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Abstract

Confounding factors

In transcriptomics experimentation, confounding factors frequently exist alongside the

intended experimental factors and can severely influence the outcome of a transcriptome

analysis. Confounding factors are regularly discussed in methodological literature, but their

actual, practical impact on the outcome and interpretation of transcriptomics experiments is,

to our knowledge, not documented. For instance, in-vivo experimental factors; like Individ-

ual, Sample-Composition and Time-of-Day are potentially formidable confounding factors.

To study these confounding factors, we designed an extensive in-vivo transcriptome experi-

ment (n = 264) with UVR exposure of murine skin containing six consecutive samples from

each individual mouse (n = 64).

Analysis Approach

Evaluation of the confounding factors: Sample-Composition, Time-of-Day, Handling-Stress,

and Individual-Mouse resulted in the identification of many genes that were affected by

them. These genes sometimes showed over 30-fold expression differences. The most

prominent confounding factor was Sample-Composition caused by mouse-dependent skin

composition differences, sampling variation and/or influx/efflux of mobile cells. Although we

can only evaluate these effects for known cell type specifically expressed genes in our com-

plex heterogeneous samples, it is clear that the observed variations also affect the cumula-

tive expression levels of many other non-cell-type-specific genes.

ANOVA

ANOVA analysis can only attempt to neutralize the effects of the well-defined confounding

factors, such as Individual-Mouse, on the experimental factors UV-Dose and Recovery-

Time. Also, by definition, ANOVA only yields reproducible gene-expression differences, but

we found that these differences were very small compared to the fold changes induced by

the confounding factors, questioning the biological relevance of these ANOVA-detected
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differences. Furthermore, it turned out that many of the differentially expressed genes found

by ANOVA were also present in the gene clusters associated with the confounding factors.

Conclusion

Hence our overall conclusion is that confounding factors have a major impact on the out-

come of in-vivo transcriptomics experiments. Thus the set-up, analysis, and interpretation

of such experiments should be approached with the utmost prudence.

Introduction
About two decades ago, the arrival of microarray technology for genomics and transcriptomics
plus similar genome-wide techniques for proteomics and metabolomics led to a number of
major developments in experiment design, laboratory execution, and data analysis [1–12].
Over the years these techniques matured by enhancing the detection levels, reducing the tech-
nical noise, improving the bioinformatics analyses, and so on, resulting in greatly improved
detectors compared to previous techniques. This process is still ongoing as can be seen by the
developments in the latest omics innovation: third-generation sequencing [13–16].

In contrast to the spectacularly improving omics technologies, the mechanistic knowledge
of biological systems gained by employing these technologies is relatively slowly progressing.
Although microarray technology and next-generation sequencing for instance, have proven
their potential in biomarker applications and genome-wide screening approaches, regular tran-
scriptome studies into unravelling gene-expression pathways and networks, however, often
result in limited new insights. This has been puzzling life sciences researchers ever since these
technologies became available [17–20]. What we have become to appreciate is that gene-
expression involves highly complex and multilevel networks, which are extremely difficult to
unravel.

Another reason for the omics struggle, as observed earlier by us and others, is that we might
not use the appropriate omics experimental designs to study these complex systems [19,21,22].
For instance, perturbations with a too high intensity might lead to a generic stress reaction,
rather than a response specific to the perturbation. Also, an appropriate number of replicates
are needed in order to have enough statistical power to methodically analyze omics experi-
ments involving tens of thousands of genes [23–25]. As the issues are well known, much effort
has been invested to improve them. Despite all enhancements, the knowledge gain by omics
experiments is still below expectation. This might also be due to elusive experimental factors
that confuse the analysis of the experimental results. These so-called confounding factors can
include an endless array of issues, such as the effects of circadian rhythm during a day or fluc-
tuating oxygen levels during cell culturing [26].

Although most biologists are typically quite aware of such factors, they tend to accept and/
or ignore them as an inevitable fact-of-life in biological in-vivo as well as in-vivo experimenta-
tion. It is frequently argued that the effects of such factors result in “random noise”. However,
if these factors interact with the biological system studied and are confounding i.e. biasing the
results, then they will have a significant impact on the analysis and interpretation of the results.
As confounding factors are an integral part of any biological system, it can safely be asserted
that every experiment involving living cells will suffer from several such (unknown) confound-
ing factors.
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The concept of confounding factors is already well established in statistics and methodology
and there are many methods to counter their effects, such as, for instance, adjusting the experi-
ment design and by statistical hypothesis testing using Analysis Of Variance (ANOVA)
[27–29]. There might be confounding factors that cannot be totally separated from the experi-
mental factors, leading to a form of partial confounding. In addition, in order to be able to
model such partial confounding factors, for instance as nuisance factors, they obviously have to
be defined. We however hypothesize that in transcriptome experiments confounding factors
can be present that cannot be defined a-priori.

Thus, we set out to evaluate the effects of some potential confounding factors in a large-
scale in-vivo transcriptome experiment of over 260 samples involving UVR exposed murine
skin. For this, we used an optimized experiment design with respect to the technology and
UV-Dose range, as established earlier [30]. In order to allow for evaluation of mouse-depen-
dent confounding factors, the experiment design included up to six samples per individual
mouse, which makes it quite unique.

We identified several confounding factors in our study: Sample-Composition, Time-of-Day,
Handling-Stress, and Individual-Mouse. We evaluated the origin of these factors and their
influence on the results of the experiment. It became clear that these confounding factors sig-
nificantly affected the measured expression of many genes, also genes that were identified as
differentially expressed in the intended experimental contrasts. We will discuss the conse-
quences of these confounding factors on the outcome of this experiment and transcriptomics
experimentation in general. As the severe effects of the confounding factors that we have found
here are not exclusive to this study or in-vivo experimentation, our study should be read as a
cautionary tale for all biological researchers using transcriptomics experiments in their
research. Knowledge and understanding of confounding factors will at least put transcrip-
tomics results in a clearer biological perspective, or better yet, force the experimenter to take a
hard look at the design for transcriptomics experimentation.

Material & Methods

Ethics Statement
This study was agreed upon by the Animal Experimentation Ethical Committee (AEEC) of the
RIVM in Bilthoven, the Netherlands under permit number 201200128. Animal handling in
this study was carried out in accordance with relevant Dutch national legislation, including the
1997 Dutch Act on Animal Experimentation.

Biopsies were taken under Isoflurane anesthesia, at the end of the study animals were eutha-
nized by cervical dislocation and all efforts were made to minimize suffering.

In-vivo UVR exposure experiment
Generation of the mouse model has been described previously [31]. All mice at least 10 times
backcrossed in SKH hairless strain, and sexed at 3 weeks of age. During the whole experiment
wild-type (WT; Trp53+/+), Trp5372R/72R, and Trp5372P/72P mice were maintained under
specific pathogen-free conditions with a target ambient temperature of 21°C, humidity of 40–
70% and with a 12/12 h light/dark cycle. Mice were single-housed in standard Macrolon type II
cages and were fed SRMA diet (hope farm) and water ad libitum. Supposed males of 7–10
weeks of age were UVB radiation exposed at 2 different doses (90, 540 J/m2) in a chamber con-
taining Phillips TL12 lamps. Control mice were mock treated. At various time points after
treatment (0, 7.5, 9, 10.5, 12, 13.5 hr. for the 90 J/m2 dose and 0, 1, 2, 3, 4, 5 hr. for the 540 J/m2

dose) both treated and untreated mice were anaesthetized by isoflurane. Subsequently, 1.5 mm
biopsies were sampled from the center dorsal skin by punching a half moon shape on folded
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skin using sterile biopsy punches with plunger system (Kai Europe gmbh Solingen, Germany).
Biopsy wounds were closed using sterile Histoacryl-tissue-adhesive, wounds were monitored
until the end of the experiment. Previously, a similar experimental setup also showed no infec-
tion signs such as signs for infection such as redness or swelling appeared under the conditions
used [30]. At 48 hr. after treatment all mice were euthanized by cervical dislocation after biop-
sies were taken. Biopsies were immediately snap frozen in liquid nitrogen and stored at -80°C
until further processing. Total-RNA was isolated as previously described in [13]. In short, fro-
zen skin punch biopsies were pulverized in liquid nitrogen and immediately transferred to
0.3 ml Qiazol reagent (Qiagen). RNA was extracted according to the manufacturer’s instruc-
tions with the addition of Phase-Lock Gel Heavy (5 Prime) to obtain a better phase separation.
Further clean-up of the RNA fractions was performed using the RNeasy Minelute Cleanup Kit
(Qiagen). RNA yield was measured on a Nanodrop ND-1000 (Thermo Fisher Scientific) and
RNA integrity was evaluated using High Sensitivity R6K ScreenTapes on a 2200 TapeStation
instrument (Agilent Technologies). RINe values were at least 6, with the exception of two sam-
ples (RINe 4.4 and 5.8). An overview of all samples is shown in Table 1 plus S1 Table.

Microarrays with customMouse Agilent platform
Gene expression levels of the mouse samples were analyzed with a 4x180kMus musculus
microarray (Custom design GEO Platform accession number GPL19390) containing 24,203
genes based on NCBI-GeneID. All procedures were performed according to manufacturer’s
instructions. Briefly, for each test sample, 100 ng total-RNA was combined with Spike A and
subsequently amplified and labeled using the Quick Amp Labeling Kit (Agilent Technologies).
For use as common reference, an equimolar pool of all test samples was made and amplified as
described above with the exception that Spike B was included and Cy5 was used for labeling.

Table 1. Experiment set up for WTmice.

Recovery Time (hours)

Early Late

Trp53-Genotype UV-Dose(J/m2) Individual-Mouse (#) 0 1 2 3 4 5 7.5 9 10.5 12

WT 540 (high) 32 1 1 1 1 1 1

38 1 1 1 1 1 1

44 1 1 1 1 1 1

50 1 1 1 1 1 1

None 31 1 1 1 1 1 1

37 1 1 1 1 1 1

43 1 1 1 1 1 1

55 1 1 1 1 1 1

90 (low) 8 1 1 1 1 1

14 1 1 1 1 1

20 1 1 1 1 1

26 1 1 1 1 1

None 1 1 1 1 1 1

13 1 1 1 1 1

19a 1 1 1 1 1

25 1 1 1 1 1

a Data from Mouse 19 was removed before data analysis (cf. text)

doi:10.1371/journal.pone.0145252.t001
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Amplified cyanine-dye labeled antisense RNA was purified using the RNeasy MinElute
Cleanup Kit (Qiagen) and yield and dye incorporation were evaluated using a NanoDrop ND-
1000. Labeled test samples and common reference samples were combined and hybridized to
the Agilent custom microarrays (Agilent Technologies). After washing, the arrays were
scanned with an Agilent DNA microarray scanner (G2565CA, Agilent Technologies) and data
was extracted with Feature Extraction software v10.7.3.1 (Agilent Technologies).

The array data have been deposited in NCBI's Gene Expression Omnibus (GEO) and is
accessible through GEO Series accession numbers GSE63044.

Microarray data processing
The quality of the microarray data was assessed via multiple quality-control checks, i.e. visual
inspection of the scans, testing against criteria for foreground and background signals, testing
for consistent performance of the labelling dyes, checking for spatial effects through pseudo-
color plots, and inspection of pre- and post-normalized data with box plots, ratio-intensity
(RI) plots and PCA plots. All arrays passed the minimal criteria for quality assessment of the
microarray data and were used in the analyses.

Handling, analysis and visualization of all data was performed in R (http://cran.r-project.
org/) using the Bioconductor (http://www.bioconductor.org/) packages limma and maanova.

Log2 transformed data was normalized within-array using LOESS on an MA-plot of the
Cy3 test sample data vs. the corresponding Cy5 reference sample data. Subsequently, the robust
multi-array average (RMA) algorithm was performed only on the normalized Cy3-sample data
for between-array normalization through summarization of the intensity values of the probes
in a NCBI-GeneID probe set.

Data analysis
Before any data analysis, the quality of the experiment data was evaluated. For this we looked
at genotype, gender, rRNA yield, and mRNA yield (S1 Text).

To visualize various effects of confounding factors on the complete transcriptome Principal
Components Analysis (PCA) plots were made in R using the RMA normalized data. For fur-
ther analyses we presumed that confounding factors are relevant if they cause clusters of genes
to have high expression values in clusters of samples. As a consequence, confounding with the
experimental factor “UV-Dose” can lead to wrong biological conclusions.

To investigate this, the top 5,000 of most variable genes over all untreated WT samples were
selected, and clustered using Ward’s method (with the average value used as ordering func-
tion). The resulting heatmap was studied for clusters of genes (known to be) related to the con-
founding factors “Sample-Composition” and “Time-of-Day”. Gene clusters related to Sample-
Composition were checked for co-expression and tissue specific expression in an independent
data set: the BioGPS data base (http://biogps.org/).

The confounding factor Time-of-Day was further characterized by screening for those
genes that display a high fold change (log2(FC)>|1|) between any two time points in each indi-
vidual mouse (although the time points might differ), as these genes are potentially under cir-
cadian control in this experiment. This gene list, related to the confounding factor “Time-of-
Day”, was partly confounded to “Sample-Composition”.

The effect of the confounding factor “Handling-Stress and Biopsy-Stress” was quantified
applying a statistical analysis for differential gene expression using a mixed linear model with
coefficients for biopsy ranking numbers (fixed) and Mouse (random), thus treating biopsy as
experimental variable. The allocation of samples to the biopsy ranking numbers (B1, B2, B3
and B4) is explained in the “Results & Discussion” section. A contrast analysis was used to test
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differential expression between B1 vs B2, B1 vs B3 and B1 vs B4, for hypothesis testing a per-
mutation based Fs test was used [32], and the resulting P-values were corrected for false discov-
eries according to Storey and Tibshirani [33]. Differentially-expressed genes (DEGs) were
identified by applying a significance cut-off (FDR corrected P-value< = 0.05). The DEGs from
the different contrasts were combined and ranked from low to high variance, which was calcu-
lated as described previously.

The effect of the confounding factor “Individual-Mouse” was quantified by applying statisti-
cal tests for differential gene expression with and without “Individual-Mouse” as random
covariate, and analyzing the results. The statistical tests were performed as described above,
using a model with a group-means parameterization based on the time point–UV-Dose combi-
nations. The model coefficients quantifying the Individual-Mouse effects were used to select
the genes: the absolute coefficient values had to be higher than 0.5 and the genes should not be
found in any of the other gene sets.

To learn more about the effects of the different subsets of genes that were defined in the pre-
ceding paragraphs, boxplots were created of the different elements of the ANOVA model used
for the Individual-Mouse effect. A 2x2 Self-Organizing Maps (SOMs) analysis was performed
on all gene sets associated with all confounding factors, in order to compare the variability in
gene expression within each mouse with the variability across all mice.

To determine the impact of the overlap between the DEGs and the genes in the clusters and
groups an over-representation analysis was performed. Here the DEGs, gene clusters/groups
and the array background were compared using the hypergeometric test.

Results & Discussion
Confounding factors can severely hamper proper transcriptome analysis, especially since biolo-
gists often design complex multi-variable experiments. The transcriptomics experiment we use
here to research confounding factors is no exception, as it contains several variant genomes, a
perturbation and recovery time as experimental variables.

In this study, we obtained six consecutive samples from each individual mouse [30,34],
which differs from most in-vivomurine transcriptome studies, where sampling restrictions
force the use of individual mice per time point and often also per permutation. Our exceptional
experiment design provided us with a unique opportunity to examine several confounding fac-
tors that may have an impact on the mouse transcriptome. This would normally be impossible
due to the considerable differences between individual mice.

Besides the intended static experimental factor (Trp53-Genotype) and intended variable fac-
tors (UV-Dose and Recovery-Time), there are several “uncontrollable” experimental factors we
foresaw as confounding factors; Individual-Mouse, Sample-Composition, Handling- & Biopsy-
Stress, Time-of-Day (Table 2). Even though, the experiment was meticulously set-up, we will
investigate the impact of these confounding factors and their effect on the analysis and inter-
pretation of the experimental transcriptome data.

Experimental set-up
The underlying biological research aim of the experiment was to investigate the cellular
responses upon UVR induced DNA damage. For this, an in-vivo experiment was performed
with UVB radiation exposed skin of nude, male mice, with and without human-derived Trp53
variants in their genome. This resulted in an extensive experiment design as showed in Table 1
(and S1 Table). Essentially, four replicate mice were used for each UV-Dose. Each mouse was
sampled five to six times at different recovery time points after UV-pulse exposure, which
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resulted in paired samples. In total 132 treated and 132 untreated samples were taken from 64
male mice.

Global impression of transcriptome variation
As stated earlier, experimental factors can be (un-)intentional, (un-)controllable, and static/
variable/dynamic (Table 2). The unintentional and uncontrollable factors are potential con-
founding factors of importance. However, as the effect of confounding factors can, by defini-
tion, not be distinguished from each intended experimental factor, their effect can also not
always be separated from each other. For instance, the effect of the factors “Sample-Composi-
tion” and “Time-of-Day” is also confounded. This is also the case for factors “Handling-Stress”
and “Biopsy-Stress”. Plus there are fuzzy confounding factors, such as “Individual-Mouse” that
are an accumulation of many possibly confounding factors like genetic constitution, health,
behavior, and so on. To get an impression of the impact of our foreseen experiment factors on
the variation in the experiment, we performed a PCA analysis in which we calculated the prin-
cipal components from the gene expression values (Fig 1). In the PCA plots, it was possible to
distinguish groups of samples as defined by intended, but also non-intended experimental
(confounding) factors. This shows that these confounding factors have a detectable impact on
the variation in the experiment. We evaluated the mentioned confounding factors to estimate
their disturbing effect on the transcriptome analyses of the intended experimental factors,
UV-Dose and Trp53-Genotype.

Potential confounding factor: Sample-Composition
The observed differences in the total-RNA yield of the samples (S1 Fig), raised suspicion that
the composition of the biopsy samples might be quite variable. The biopsies in this study are
obtained by stretching and folding the skin of a mouse and punching out a double half circle
[35]. This is not a fully controlled procedure; hence we anticipated that variability in sample
composition could be a confounding factor of significance. Any biased variation in cell type
composition between samples will result in measurements of RNA levels that could be misin-
terpreted for differential gene expression [36–39]. This is especially true for genes that are spe-
cific for one cell type [36,37]. Fluctuations in the contributing fraction of a particular cell type
in a sample will translate immediately into a signal for a cell type-specific gene that mimics dif-
ferential gene expression. Although on an individual gene level it is impossible to distinguish
whether RNA level differences are caused by differences in sample composition or differential
gene expression, on a gene set level this distinction can be made. Because, if the RNA level dif-
ference is caused by changing the percentage of certain cells in a sample, the RNA levels of all
cell type-specific genes will change in an identical way over many samples. In this way we can

Table 2. Experimental factors affecting the transcriptome.

Factor Type Figure

UV-Dose Intentional Controllable Variable 3A

Recovery-Time Intentional Controllable Variable 3B,C

Trp53-Genotype Intentional Controllable Static 3D

Sample-Composition Confounding Uncontrollable Dynamic 3B, 4, 5

Time-of-Day Confounding Uncontrollable Dynamic 3B, 7, 8

Handling-Stress Confounding Uncontrollable Dynamic 3E, 9

Biopsy-Stress

Individual-Mouse Confounding Uncontrollable Dynamic 3F, 10

doi:10.1371/journal.pone.0145252.t002
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identify genes and thus cell types with differential RNA levels caused by differences in sample
composition.

In search for variation caused by the factor Sample-Composition, we visualized in a PCA
plot the genes against the principal components calculated from their expression levels in the
untreated WT samples. This revealed at least three major subpopulations (Fig 2A) of genes
that behave similarly and we selected two subsets (I: 109 genes and II: 155 genes), with appar-
ent divergent gene expression. To evaluate these subsets, we selected the top 5,000 genes that
were most variable over all samples as we felt they represented the most relevant biological

Fig 1. Variation caused by confounding factors. Selected samples to exemplify the influence of confounding factors (Table 2) derived from the PCA
analysis of the complete experiment. Sample means are used except for D and E. A, UV-Dose (green = untreated, red = high dose); B, Recovery-Time
(hours)� Time-of-Day; C, Recovery-Time (light green = early, green = late); D, Trp53-Genotype (green =WT, blue = Trp53-72P mutant); E, Handling- &
Biopsy-Stress (light green = Early recovery, green = Late recovery); and F, Individual-Mouse (yellow = #31, black = #55).

doi:10.1371/journal.pone.0145252.g001
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changes in the data. We clustered these genes in a heatmap (Fig 2B) and mapped the observed
PCA subsets I and II to it. Almost all subset genes were found back in the associated Clusters
Sample-Composition (SC)-A (106 genes) and SC-B (143 genes) in the heatmap (Fig 2B and 2C
and S3 Table).

To analyze the expression behavior of these gene clusters in individual mice, we sorted the
gene profiles using Self-Organizing Maps (SOMS) (Fig 3, Clusters SC-A and SC-B) for each
cluster and each mouse individually. From this SOMS analysis, it immediately became obvious
that all genes in a cluster have, within mice, highly similar RNA-level profiles over time. How-
ever, between mice, the same clusters of genes show quite different RNA-level profiles. This
combination of an almost identical RNA-level profile of a large number of genes within a
mouse, combined with different profiles between mice, plus a time-independent profile, is a
telltale for differences in sample composition. Formally, we cannot distinguish the mingled fac-
tors “Sample-Composition” and “Time-of-Day”. Yet, the huge differences (up to 32x) in RNA
level between samples taken one hour apart from one mouse, plus the completely different pro-
files from mice sampled at almost identical time points, does suggest that Sample-Composition
might be the most prominent confounding factor here.

Fig 2. Discovering clusters of genes with very similar gene expression. A: PCA plot of all genes using the untreatedWT samples. Indicated are Subsets
I and II, with 155 and 109 genes respectively. Red, genes in Subset I that are also in Cluster SC-A. Blue, genes in Subset II that are also in Cluster SC-B; B: A
heatmap of microarray signals in all untreatedWT samples of the top 5,000 genes with the biggest variance over the whole experiment. The five Sample-
Composition and one Time-of-Day specific clusters as explained in the main text are indicated. C: Zoom-in of the five Sample-Composition clusters to reveal
the similar expression per cluster over all WT samples.

doi:10.1371/journal.pone.0145252.g002
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If these clusters are primarily caused by sample composition variation and the genes
involved are most likely cell type-specific genes, then it should be possible to identify the cell
types that vary across the different samples. To this end, we started by simply looking at gene
symbols or gene descriptions. As expected, there were many similar genes present in each clus-
ter (S3 Table). For Cluster SC-A this was most striking in that ~85% of the annotated genes
were either Keratin (Krt) or Keratin associated protein (Krtap) genes. With so many Keratin
(associated) genes, it is most likely that this whole cluster represents Keratinocyte-specific
genes. More importantly, it means that there are severe differences in the number of keratino-
cytes in each sample. This may be caused by differences in the thickness of the epidermis,
which can be a result of many factors.

For Cluster SC-B, it is less obvious from the gene descriptions what underlying cell type is,
although this cluster contained several genes related to muscle function such as: myosin light
chain (Myl1), myosin heavy chain (Myh1 and 4), and actin (Acta1) (S3 Table). We therefore
argued that if genes of a cluster represent a specific cell type, then these genes should show co-
expression in a gene-expression tissue atlas. For this we turned to BioGPS, a well-known gene-
expression tissue atlas, and looked for the tissue-expression profile of a typical gene from Clus-
ter SC-B:Myl1. The associated tissue-expression profile (S3 Fig) immediately made it obvious

Fig 3. Self-organizingmaps of gene clusters with similar gene expression. 2x2 Self-Organizing Maps (SOMS) per individual, untreatedWTmouse (#)
of the scaled gene-expression profiles of the gene clusters from the heatmap of Fig 2 (S3 Table) for both the Early (0, 1, 2, 3, 4, 5 hours) and Late (0, 7.5, 9,
10.5, 12 hours) time points.

doi:10.1371/journal.pone.0145252.g003
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that this gene cluster may be caused by differential contributions of muscle cells. This is sup-
ported by the finding that, of all the genes present in Cluster SC-B, 41% showed a tissue gene-
expression profile that in BioGPS strongly correlated (�0.85) with that ofMyl1 (S4 Table).

These are examples of variability in sample composition caused by differential sampling of
static cells. Another potential reason for such variability is influx or outflow of mobile cells to
the sampling area of the skin [40,41]. To test this, we reversed the previous argumentation: if
we look at cell type-specific genes in mobile–blood derived–cells, such as erythrocytes or
immune cells, then we should be able to find clusters of genes that are strictly co-expressed
with known cell type-specific genes. When we searched for the erythrocyte-specific gene
Hemoglobin alpha 1 gene (Hba-a1) in the heatmap (Fig 2B and 2C), we did find it back in a
small cluster (Cluster SC-C, S3 Table) together with 4 other erythrocyte specific genes: Hba-a2,
Hbb-b1,Hbb-b2, and Alas2. These genes are strictly co-expressed as expected (Fig 3), whilst
showing a unique gene-expression profile for each mouse. Although we cannot rule out the
contribution of the varying amount of blood vessels in the biopsies, it seems clear that the num-
ber of erythrocytes, i.e. differential skin blood flow affected the RNA levels during the experi-
ment. This is not hard to imagine as temperature, stress, but also pressure on the skin during
biopsy can affect the skin blood flow.

A similar result was achieved by looking at the T-cell specific CD3 genes: CD3d, CD3e, and
CD3g. A small cluster (Cluster SC-D, Fig 2B and 2C) of 25 genes was found with several other
T-cell specific genes, such as: Cd7, Prf1, Trat1, Cd94, and Nkg7 (S3 Table). Again, their expres-
sion was quite similar within one mouse, but distinct between mice (Fig 3). It is obvious that
the observed gene-expression is a combination of gene-expression regulation and number of
cells in a specific sample. Immune cells are quite mobile [41,42], have a high RNA load, and are
often actively recruited to specific locations in the body of an organism [41,42]. This might
explain why differential expression of immune-related genes is often found in in-vivo tran-
scriptomics experiments (e.g. [43]).

As a final example for the factor Sample-Composition, we looked at macrophages and den-
dritic cells. For this, we took a naïve approach by looking for these names in the gene descrip-
tion (S3 Table). We found 90 genes with either name in their description and we selected a
cluster (Cluster SC-E) of 299 genes in the heatmap (Fig 2B and 2C) in which 50 of those genes
were present. Although the similarity of the gene expression profiles within one mouse was less
absolute, the differences between mice were still very profound (Fig 3). Macrophages and den-
dritic cells can migrate [41,42], but are also present in different numbers in the skin of a mouse
[41,42]. As such this group represents a group type in between static and mobile cells.

Altogether, given these results, it is very likely that the observed differences in gene expres-
sion between the samples are caused primarily by differences in cell composition of the sample
as no coherent profiles across mice was observed. So these genes suffer profoundly from this
confounding factor. However, it is likely to be affecting many more genes than we have shown
here. First of all, we only took some obvious and predictable cell types. Undoubtedly, many
other cell types will succumb to the same faith. Even worse, we did not look at all the genes
from each cell type: we only looked at the cell type-specific ones, as those have a similar pattern
over all the samples and thus cluster together in a heatmap. However, it is clear that all genes
that are expressed in cells that have a variable distribution in the samples will suffer similarly
from this confounding factor. The reason why we do not observe them lies in the fact that
those genes are also expressed in other cell types, with yet another variable distribution in the
samples. The combined differences will result in unrecognizable differences per gene as each
cell type will have a different contribution to the total sum of gene expression in each gene.
This however also means that these genes cannot be analyzed reliably using this experimental
approach.
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Potential confounding factor: Time-of-Day
The factor Time-of-Day obviously relates to circadian rhythm. Core clock components are
defined as genes whose protein products are necessary for the generation and regulation of cir-
cadian rhythms within individual cells throughout the organism [44]. There are several genes
and proteins involved in the complex regulation of the circadian rhythm, which has at least
three primary feedback loops. Genes in the positive and negative parts of these feedback loops
are: Clock, Bmal1 (= Arnt), Per1, Per2, Per3, Cry1, Cry2, Nr1d1 (= Rev-erbα), Nr1d2 (= Rev-
erbβ), Rora (= Rorα), Csnk1e (= CK1ε), Csnk1d (= CK1δ). The interaction between these genes
is described in [44]. To exemplify the effect of Time-of-Day, we looked at the gene-expression
profiles of the Per genes in untreated WT samples over time (Fig 4A). Of the three Per genes,
Per1 and Per3 were present in the 5,000 most variable genes. Using the same approach as
before (Fig 2B), we used these genes to identify a Time-of-Day cluster (Cluster TD-A) of 19
genes that had similar expression over all samples (Fig 4B and S5 Table). In this cluster also

Fig 4. Examples of time-related gene expression from Cluster TD-A. A: Examples of expression profiles over time of genes involved in circadian rhythm
for untreatedWT samples. B: A heatmap for the 19 genes of Cluster Time-of-Day (TD)-A. C: 2x2 SOMS of the scaled gene-expression profiles per mouse of
gene Cluster TD-A.

doi:10.1371/journal.pone.0145252.g004
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other genes known to be involved in circadian rhythm were present such as; Dbp, Nr1d2,
Tsc22d3, Zbtb16, and Tef. As can be observed in the SOMS of this cluster (Fig 4C), all genes
have a clear time dependent gene-expression profile. This is quite similar within one mouse,
but between mice major differences are still present. In analogy with the genes affected by the
factor Sample-Composition, the genes in this cluster cannot be used in these type of studies
because Time-of-Day is an evident nuisance factor.

It is obvious that the 19 genes in Cluster TD-A are not the only circadian-rhythm involved
genes and that those unknown genes are as such also affected by the factor Time-of-Day. Iden-
tifying them is not a simple assignment, as all mice might have different timing of their circa-
dian rhythm. We used the fact that i: this phenomenon is already present in all untreated mice,
and ii: the involved genes should display a more gradual change i.e. low variation, than genes
affected by the previous factor Sample-Composition. Translating the first criterion, we selected
genes that have in Untreated WT samples a Fold Change (FC)� 2 expression difference
between at least two time points in each mouse. This resulted in 528 genes in the Untreated
WT Early samples and 547 in the Untreated WT Late samples. That these genes are likely
involved in circadian-sensitive processes can be read from the fact that they contained 68% and
47% respectively of the genes from Time-of-Day Cluster TD-A. As to the second criterion, we
ranked the genes based on variation (S5 Table). The Cluster TD-A genes ranked here with the
genes having the lowest variation. Hence, we selected the first 277 Early and 93 Late genes,
which resulted in a union of 333 genes (Group TD-B) for the factor Time-of-Day.

The genes in group TD-B showed a more diverse profile picture (Fig 5A and 5C) as com-
pared to the Sample-Composition gene clusters, indicating that these genes, although all related
to time-of-day, have different expression profiles over time. Also, it was clear that the TD-B
genes had a much higher variation at the Early time points then at the Late time points (Fig
5B), which forms additional evidence for a time-of day effect in these genes. Obviously, gene
expression of many more genes is affected by the circadian rhythms of the animal and/or the
cells. For instance, over 3,000 transcripts are under circadian control in the liver [45]. This is
supported by the fact that not all of the true circadian rhythm regulated genes of Custer TD-A
are present in Group TD-B. The explanation for not detecting them might be found in our
naive approach with a relative high FC cut-off of 2, as well as lack of true replicates.

Potential confounding factors: Handling- & Biopsy-Stress
Handling is the entire repertoire of manipulations that the mice undergo during the whole
experiment and taking a biopsy is a part of this. As such, we will consider all handling here as
one confounding factor. One group of genes that could be involved in handling are wound-
healing genes. There are several genes known to be involved in wound-healing: Fos, FosB,
Mkp-1, Cd14, Ccl9, Pigf, andMcp-5 [46]. However, the expression of these genes does not clus-
ter together in our heatmap (Fig 2B). Hence, we could not define a cluster based on known
wound-healing genes.

Another way to identify genes that are affected by this factor in this experiment, is to evalu-
ate the two untreated WT time series by using the biopsy sampling number instead of the
recovery time. For this, we assumed that the biopsy sampling sequence in the late series restarts
at recovery time point 7.5 hours, because we assume the mice have recovered by then from
their biopsy at time point zero. So, we re-labeled the early recovery time points: t0, t1, t2, t3, t4,
t5 into biopsy points: b1, b2, b3, b4, b5, and b6, respectively and the late recovery time points:
t0, t7.5, t9, t10.5, t12 into biopsy points: b1, b2, b3, and b4 (Fig 6A). This allowed us to identify
DEGs between these biopsy points, which resulted in 2,585 DEGs. In order not to overestimate
the genes related to factor Handling-Stress we chose the 83 DEGs (Group HS-A) with a
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SD<0.32 over all untreated WT samples (S6 Table) as genes affected by handling stress, which
left behind most SC-A, SC-B and TD-A genes that were found ranking between the DEGs with
higher variation. The HS-A genes have low variation as well as low fold change when plotted
against the biopsy points (Fig 6B) and quite some variation when plotted against recovery time
points (Fig 6C). This supports our conclusion that these genes genuinely represent the han-
dling stress response.

Potential confounding factor: Individual-Mouse
Then there are still other unknown (genetic) factors that can lead to differences between indi-
vidual mice. These effects can be identified and quantified by analyzing whether the expression
of a gene at all sample points from one mouse differs substantially from those in the other
mice. To examine this, we estimated the maximal Individual-Mouse effect for each gene over
all untreated WTmice in the ANOVAmodel of our experiment and identified 628 genes by

Fig 5. Examples of time-related gene expression fromGroup TD-B. A: Examples of time-related expression profiles for untreatedWT samples for genes
from Group TD-B. B: A boxplot for the variation of the 333 genes in Group TD-B. C: 2x2 SOMS per mouse of the scaled gene-expression profiles of gene
group TD-B.

doi:10.1371/journal.pone.0145252.g005
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applying an arbitrarily-chosen threshold of coefficient value� 0.5. There is a substantial over-
lap with the previously identified clusters with for instance all SC-A genes and about half of the
TD-B genes. We defined a group of 391 genes for the factor Individual-Mouse (group IM-A)
that have no overlap with any other group or cluster.

The gene-expression profiles of the IM-A genes showed the expected differences between
mice (Fig 7C), where there seemed to be genes with two or three distinct expression levels
(Fig 7A). As 99% of these genes also are present in the top 5,000 variable genes, we looked for
obvious sub-clusters in the heatmap. The IM-A genes clustered quite prominently in several
clusters (results not shown), meaning that the observed factor Individual-Mouse is a result of
several broad individual-mouse effects. Besides these gene-clustered individual-mouse effects,
it was also noticeable that the average ANOVA Individual-Mouse effect for the Late mice was
different from those used at the Early mice, which suggests there might be an interaction
between the two factors: Time-of-Day and Individual Mouse (Fig 7B). Given the substantial

Fig 6. Examples of biopsy-stress-related gene expression from Group HS-A. A: Re-labeling of samples from time points to biopsy-order number (B#, cf.
main text). B: Examples of Handling-Stress expression profiles for untreated WT samples for genes fromGroup HS-A. C: 2x2 SOMS per mouse of the scaled
gene-expression profiles of the 83 genes in group HS-A.

doi:10.1371/journal.pone.0145252.g006
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Individual-Mouse effects (maximum of log2(2)) we observed, the factor Individual-Mouse has
to be seriously considered during gene-expression analysis. This is underlined by the fact that,
when we determine DEGs for untreated or UVR exposed WTmice, there is a substantial differ-
ence in DEG numbers if we compare the ANOVA analysis with and without Individual-Mouse
in the model (Table 3). Hence, in this experiment, Individual-Mouse is a prominent confound-
ing factor.

The effects of confounding factors on transcriptome analysis
In the previous paragraphs we have characterized several potential confounding factors and
the genes which expression is clearly affected by it. Now we will turn our attention to the effects
these factors might have on the analysis and interpretation of the transcriptome response in
our experiment. Usually, transcriptome analysis starts by identifying DEGs in relevant

Fig 7. Examples of individual-mouse-related gene expression fromGroup IM-A. A: Examples of expression profiles for untreated WT samples for
genes from Group IM-A. B: Boxplot of absolute ANOVA Individual-Mouse effect of all genes per untreated WTmouse. C: 2x2 SOMS per mouse of the scaled
gene-expression profiles of all 391 genes in group IM-A.

doi:10.1371/journal.pone.0145252.g007
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contrasts using an ANOVA-based analysis. Here, the contrasts are from each recovery time
point to either the associated time point zero or the identical untreated recovery time point
(Tables 3 and 4).

All these results, with respect to the potential confounding factors and DEGs, also prompted
us to take a renewed look at the ANOVA model we applied to analyze our experiment. For this
we plotted the different ANOVA elements for various gene clusters and groups (Fig 8). As can
been seen, the gene clusters and groups behave logically, such as Cluster SC-A (associated with
keratinocytes) showed an extreme Individual-Mouse effect. This means that individual mice
probably differ quite substantially in their number of keratinocytes due to different epidermis
thickness. The extreme low Individual-Mouse effect of Cluster SC-B (associated with muscle
cells) genes, divulges that this cluster is caused by sampling effects. For clusters SC-D, -E and
group TD-B also relatively high Individual-Mouse effects are found, indicating that these clus-
ters harbor a substantial Individual-Mouse effect. Finally, the Individual-Mouse group has an
expected relative high Individual-Mouse effect. Observing the ANOVA element UV-Dose &
Recovery-Time effect shows that the DEGs have a relatively modest average effect as compared
to that of gene clusters and groups. Although ANOVA performs as it is supposed to, by select-
ing genes with small but consistent differences, one could argue what the significance is of
these DEGs given the huge differences that are observed in the expression of many other non-
DEG genes.

The ANOVA analysis resulted in several hundred DEGs in the untreated WT contrasts
(union = 437 genes) and several thousand DEGs (union = 11.891 genes) in the treated WT con-
trasts (Tables 3 and 4 and S7 Table). There is an obvious difference in Low dose as compared
to High dose, but altogether it means that almost 50% of all inquired transcripts show a differ-
ential gene expression somewhere in the experiment. This makes it unlikely that the DEGs rep-
resent a specific UV! DNA damage! DNA repair response.

When we evaluated the DEGs, several points surfaced: The contrasts that were based on
time matched controls, showed, although still over 3,000 at one point, substantially less DEGs
as those to their own time point zero. This is to be expected since time matched points are obvi-
ously less different. However, even in these contrasts the numbers of DEGs seem to change in a
time dependent fashion, which are most likely explained by Inter-individual differences in
genetic and epigenetic control of transcription and protein synthesis and feedback loops. All of
the 437 DEGs found in the untreated WT contrasts were also identified as WT-treated DEGs

Table 3. Differentially-expressed genes (DEGs) in untreated and treatedWTmouse.

DEGs in untreated WT samples DEGs in treated WT samples

Contrast UV-Dose & Recovery-
Time effect

UV-Dose & Recovery-Time
+ Individual-Mouse effect

UV-Dose & Recovery-
Time effect

UV-Dose & Recovery-Time
+ Individual-Mouse effect

t0 vs t1 0 0 68 161

t2 0 30 2,226 3,200

t3 86 293 5,300 6,466

t4 52 264 7,342 8,486

t5 28 68 4,395 5,649

t0 vs t7.5 0 1 0 2

t9 1 3 6 11

t10.5 4 16 196 394

t12 10 47 243 505

doi:10.1371/journal.pone.0145252.t003
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(Table 4, S8 Table, and S4 Fig) and could be considered false-positives with respect to the UVR
exposure.

To evaluate the observed DEGs even further, we identified those that had an overlap with
the top 5,000 most variable genes from our heatmap (S7 Table). This overlap was high in the
untreated and low-dose samples, but rather low in the high-dose treatment. The DEGs were
also checked for overlap with the gene clusters and groups. Depending on the cluster or group
the overlap ranged from 0% (Cluster SC-A) to high percentages (Group TD-B). Adding up the
percentages overlap, it turned out that over 34% of DEGs from the untreated contrasts could
be explained by their presence in the clusters or groups associated with the analyzed

Table 4. Comparing confounding factors derived clusters, groups and differentially-expressed genes (DEGs).

Confounding factor

Sample-Composition Time-of-Day Handling-Stress Individual Mouse All
SC-A, B, C, D and E TD-B HS-A IM-A

DEGs 578 333 83 391 1,343

UV-B Contrast # % Overlap % Overlap % Overlap % Overlap % Overlap

0 t0 t1 0 - - - - -

t2 30 3 57 0 3 63 a

t3 293 11 22 1 3 37 a

t4 264 6 22 1 5 34 a

t5 68 3 41 1 3 49 a

t0 t7.5 1 0 100 0 0 100

t9.0 3 0 67 0 0 67

t10.5 16 0 63 0 0 63 a

t12.0 47 13 45 2 4 64 a

High t0 t1 161 1 6 0 4 11 a

t2 3,200 3 3 1 2 8 a

t3 6,466 3 3 1 2 9 a

t4 8,486 3 2 1 2 8 a

t5 5,649 3 2 1 2 8 a

Low t0 t7.5 2 - - - - -

t9.0 11 18 55 0 0 73 a

t10.5 394 24 13 1 2 40 a

t12.0 505 21 12 1 2 36 a

High t0_u t0_t 0 - - - - -

t1_u t1_t 5 - - - - -

t2_u t2_t 501 0 1 1 2 3

t3_u t3_t 1,149 0 0 1 1 2

t4_u t4_t 3,185 0 1 1 1 2

t5_u t5_t 1,206 0 0 1 1 2

Low t0_u t0_t 0 - - - - -

t7.5_u t7.5_t 0 - - - - -

t9.0_u t9.0_t 0 - - - - -

t10.5_u t10.5_t 1 - - - - -

t12.0_u t12.0_t 2 50 0 0 0 50

a these values were found significant (Pval<0,05) in the over-representation analysis

doi:10.1371/journal.pone.0145252.t004
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confounding factors. For DEGs from the treated contrasts, this was still 8% and up. Also the
over-representation analysis shows that most contasts have significant numbers of genes from
the clusters/groups in the DEGs. Collectively this means that many ANOVA-identified DEGs
actually may be a result of bias due to confounding factors, rather than a response to UVR
exposure.

Concluding remarks
We set out to identify uncontrollable confounding factors that might confuse transcriptome
analysis of in-vivo experiments. Several of those confounding factors were found and their
impact on the experiment data seems severe. One has to bear in mind that our unique experi-
mental set-up allowed a thorough exploration of the confounding factors, whereas most in-
vivo studies this cannot be done by lack of multiple samples from one individual. Still we feel
that in many in-vivo studies identical or similar confounding factors play an important role
and even though being undetected, severely influence the results.

The most prominent confounding factor we observed was Sample-Composition, caused by
mouse-dependent skin-composition differences, sampling variation and influx/efflux of mobile
cells. We illustrated the effects by using cell type specifically expressed genes as these provide
the clearest effects. However, it is apparent that these variations in sample composition also
affect the cumulative expression levels of other cell non-specific genes. Hence, variations in
sample composition will have an effect on the measured expression of many genes, but since it
is an accumulation of contributions of many cell types, they cannot be recognized, nor fixed.

Fig 8. The contribution of the various ANOVA components. The ANOVA components: Y = μ + Individual Mouse effect + UV-Dose & Recovery-Time
effect + error evaluated in boxplots for the indicated groups and clusters of genes.

doi:10.1371/journal.pone.0145252.g008
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Especially in mobile cells combined influx and activation will make it impossible to interpret
these observed gene-expression differences that mimic transcription induction.

From the effects of the confounding factors Time-of-Day and Handling Stress, it became
evident that even the most controlled experiments will suffer from these effects. As these effects
are unavoidable, the affected genes will be hard, if not impossible, to study in-vivo.

We were somewhat surprised by the sizable differences at the gene-level between individual
mice. In this experiment, many genes seem to be affected by this confounding factor and it also
played a role in other confounding factors. The observed differences were so substantial that
we have to conclude that range-finding using single mouse samples, as we have advocated ear-
lier [30], is not a good approach for this experimental setting. Moreover, in our experiment set-
up with several samples per mouse, we were able to model the individual-mouse effect in our
ANOVA analysis. As most in-vivo experiments are based on single samples per mouse, this is
impossible; hence these huge individual-mouse effects go uncorrected.

Obviously ANOVA can be a good method to deal with the effects of noise as introduced by
confounding factors [27–29]. However, we feel that one should wonder what the biological
meaning is of the small differences in gene expression of many ANOVA-selected DEGs as
other “noisy” genes in these cells exhibit huge differences. In these cases it seems that the com-
mon “one-gene-at-the-time” ANOVA analysis is focused so much on reproducible differences,
that it ignores all other expression differences that go on in a cell. From the combined observa-
tions in this study, we feel that cells may display something like a “gene-transcription status”,
in which gene expression of many genes moves in a network fashion. Proper analysis would
require a systems biology approach with appropriate modeling and analysis of groups of genes,
rather than individual ones.

Our overall conclusion is that in-vivo experiments are extremely prone to confounding fac-
tors. The major impact the confounding factors have on the outcome makes that the set-up,
analysis, and interpretation of such experiments should be undertaken with the utmost
prudence.

Supporting Information
S1 Fig. Mice sex-determination check via gene expression of Xist. The expression of female-
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