely constant over the area under consideration. However, the

circumference of the tube cartilage decreases abruptly before entering the isthmus region of

the ET and posterior to the area where TVPM and LVPM are connected to the cartilage, bony

or connective tissue. The measured lumen of the ET is in most parts small with a large circum-

ference indicating a more or less closed tube. Only at the pharyngeal orifice there was some

opening detected. Close to the isthmus, the area of the lumen increased, and the circumference

decreased indicating an open lumen at the isthmus and further laterally. Area and circumfer-

ence of the OFP decreased more or less continuously towards the isthmus.

Fig 2. Three-dimensional model. The different sections of the ET are combined to form a 3D representation of the

ET (top). Bottom: Examples of individual sections from the different parts of the ET.

https://doi.org/10.1371/journal.pone.0244909.g002
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Fig 3. Compound model of the ET from lateral side (a) and isolated compartments (b) in correlation to the bony skull base (red).

From left: cartilage (petrol), ET lumen (yellow), TVPM (dark blue), LVPM (light blue), OFP (green). (c) Compound model of the ET above,

skull base removed. Bony process of the skull base as origin of the LVPM in red and other compartments in same colour as Fig 3. Compare

to coronal projection in Fig 7 illustrating spiral rotation of tubular cartilage. (d) Topographic schematic of the major muscular functional

components involved in tube opening. The loop of the LVPM forms a functional muscular circuit. The TVPM inserts in the lateral part on

both sides of the tubal cartilage.

https://doi.org/10.1371/journal.pone.0244909.g003
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The LVPM undercuts the lower edge of the medial tubal cartilage (Fig 6). The course of the

LVPM in relation to the inferior margin of the ET cartilage is scissor-like from posterior to

anterior is directed towards the middle. In cross-view the muscular shape of LVPM is wedge-

like. The TVPM inserts in direction to the middle ear in the lateral arm of the ET cartilage, as

well as the skull base. The tube cartilage, when oriented on the long medial arm, shows a tor-

sion from the middle ear to the pharynx of 38˚ (Fig 7).

Discussion

A three-dimensional model of ET of blackface sheep was created using the digitization of

large-format histological sections and their spatially correct stacking. Geometrically, the model

corresponds to the CBCT produced before sectioning. The confirmed quantitative evaluation

is therefore permissible. The segmentation of the functional entities, such as muscles, cartilage,

bone, and connective tissue, allows the three-dimensional visualization as well as measurement

of the different compartments and their relationships. The connection of the tubal cartilage

with the bony skull base with its course in the sulcus tubarius, and the transition into the bony

section of the ET can be shown topographically (compare Fig 4B). In other anatomical studies,

a quantitative analysis of entities has also been performed but the relational assignment was

based on landmarks such as the characteristic paisley-shape of the cartilage in cross-sections

[12]. This results in the image of a more or less uniform canal in a three-dimensional projec-

tion. Our model demonstrates rotation of the tubular cartilage, which we believe is essential

for the biomechanical opening function in the interaction of the muscles involved (Fig 7).

Early studies describe the hourglass-shaped configuration of the ET with the extension to the

pharyngeal orifice of the lumen [47]. This can be confirmed by the results of the current study

in sheep and can also be supplemented by the specification of the shape of the tube cartilage. A

decreasing circumference of the cartilage, with a cross-section that remains uniform at the

same time, shows an increasingly compact shape of the cartilage in the direction to the isthmus

and the bony part of the ET. The more compact shape of the cartilage towards the middle of

the ET suggests an increased bending stiffness compared to the thinner cartilage formation in

the direction of the pharyngeal orifice. The structural mechanism of the ET seems functionally

Fig 4. Fusion of the histologic 3D model and the CBCT. Note the marking cannulas for reference in the

reconstruction (top right) with superimposed tubal cartilage (petrol). The three multiplanar para-planes with

superimposed histological section (colored) into the CBCT (grey) come from the upper left (coronary, corresponding

histologic section—plane of segmentation: red: bone, blue: soft tissue) over lower left and lower right (sagittal and

axial, with reconstructed histological section: slice thickness in the form of jumps). Red arrow: corresponding bony

process of the skull base. Green arrow: cartilage of the ET.

https://doi.org/10.1371/journal.pone.0244909.g004
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Fig 5. The plots show the quantitative analysis as a function of the position in the ET axis with respect to area and

circumference for the individual entities cartilage, lumen, OFP, TVPM and LVPM (a).

https://doi.org/10.1371/journal.pone.0244909.g005
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similar to the statics of hollow cylinders cantilevered perpendicular to the ground to withstand

lateral forces, comparably with modern skyscrapers.

The small open lumen and large circumference indicates that the cartilaginous tube is

largely closed coming from the pharyngeal orifice. In the region where the cartilage becomes

more compact, the circumference of the lumen also gets smaller but without affecting the area

as seen in cross sections. Only when approaching the isthmus, the area of the lumen increases

again. As this goes along with the smallest circumference it is taken as indicator for a small but

permanently open lumen. The axial diagram of the course corresponds to the examination of

the ET at rest in the OCT [30]. The large circumference is caused by the longitudinal mucosal

folds [48] along the tube axis, which are predominantly posterior to the torus tubarius up to

the transition area [14].

Fig 6. View from above on a right ET, pharyngeal orifice below. Relation of the tubal cartilage and the course of the

LVPM. By the elevation of the soft palate by yawning and swallowing the muscle slides in the cartilage, initially from

the pharyngeal opening to the upper third of the cartilage. Together with the upper-outward rotation with additional

opening momentum by the force of the TVPM, the opening of the ET is initiated.

https://doi.org/10.1371/journal.pone.0244909.g006
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A detailed macroscopical morphological study of the muscular entity, such as the TVPM,

inevitably requires the removal of other relevant structures involved in dissection, such as the

LVPM [13]. From a surgical point of view, this is certainly valuable, but this can only contrib-

ute to a limited biomechanical understanding. The difficulty of microscopic morphological

studies using parallel histological section series which allow axial image rotation by referencing

individual landmarks, such as the typical paisley-shaped cartilage axis in ET, can be a methodi-

cal source of error. Different positions of the LVPM to the medial tube cartilage may have

arisen because the rotated position of the respective incision in the ET course led to a different

position of the LVPM [49]. In this study, it was shown that the cartilage of the ET in the direc-

tion from the bony portion to the soft palate not only forms a uniform groove-like structure

from the back craniolaterally to the front caudomedially, but is also, in this direction, rotated

slightly helical inwards around its own axis. Functionally, this is relevant because the LVPM is

located in the lifting portion of the soft palate [21] with its wedge-shaped profile caudal lateral

of the lateral cartilage and thus not only raises this but also performs a rotation of the lower

end towards the sagittal plane. The wedge-shaped muscle part in the cross-section of the

LVPM is located near the pharyngeal orifice. In the area of the bony origin in the skull base

near the isthmus, the muscle belly is rounded. Further studies with human specimen are neces-

sary to check this muscular configuration; in different publications, the muscle belly is always

described as rounded in cross-section [14, 49]. The principle of lever forces here might have a

significant influence on effectiveness. The larger distance from lumen and LVPM to TVPM

has already been described as significant in the adult population compared to children [32]. At

the approximately simultaneous activity of the TVPM, which approaches the over the pivot

point, the hamulus, proceeding from the caudal and lateral direction directly to the short arm

of the ET cartilage, an impulse opposite to the LVPM might arise. A fascial suspension of the

ET at the overlying skull base apparently provides for a further axial location stabilization of

the ET. This explains the videoendoscopically described mechanism of rotation of the medial

lamina and fixation of the lateral lamella [18]. Electromyographic studies of LVPM and TVPM

show an initial and longer activation of the LVPM and secondary activation of the TVPM [50].

Fig 7. ET-cartilage shows a spiraled conformation in the direction of its axis. The caudal edge of the cartilage turns medially in the direction

from nasopharynx (a) over midportion (b) to middle ear (c) (angle of approximately 38˚). Note the circle in b) corresponding to the needle in this

section. Also shown is the bone (red), the TVM (dark blue) LVPM (light blue) with its origin of the bony process of the skull base.

https://doi.org/10.1371/journal.pone.0244909.g007
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This might result in the following mechanism. An earlier further inward torsion of the medial

cartilaginous lamina by the LVPM is followed by secondary activation of the TVPM which

results in a contrary momentum of the short cartilaginous lamina, resulting in a swing open

momentum of the cartilaginous groove. Even though the TVPM is commonly referred to as

the dilator tubae, a relevant proportion of the LVPM might be entirely attributable to the bio-

mechanical hypothesis described here. This was also confirmed by electromyographic analyses

[19]. In a study, an opening movement of the ET was assumed, which was triggered by an iso-

metric contraction of the LVPM with a displacement of the medial cartilage [49] of the tube.

The position of the LVPM in the cartilaginous tube is essentially dependent on the movement

of the muscular double ring, which the ET moves from the hard palate back up towards the

base of the skull and back down towards the tongue and throat. This results in different

moments of influence on the ET. Typically, the adjustment of the middle ear air pressure takes

place passively during swallowing. The latter results in a lifting movement of the soft palate

[51]. This in turn leads to a scissor-like swing in of LVPM into the medial cartilage of the tube.

The axis of rotation of this movement lies in the bony attachment point of the LVPM laterally

and just below the tube. The LVPM undercuts the medial cartilage of the tube. The spirally

twisted ET cartilage seems to adapt in a spiral rotation this upward movement of LVPM har-

moniously. There is corresponding compliance to the movement of the mucous membrane by

primary elasticity and the clear surface surplus in the closed resting position by folding. In addi-

tion to the LVPM-mediated opening movement of the medial arm, the j-folded ET cartilage is

spread by the TVPM-mediated counter movement of the short arm in a lateral direction.

An even more detailed segmentation of the tissues, for example, the goblet cells [52], could

be used in further studies to clarify questions about factors of a possible additional mechanical

etiology of chronic ET dysfunction by obstruction.

In this study, the OFP is presented in three dimensions, allowing an analysis of the topo-

graphic anatomy embedded in the overall structure. Previous analyses showed a careful evalua-

tion in the axial layer only [16]. This study, which includes a three-dimensional modeling,

allows more realistic modeling and also to take a further step towards more detailed analyzes,

e.g. finite element methods [16] or mechanical experiments [53]. Based on the findings in the

present study, we may speculate that in order to adjust the air pressure in the middle ear to

ambient air pressure, the muscular activity in interaction with bony and cartilaginous support-

ing tissue structures and soft tissue structures, which like the OFP, contribute to the sealed

tube, is in principle comparable to a hydraulic valve.

All results presented here were obtained from an animal model. We can refer to the basic

structural similarity of the anatomy [43] but for a translation of the results and conclusions to

humans, human Eustachian tubes should be evaluated in a comparable manner. An extended

investigation with possibly other staining methods for a better representation of fascial struc-

tures within the ET could also provide further insights into functional aspects, e.g. principles

of tensegrity [54].
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