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Abstract
Background High-grade gliomas are the most common pri-
mary brain tumours. Pseudoprogression describes the false
appearance of radiation-induced progression on MRI. A
distinction should be made from true tumour progression to
correctly plan treatment. However, there is wide variation
of reported pseudoprogression. We thus aimed to establish
the incidence of pseudoprogression and tumour progression
in high-grade glioma patients with a systematic review and
meta-analysis.
Methods We searched PubMed, Embase and Web of Sci-
ence on the incidence of pseudoprogression and tumour
progression in adult high-grade glioma patients from 2005,
the latest on 8 October 2014. Histology or imaging follow-
up was used as reference standard. Extracted data included
number of patients with worsening of imaging findings on
T1 postcontrast or T2/FLAIR, pseudoprogression and tu-
mour progression. Study quality was assessed. Heterogene-
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ity was tested with I2. Pooling of the results was done with
randommodels using Metaprop in STATA (StataCorp. Stata
Statistical Software. College Station, TX: StataCorp LP).
Results We identified 73 studies. MRI progression occurred
in 2603 patients. Of these, 36% (95% confidence inter-
val [CI] 33–40%) demonstrated pseudoprogression, 60%
(95%CI 56–64%) tumour progression and unknown out-
come was present in the remaining 4% of the patients (range
1–37%).
Conclusion This meta-analysis demonstrated for the first
time a notably high pooled incidence of pseudoprogression
in patients with a form of progression across the avail-
able literature. This highlighted the full extent of the prob-
lem of the currently conventional MRI-based Response As-
sessment in Neuro-Oncology (RANO) criteria for treat-
ment evaluation in high-grade gliomas. This underscores
the need for more accurate treatment evaluation using ad-
vanced imaging to improve diagnostic accuracy and thera-
peutic approach.

Keywords Treatment response assessment · Meta-
analysis · Pseudoprogression · Incidence · High-grade
gliomas

Introduction

Glioblastoma multiforme (GBM) is the deadliest brain can-
cer, often fatal within a year after diagnosis [1]. This poor
prognosis is mainly due to the inevitability of recurrent
disease. Imaging is important for accurate treatment eval-
uation of patients with a glioblastoma. T1-weighted MRI
with gadolinium combined with T2/FLAIR is currently the
standard imaging technique [2]. However, postcontrast T1
only reflects biological activity of the tumour indirectly, by
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detecting the breakdown of the blood–brain barrier [3]. T1-
weighted MRI does not directly measure tumour size or
tumour activity and is non-specific.

Recurrent disease appears as a new contrast-enhancing
lesion on T1-weighted MRI or growth of the high T2/
FLAIR area. However, a similar presentation may result
from treatment effects resulting in the false appearance of
disease progression, i.e., pseudoprogression [3–5]. Thus, in
the case of progression on imaging, it is necessary to dis-
tinguish true tumour progression from pseudoprogression
to correctly tailor treatment.

Although recognised as a clinically important problem,
there exists a wide variation in the reported incidence of
pseudoprogression. Previous studies individually indicating
its incidence vary in the range of 3% to over 50% [3, 6].
One of the major limitations of these studies was their small
sample sizes. The high variance in the reported incidence
of pseudoprogression impedes subsequent treatment deci-
sions.

In order to clarify how often progression occurs, the
current meta-analysis systematically reviewed the studies
that recorded incidences of pseudoprogression and tumour
progression in high-grade glioma patients.

Methods

Search Strategy

A systematic review and meta-analysis was performed ac-
cording to the meta-analysis of observational studies in epi-
demiology (MOOSE) criteria [7], the preferred reporting
items for systematic reviews and meta-analyses (PRISMA)
criteria [8], and the assessing the methodological quality of
systematic reviews (AMSTAR) guidelines [9].

We systematically searched MEDLINE (PubMed), Em-
base and Web of Science. Database keywords and text
words were used aiming at patients with a high-grade
glioma and tumour progression or pseudoprogression, with
synonyms for each (see “Appendix” for search strategy).
We used both treatment-induced pseudoprogression and
radionecrosis in our search strategy, as they belong to
a spectrum of radiation-induced injury. We searched the
databases from 2005, the time at which temozolomide was
included in the standard treatment, till 8 October 2014.
No other filters or restrictions were applied. Non-English
studies were manually excluded later. Conference proceed-
ings are included in Embase and this thus allowed for
the inclusion of grey literature in the meta-analysis. Study
selection and data extraction was completed by two authors
independently (AA and KA). In the case of inconsistencies,
a third author was consulted (AH or HW).

Selection Criteria

Inclusion criteria were studies having a consecutive or ran-
dom selection of adult patients diagnosed with a high-grade
glioma following standard care of treatment with first-line
concomitant chemoradiotherapy with temozolomide, fol-
lowed by adjuvant temozolomide. Surgical resection was
not mandatory for inclusion, as some patients did not re-
ceive surgical resection due to contraindications, such as
comorbidity. Histological confirmation, imaging follow-up,
or a combination of the two had to be used as a reference
standard to identify pseudoprogression or true tumour pro-
gression in patients with a form of imaging progression. In
the cases where a definitive diagnosis could not be estab-
lished, progression was classified as unknown.

Exclusion criteria included patients with recurrent dis-
ease. Any patient group or study that did not follow the
characteristics described in the inclusion criteria above, like
a group of mixed high- and low-grade gliomas, were also
excluded. Studies exploring gliomas of the cranial nerves
and spine were excluded. Finally, use of new therapies was
also excluded due to our interest in the standard patient
group.

Study Selection, Data Extraction and Quality
Assessment

Main data extracted were the number of patients with any
form of progression on MRI, the number of patients with
pseudoprogression and the number of patients with tumour
progression. General study characteristics were also ex-
tracted. These included study design, total number of pa-
tients, percentage of males, patients’ age with range, ref-
erence standard (histology and/or follow-up), definition of
tumour progression and pseudoprogression, image protocol,
and interval between end of therapy and progression. Qual-
ity of included studies was assessed with the NIH Quality
Assessment Tool by two authors independently [10]. The
NIH Quality Assessment tool was divided into four do-
mains. These included the general study setup (questions 1
and 14), the patient selection domain (questions 2–5), the
follow-up domain (question 7) and the reference standard
domain (questions 11 and 13). Questions 6, 7, 10 and 11
were excluded. These questions were considered non ap-
plicable, as the exposure that was referred to was similar
for all patients as we included only patients after standard
treatment.

Statistical Analysis

Meta-analysis was performed using data extracted from
each study. SPSS version 23 (IBM Inc., Armonk, NY,
USA) was employed to calculate the general patient char-
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16140 studies iden�fied through 
database searching

2968 from PubMed
9643 from EMBASE
3529 from Web of Science

12507 studies a�er duplicates 
removed

12122 studies excluded based on 
�tle

385 abstracts of studies screened

273 studies excluded based on 
abstract

45 studies excluded

13 different or mixed pa�ent 
popula�on

13 no (adequate) incidence data
10 no standard treatment
4 duplicate study
2 case series
2 no histology/imaging reference
1   non-English ar�cle    

112 full-text studies assessed for 
eligibility 

73 studies included in quan�ta�ve 
synthesis 

6 studies added with hand search 

Fig. 1 Flowchart demonstrating the inclusion and exclusion of studies

acteristics. The incidence of patients with tumour pro-
gression, pseudoprogression or unknown progression was
calculated per study. Subsequently, pooled results of tu-
mour progression and pseudoprogression incidences were
calculated using Metaprop in STATA/SE 12.1 (College sta-
tion, TX, USA) [11]. Studies were weighted according to
their variance and the sample size. The I2 test was used to
calculate the heterogeneity of the included studies. As this
demonstrated a heterogeneous study set, a random effects
model was utilised to calculated pooled estimates.

Role of Funding Source

The funder of the study had no role in study design, data
collection, data analysis, data interpretation or report writ-
ing. The corresponding author had full access to all data
in the study and had final responsibility for the decision to
submit for publication.

Results

General Description of Selection and Included Studies

We started with 12,507 unduplicated studies. Among the
112 articles that were reviewed in depth, a total of 67 stud-
ies met the eligibility criteria and were included in the meta-
analysis [12–78]. Additionally, six articles [79–84] were
identified with a hand search, leading to a total of 73 in-
cluded studies (Fig. 1 and appendix for table 1). Fifteen
abstracts were included (21%) [12, 25, 31, 32, 36, 38, 45,
51, 53, 58, 60, 66, 71, 73, 76].

The included studies concerned 3781 patients with
a mean age of 54 years. Of all patients, 57% were male.
The studies included 89% WHO grade IV astrocytomas
(glioblastomas), 7%WHO grade III astrocytomas (anaplas-
tic astrocytomas) and no specification in 4% of the patients.
In the majority of the patients (75%), imaging follow-up
was used as the reference standard. Histology was utilised
in 20% of the patients. A combination of both histopathol-
ogy and imaging follow-up was used in 2% of the patients
(see supplementary table 1 for details including the def-
initions of tumour progression and pseudoprogression).
Clinical follow-up alone was used in 3 patients (0.09%),
while it was unknown for two studies with a total of 94 pa-
tients (2.7%) [45, 58]. Sufficient data was provided in
40 studies to calculate the average follow-up period after
initial progression on imaging, with a mean follow-up of
14 months (range 1–67 months).

Quality of Included Studies

A summary of the methodological quality assessment of the
included articles is presented in Fig. 2. For the general study
setup, a moderate risk was identified. No statistical analysis
for potential confounding variables like follow-up duration,
MGMT status or used reference standard was performed in
36 (49%) studies and they were thus classified as high risk
[12, 15, 16, 18, 29, 30, 32–36, 38–41, 43, 45, 47, 50, 51, 54,
55, 57, 59, 64, 66, 70, 71, 73, 76, 79–82, 84]. The remaining
37 (51%) studies showed no risk for these questions [13,
14, 17, 19–28, 31, 37, 42, 44, 46, 48, 49, 52, 53, 56, 57,
59, 61–63, 65, 67–69, 72, 73, 75, 77, 78, 83].

In the patient selection domain, all articles were classi-
fied as high-risk due to the fact that no article had mentioned
sample size calculation or power discussion, nor variance
or estimate of effect size (question 5 of NIH assessment
tool). As the influence of this item on the quality was con-
sidered negligible, the patient domain was approached after
removing question 5. This resulted in a much lower risk
classification with a total of 27 (37%) high-risk studies.
Lacking information pertaining to the number of WHO III
and IV tumours [65], as well as age; [21], sex [24, 34,
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Fig. 2 Quality assessment of
included studies. The risk of bias
in four different domains and
concerns about applicability are
shown for the included studies.
High risk (red –), unclear risk
(yellow ?) and low risk (green +)
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Abel et al., 2012 12 Kong et al., 2011 46

Agarwal et al., 2013 13 Larsen et al., 2013 47

Al Sayyari et al., 2010 14 Lee et al., 2012 48

Alexiou et al., 2007 15 Linhares et al., 2013 49

Alexiou et al., 2014 16 Matsuo et al., 2011 50

Alkonyi et al., 2012 17 Matsusue et al., 2010 51

Amin et al., 2012 18 Melguizo et al., 2010 52

Baek et al., 2012 19 Muggeri et al., 2010 53

Barajas et al., 2009 20 Nakajima et al., 2009 54

Bisdas et al., 2011 21 Nasseri et al., 2014 55

Brandes et al., 2008 22 Neal et al., 2013 56

Cha et al., 2014 23 Palumbo et al., 2006 82

Chan et al., 2012 24 Peca et al., 2009 57

Chang and Kim, 2011 25 Pica et al., 2012 58

Choi et al., 2013 26 Pouleau et al., 2012 59

Chu et al., 2013 27 Radbruch et al., 2013 60

Chung et al., 2013 28 Radbruch et al., 2015 61

D’Souza et al., 2014 29 Reddy et al., 2013 62

Dandois et al., 2010 30 Roldán et al., 2009 63

Danish et al., 2013 31 Sanghera et al., 2010 64

den Hollander  et al., 2014 32 Seeger et al., 2013 65

Di Constanzo et al., 2014 79 Shah et al., 2009 66

Gahrama-nov et al., 2013 33 Song et al., 2013 67

Gerstner et al., 2009 34 Suh et al., 2013 68

Gladwish et al., 2011 35 Sundgren et al., 2006 83

Goenka et al., 2010 36 Taal et al., 2008 69

Gunjur et al., 2011 37 Tie et al., 2008 70

Heidemans-Hazelaar et al., 2010 38 Tiwari et al., 2013 71

Hu et al., 2009 80 Topkan et al., 2012 72

Hu et al., 2010 81 Tsien et al., 2010 73

Hu et al., 2011 39 Vafiadis et al., 2010 74

Ito- Yamashita et al., 2013 40 van Mieghem et al., 2013 75

Jain et al., 2007 41 Wertz et al., 2012 76

Kang et al., 2011 42 Yaman et al., 2010 77

Kim et al., 2010 43 Young et al., 2011 78

Kim et al., 2014 44 Zeng et al., 2007 84

Kong et al., 2009 45
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45, 73], or the latter two [31–33, 39, 50, 58, 60, 61, 71,
76] or three items [12, 25, 36, 74], resulted in a high-risk
classification in 20 studies. A participation rate below 50%
resulted in an additional 7 high risk studies [22, 51, 59, 62,
63, 66, 83]. Unclear risk was seen in 19 (26%) studies, as
the participation rate was not reported [14–18, 38, 46, 53,
54, 56, 57, 67, 70, 72, 77, 80, 81, 84]. Low risk was present

in the remaining 27 studies (37%) [13, 19, 20, 23, 26–30,
35, 37, 40–44, 48, 49, 52, 55, 64, 68, 69, 75, 78, 79, 82].

In the follow-up domain, the average quality assessment
was good. A total of 25 studies (34%) were unclear about
the follow-up duration [25, 26, 36, 38–40, 44, 45, 51, 52,
56, 59, 62, 63, 67–69, 71, 73–75, 79–81, 83], while the re-
maining 48 (66%) were low risk, utilising a sufficient time
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Fig. 3 Forest plot of pooled
incidences for treatment induced
pseudoprogression. Squares
represent the weighted estimate
with the solid line indicating
the 95% CI. The dashed line
represents the group estimate

SStudy Estimate (95%CI) Weight
Abel et al., 201212 36 (16–61) 1.07
Agarwal et al., 201313 22 (12–36) 1.61
Al Sayyari et al., 201014 41 (22–64) 1.16
Alexiou et al., 200715 0     (0–32) 0.79
Alexiou et al., 201416 20 (10–37) 1.43
Alkonyi et al., 201217 60 (31–83) 0.90
Amin et al., 201218 21   (9–43) 1.22
Baek et al., 201219 47 (36–58) 1.78
Barajas et al., 200920 30 (20–43) 1.68
Bisdas et al., 201121 33 (16–56) 1.19
Brandes et al., 200822 64 (50–76) 1.64
Chan et al., 201224 38 (18–64) 1.03
Chang and Kim, 201125 36 (20–55) 1.35
Choi et al., 201326 45 (33–57) 1.71
Chung et al., 2013 28 44 (32–57) 1.68
D’Souza et al., 2014 29 34 (20–53) 1.42
Dandois et al., 2010 30 29   (8–64) 0.73
Danish et al., 2013 31 36 (27–47) 1.80
den Hollander  et al., 2014 32 32 (15–54) 1.22
Di Constanzo et al., 2014 79 28 (15–46) 1.42
Gahramanov et al., 2013 33 47 (27–68) 1.22
Gerstner et al., 200934 54 (35–72) 1.33
Gladwish et al., 201135 38 (18–64) 1.03
Goenka et al., 201036 42 (27–58) 1.51
Gunjur et al., 201137 34 (22–49) 1.56
Heidemans-Hazelaar et al., 201038 13   (5–28) 1.46
Hu et al., 200980 23   (8–50) 1.03
Hu et al., 201081 27 (10–57) 0.94
Hu et al., 201139 52 (35–68) 1.45
Ito- Yamashita et al., 201340 20 (11–35) 1.59
Jain et al., 200741 15   (4–42) 1.03
Kang et al., 201142 44 (25–66) 1.19
Kim et al., 201043 40 (17–69) 0.90
Kim et al., 201444 49 (41–56) 1.93
Kong et al., 200945 53 (40–65) 1.69
Kong et al., 201146 44 (32–57) 1.69
Larsen et al., 201347 14   (4–40) 1.07
Matsuo et al., 201150 32 (21–46) 1.64
Matsusue et al., 201051 33 (10–70) 0.66
Melguizo et al., 201052 18 (12–25) 1.90
Muggeri et al., 201053 60 (44–74) 1.50
Nakajima et al., 200954 64 (39–84) 1.33
Neal et al., 201356 50 (31–69) 1.10
Palumbo et al., 200682 29 (15–49) 1.33
Peca et al., 200957 27 (11–52) 1.10
Pica et al., 201258 58 (39–74) 1.37
Pouleau et al., 201259 21 (11–38) 1.48
Radbruch et al., 201561 11   (6–20) 1.78
Reddy et al., 201362 35 (24–49) 1.64
Roldán et al., 200963 40 (23–59) 1.35
Sanghera et al., 201064 28 (14–48) 1.35
Shah et al., 200966 59 (43–73) 1.54
Suh et al., 201368 47 (36–58) 1.78
Sundgren et al., 2006 83 46 (23–71) 1.03
Taal et al., 200869 50 (34–66) 1.51
Tie et al., 200870 16   (6–38) 1.22
Tiwari et al., 201371 59 (36–78) 1.16
Topkan et al., 201272 43 (27–61) 1.40
Tsien et al., 201073 44 (28–63) 1.39
Vafiadis et al., 201074 40 (20–64) 1.10
van Mieghem et al., 201375 45 (31–60) 1.55
Yaman et al., 2010 77 24 (10–47) 1.16
Young et al., 201178 32 (23–42) 1.81
Zeng et al., 2007 84 32 (18–51) 1.40
Subtotal 36 (33–40) 87.04

Cha et al., 201423 31 (19–48) 1.50
Chu et al., 201327 50 (33–67) 1.43
Lee et al., 201248 55 (35–73) 1.29
Linhares et al., 201349 13   (4–38) 1.10
Nasseri et al., 201455 56 (42–69) 1.62
Radbruch et al., 201360 8     (4–16) 1.80
Seeger et al., 201365 43 (29–58) 1.55
Song et al., 2013 67 50 (30–70) 1.24
Wertz et al., 201276 34 (20–53) 1.42
Subtotal 37 (22–52) 12.96

Overall 36 (33–40) 100

0 50

window to classify patients as presenting with either tu-
mour progression or treatment-related progression [12–24,
27–35, 37, 41–43, 46–50, 53–55, 57, 58, 60, 61, 63–66, 70,
72, 76–78, 82, 83].

For the reference standard domain, the overall assess-
ment was deemed a moderate risk. Overall, 45 (62%) stud-

ies were high risk. A total of 8 did not report on reference
standard in sufficient detail [45, 50, 53, 54, 57, 58, 71,
82], 23 studies did not apply the same reference (histol-
ogy and/or imaging) to all subjects [14, 17–21, 23, 29, 37,
38, 43, 44, 47, 51, 52, 66, 68, 69, 74, 77, 78, 83, 84] and
6 studies did not contain the latter two items [15, 16, 26,
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30, 36, 70]. A lost to follow-up rate >20% resulted in high-
risk classification of another 8 studies [24, 28, 31, 59, 61,
63, 75, 76]. The lost to follow-up rate was unclear in 7 stud-
ies (10%), resulting in an unclear risk [12, 32, 39, 49, 56,
60, 72]. The remaining 21 (29%) studies were considered
low risk with respect to these items [13, 22, 25, 27, 33–35,
40–42, 46, 48, 55, 62, 64, 65, 67, 73, 79–81].

Heterogeneity

The I2 index demonstrated that the included studies were
heterogeneous for the incidence of pseudoprogression (p <
0.01, I2 = 79%) and for the incidence of tumour progression
(p < 0.01, I2 = 82%). To account for this heterogeneity,
a random effects model was utilised for the analyses of
pooled results.

Incidence of Pseudoprogression and Tumour
Progression

Of the total number of included patients in all studies,
2603 patients displayed some form of worsening of imaging
findings, demonstrating increased or new enhancement on
postcontrast T1 or progression of high signal on T2/FLAIR
imaging according to the RANO criteria (Fig. 3). Of these
patients with progression, 36% (95%CI 33–40%) displayed
pseudoprogression due to treatment effects. A total of 60%
(95%CI 56–64%) of the patients with progression were di-
agnosed with true tumour progression. The remaining 4%
of patients spread over 12 studies showed an unknown out-
come (range 1–37%). In a subset of 9 studies (N = 295),
where the use of the RANO criteria to identify progres-
sion was specifically stated [23, 27, 48, 49, 55, 60, 65,
67, 76], the pooled results were similar, with 37% (95%CI
22–52%) of the patients showing pseudoprogression. Fur-
thermore, heterogeneity testing results for the RANO group
and the other studies were similar (p = 1.00), justifying the
pooling of both groups. Comparing the abstract only studies
with the others full-text studies showed no clear difference
looking at the forest plot.

The interval between the end of concomitant chemora-
diotherapy and the time of tumour progression or pseudo-
progression on imaging was available for 11 studies, in-
cluding 265 patients with tumour progression and 204 pa-
tients with pseudoprogression. The mean interval was
10.5 months (range 1.7–37.6 months) for tumour progres-
sion. For pseudoprogression the interval was 13.0 months
on average (range 1.2–40.0 months).

Discussion

Worsening of imaging findings on postcontrast T1 or high
T2/FLAIR MRI can be attributed to tumour progression or
pseudoprogression, but the distribution of both was highly
uncertain prior to this study. Our meta-analysis has shown
that across the available literature, pseudoprogression oc-
curred, on average, in 36% of the patients with a high-
grade glioma, while tumour progression occurs in 60%.

The finding that 36% of the patients presenting with
progression is due to pseudoprogression confirms what
many experts in the field suspect; pseudoprogression is
a frequently occurring entity. However, it is above rates
stated commonly in the literature. For instance, an elabo-
rate review indicated that pseudoprogression can occur in
up to 20% of patients treated with standard temozolomide
chemoradiotherapy [3], with a reported range of 3–24%.
Previous studies providing incidence data have based their
findings on a limited number of studies while utilising
a non-systematic search approach. Considering the large
amount of available data, it is also hard to do it differently,
unless a full meta-analysis is conducted. Our meta-analysis
is thus the first study to combine the data from all the avail-
able literature to estimate an incidence reflecting the full
extent of the available literature. This is also the first study
to specifically calculate pseudoprogression incidence con-
sistently for all studies only including patients with some
form of imaging progression. Including patients without
any imaging progression would have resulted in lower and
hard-to-interpret numbers which cannot be compared with
other studies easily.

The occurrence of neurological deficits due to tumour
progression or recurrence on MR imaging has been reported
to be accompanied by the presence of oedema [85], which
was already demonstrated in 1979 [86]. In that study, it
was noted that 28% of the patients spontaneously improved
without a change in prescribed therapy. This is now recog-
nised as being due to pseudoprogression. The pathophysiol-
ogy of pseudoprogression remains unclear. Demyelination
was discussed as a probable factor [87]. A more commonly
used explanation is the increased capillary permeability in-
duced by radiotherapy [88]. In conjunction with its dis-
ruption, upregulation of signalling proteins also affects the
permeability of the blood–brain barrier [89]. This meta-
analysis, to our knowledge, collates separate observations
of all previous literature for the first time, to provide a more
complete overview of progression in the context of high-
grade glioma treatment.

By clarifying the full extent of the known limitations, this
meta-analysis will enable clinicians to more carefully inter-
pret posttreatment conventional MRI imaging in patients
showing progression. Supplementary research is needed to
improve the differentiation between true tumour progres-
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sion and pseudoprogression. This could be achieved using
more advanced MRI and/or PET imaging to visualise the
biological activity of tissue. Firstly, this improved knowl-
edge is needed for deciding which patients do not benefit
from the treatment given. The therapy and its side-effects
can be discontinued and a switch to a second-line treat-
ment could be considered. Secondly, new immunotherapies
or antiangiogenic medications present new problems in the
judgment of progression on anatomical MRI [90]. Thus,
further research on functional imaging for treatment fol-
low-up is paramount.

This review was limited due to the nature of the available
literature. Most importantly, defining tumour progression
and pseudoprogression is challenging. This is reflected in
the variability in the definitions used in the included stud-
ies (see supplementary table 1). However, all studies used
histology or imaging follow-up that needed to show some
form of stabilisation or improvement in cases with pseu-
doprogression, which are adequate definitions. Some of the
abstract-only studies that were included to prevent publi-
cation bias provided no clear definition. This was reflected
in the moderate quality assessed with the NIH quality as-
sessment tool. The retrospective nature of some included
studies was also a limitation affecting the NIH quality as-
sessment scores. None of the studies reported on power
or sample sizes. This is because observational studies are
often exploratory in nature. However, the risk of an insuffi-
cient sample size is overcome by the benefits of this meta-
analysis combining all studies.

In conclusion, this meta-analysis showed that, across the
available literature weighted by importance, pseudoprogres-
sion occurred frequently (36%) in patients with a high-
grade glioma following standard chemoradiotherapy. Tu-
mour progression occurred in 60% of the patients with
some form of imaging progression. This meta-analysis thus
showed the full extent of the problem in differentiating
pseudoprogression from tumour progression, helping pave
the way towards more research to improve imaging meth-
ods for reliable treatment decision making.
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Appendix

Search Strategy

Search Strategy MEDLINE Via PubMed

(("2005/01/01"[Date - Publication] :

"3000"[Date - Publication]) AND
((gliomas[MeSH]) OR
(brain neoplasm[MeSH]) OR
(glioma*[Tiab]) OR
(glioblastom*[Tiab]) OR
(“brain neoplasm”[Tiab]) OR
(“brain neoplasms”[Tiab]) OR
(“brain tumour”[Tiab]) OR
(“brain tumours”[Tiab]) OR
(“brain tumor”[Tiab]) OR
(“brain tumors”[Tiab]) OR
(“brain cancer”[Tiab]) OR
(“brain malignancies”[Tiab]) OR
(“brain malignancy”[Tiab]) OR
(“cerebral neoplasm”[Tiab]) OR
(“cerebral neoplasms”[Tiab]) OR
(“cerebral tumour”[Tiab]) OR
(“cerebral tumours”[Tiab]) OR
(“cerebral tumor”[Tiab]) OR
(“cerebral tumors”[Tiab]) OR
(“cerebral cancer”[Tiab]) OR
(“cerebral malignancy”[Tiab]) OR
(“cerebral malignancies”[Tiab])) AND
((“disease progression”[MeSH]) OR
(pseudoprogression[Tiab]) OR
(radionecros*[Tiab]) OR
(“tumor progression”[Tiab]) OR
(“tumour progression”[Tiab]) OR
(“radiation necrosis”[Tiab]) OR
(“pseudo progression”[Tiab]) OR
(pseudoprogression[Tiab]) OR
(pseudo-progression[Tiab]) OR
(radio-necrosis[Tiab])))
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Search Strategy EMBASE Via EMBASE

([2005-2014]/py) AND (’glioma’/exp OR

brain cancer’/exp OR glioma:ab,ti OR
glioblastoma:ab,ti OR
brain neoplasma’:ab,ti OR
brain neoplasmas’:ab,ti OR
‘brain cancer’:ab,ti OR
‘brain malignancy’:ab,ti OR
‘brain malignancies’:ab,ti OR
brain tumor’:ab,ti OR
brain tumour’:ab,ti OR
brain tumors’:ab,ti OR
brain tumours’:ab,ti OR
cerebral neoplasma’:ab,ti OR
cerebral neoplasmas’:ab,ti OR
cerebral tumor’:ab,ti OR
cerebral tumour’:ab,ti OR
cerebral tumors’:ab,ti OR
cerebral tumours’:ab,ti OR
‘cerebral cancer’:ab,ti OR
‘cerebral malignancy’:ab,ti OR
‘cerebral malignancies’:ab,ti) AND
(’tumor growth’/exp OR
radiation necrosis’/exp OR
cancer growth’/exp OR
disease progression’:ab,ti OR
pseudoprogression’:ab,ti OR
‘pseudo-progression’:ab,ti OR
‘radio-necrosis’:ab,ti OR
radionecros*:ab,ti OR
tumor progression’:ab,ti OR
tumour progression’:ab,ti OR
radiation necrosis’:ab,ti OR
pseudoprogression’:ab,ti)

Search Strategy Web of Science Via Web of Knowledge

TS=(glioma* OR "brain neoplasma" OR

brain neoplasm” OR "glioblastoma" OR
brain neoplasm" OR
“brain neoplasma” OR
brain tumor" OR “brain tumour” OR
brain tumours” OR “brain tumors” OR
brain cancer” OR
brain malignancy” OR
brain malignancies” OR
cerebral neoplasm" OR
cerebral neoplasma” OR
cerebral tumor" OR

cerebral tumour” OR
cerebral tumors” OR
cerebral tumours” OR
cerebral cancer” OR
cerebral malignancies” OR
cerebral malignancy”) AND
TS=("disease progression" OR
pseudoprogression" OR
radionecrosis" OR
tumor progression" OR
tumour progression" OR
radiation necrosis" OR
pseudo progression" OR
pseudo-progression” OR
radio-necrosis”)
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