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In this study, we proposed an ensemble learning method,
simultaneously integrating a low-rank matrix completion
model and a ridge regression model to predict anticancer
drug response on cancer cell lines. The model was applied to
two benchmark datasets, including the Cancer Cell Line Ency-
clopedia (CCLE) and the Genomics of Drug Sensitivity in Can-
cer (GDSC). As previous studies suggest, the dual-layer inte-
grated cell line-drug network model was one of the best
models by far and outperformed most state-of-the-art models.
Thus, we performed a head-to-head comparison between the
dual-layer integrated cell line-drug network model and our
model by a 10-fold crossvalidation study. For the CCLE dataset,
our model has a higher Pearson correlation coefficient between
predicted and observed drug responses than that of the dual-
layer integrated cell line-drug network model in 18 out of 23
drugs. For the GDSC dataset, our model is better in 26 out of
28 drugs in the phosphatidylinositol 3-kinase (PI3K) pathway
and 26 out of 30 drugs in the extracellular signal-regulated ki-
nase (ERK) signaling pathway, respectively. Based on the pre-
diction results, we carried out two types of case studies, which
further verified the effectiveness of the proposed model on the
drug-response prediction. In addition, our model is more bio-
logically interpretable than the compared method, since it
explicitly outputs the genes involved in the prediction, which
are enriched in functions, like transcription, Src homology
2/3 (SH2/3) domain, cell cycle, ATP binding, and zinc finger.
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INTRODUCTION
Due to its direct impact on the therapy of cancer patients, the accurate
assessment of the anticancer drug response of an individual is essential
for precision medicine. It has been reported that many genomic bio-
markers are closely related to drug response, and patients sometimes
benefit from these biomarkers in clinical trials.1,2 However, human tis-
sue samples are usually heterogeneous in cellular compositions,3 which
makes it difficult to predict drug response at the tissue level. A compro-
mised strategy is to study drug response at the cancer cell line level.
During the past decade, many large-scale drug screenings have been
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performed on cultured human cancer cell line panels, including the
National Cancer Institute (NCI)-60 study,4 connectivity map,5 Cancer
Cell Line Encyclopedia (CCLE),6 Genomics of Drug Sensitivity in Can-
cer (GDSC) project,7 and more recently, Cancer Target Discovery and
Development (CTD2) Project.8,9

These large compendia of genomic and pharmacological data have
provided a basis as well as an unprecedented opportunity to infer
functional biomarkers associated with drug sensitivity. For example,
Geeleher et al.10 studied variability in general levels of drug sensitivity
in preclinical models to improve cancer biomarker discovery. By
studying the expression patterns of 48 ATP-binding cassette (ABC)
transporters on 60 cancer cell lines during the treatment of 1,429 anti-
cancer drugs, Szakács et al.11 confirmed the correlation between ABC
transporter genes and the response of cytotoxic drugs in cancer cell
lines. Through systematic analyses on 130 anticancer drugs and 639
human tumor cell lines, Garnett et al.7 identified several fusion genes,
like EWS-FLI1, to be poly (ADP-ribose) polymerase (PARP) inhibi-
tors. We applied a modified linear regression model to the CCLE
data and identified several to hundreds of genes associated with the
response of 24 anticancer drugs, respectively.12 These findings
emphasize the need for the use of molecular information to predict
drug response and thus optimize personalized cancer therapy.

Provided with drug-response-associated genes, it is usually feasible to
predict computationally the responses of cancer cell lines on anticancer
drugs, which are often quantified by the activity area (the area above
the fitted dose-response curve), IC50 (the concentration of an anti-
cancer drug to kill one-half inhibitory concentration of cancer cells),
EC50 (the concentration of an anticancer drug that gives half-maximal
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Figure 1. The Parameter r Optimization for the MC

Model in CCLE

The horizontal axis denotes the rank number, and the

vertical axis denotes the Pearson correlation between

predicted and observed response values.
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effective concentration cancer cell killing effect), or AUC (the area un-
der the nonlinear dose-response curve).6 Generally speaking, a drug-
response prediction problemmainly includes the sensitivity estimation
of single compounds,6 sensitive or resistant prediction of either a
particular drug class or a specific cancer type,13 and sensitivity predic-
tion of a combination of several drugs.14 Among the three typical prob-
lems, single drug sensitivity prediction is the simplest, for which
various computational methods have been developed recently. These
methods primarily rely on regression, classification, heterogeneous
network, multiple kernel learning, or ensemble/model selection. For
example, Zhang et al.15 developed a dual-layer integrated cell line-
drug network, consisting of both drug similarity network and cell
line similarity network; verified the assumption that similar cell lines
and similar drugs exhibit similar responses; and presented network-
based models to estimate anticancer drug responses of cell lines.16

Based on this assumption, Liu et al.17 and Zhang et al.18 formulated
a drug-response prediction as a recommender system problem, which
was solved by two proposed techniques, respectively: the neighbor-
based collaborative filtering with global effect removal method and
the hybrid interpolation weighted collaborative filtering method;
Wang et al.19 and Guan et al.20 applied novel matrix factorizations
with similar restrictions to infer anticancer drug response in cell lines.
Despite the relative good-prediction performances of network or ma-
trix factorization-based methods, most of them are uninterpretable in
the sense that they provide very little information on what genes/bio-
markers are associated with drug responses. In contrast, more inter-
pretable models, like the Elastic-Net model used in the original
CCLE paper, are usually poor in prediction accuracy. The readers
are referred to Azuaje21 for a systematical summarization of key stra-
tegies, resources, techniques, challenges, and trends in this area.

In summary, recent progress in computational techniques has signif-
icantly improved anticancer drug-response prediction and contrib-
uted to preclinical drug screening.22,23 However, highly accurate yet
biologically interpretable models are still in demand. In this paper,
we proposed an ensemble learning method, simultaneously inte-
grating a low-rankmatrix completion (MC)model and a ridge regres-
sion (RR) model, and applied it into two benchmark datasets,
including CCLE and GDSC. Comparison with other methods sug-
gests that our model achieves both high prediction accuracy and
good biological interpretability simultaneously.
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RESULTS
Parameter Optimization

The MC model contains two parameters: q1

and r. q1 varied from 0 to 1 with an increment
of 0.01, and r varied with an increment of 1
from 1 to 24 for CCLE, 1 to 28 for phosphatidy-
linositol 3-kinase (PI3K) pathway, and 1 to 30 for extracellular signal-
regulated kinase (ERK) signaling pathway, respectively. Figure 1
shows the trend of Pearson correlation coefficients (PCCs) between
predicted and observed response values with an increase of r for
CCLE—first increases, then achieves it maximum at r = 6, and de-
creases after that. Similar trends were observed for other two datasets
(see Figure S1). The detail information about q1 and r in all three da-
tasets was listed in Table S1.

For the RR model, we selected 0:11%csk%0:37 for CCLE and
0:1%csk%0:3 for both the PI3K pathway and ERK signaling pathway.
The detailed information about csk for three datasets was shown in
Tables S2A–S2C, respectively. tk ranged over [csk � 0:1, csk + 0:1]
with an increment of 0.01, and q2 ranged over [0, 2 � 105] with an
increment of 10. For the combination model, the weight parameter
bk ranged over [0, 1], with an increment of 0.01. The detailed infor-
mation about tk, q2, and bk for three datasets was shown in Tables
S3A–S3C, respectively. bk is greater than 0.5 for 79% of 24 drugs in
CCLE, especially, bk = 1 for nutlin-3 (see Figure 2 for a more intuitive
illustration). The results confirmed that the MC model plays a more
important role than the RR model for most drugs in the combination
model. Similar observations could be found in Figure S2: bkR0:5 for
61% of 28 drugs in PI3K and for 63% of 30 drugs in ERK, however
bk = 0:18 for the drug FTI-277 in ERK, which illustrated a weak
contribution of MC to the final prediction.

Prediction Performance of the Proposed Models

We first applied our models to the CCLE dataset. It has been reported
that the prediction accuracy of the dual-layer integrated cell line-drug
network model (abbreviated as the integrated model) is significantly
higher than some models (cell line similarity network [CSN], drug
similarity network [DSN], elastic net model, random forest, support
vector regression, and prediction of drug response through an itera-
tive sure independence screening [DISIS]).15,24 Here, we compared
CSN, DSN, and the integrated model, based on the PCC. Figure 3A
showed the comparison for CCLE. As can be seen, the PCCs of 23
drugs obtained by the combination model are all higher than 0.6,
11 drugs higher than 0.7, and 3 drugs higher than 0.8 and superior
to the integrated model for 78% of 23 drugs, especially the drug
PD-0325901, in which its PCC reaches 0.86. In fact, the MC model
alone is already superior to the compared models and got higher
py: Nucleic Acids Vol. 21 September 2020 677
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Figure 2. TheWeight Parameter bkOptimization for the Combination Model

in CCLE
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correlations than CSN, DSN, and the integratedmodel for 100%, 78%,
and 52% drugs, respectively. Obviously, the combination model is su-
perior to both MC and RR, which demonstrated that the correlations
among drugs and the relationships between drug-response and gene-
expression profiles are both important to prediction. For a better
view, we exhibited an overall prediction comparison across 23 drugs
(see Figure 3B) and also supplied scatterplots of four example drugs
(see Figure 3C).

For two other datasets in GDSC, the combination model also ex-
hibited good performance, superior to the integrated model for
93% of 28 drugs in PI3K and 87% of 30 drugs in ERK. Other compar-
ison details for CSN and DSN were shown in Table 1. Notably, for the
drug OSI-906, the combination model achieves 66% and 58% higher
correlation than the integrated model in PI3K and ERK, respectively
(see Figure S3). Meanwhile, the scatterplots (see Figure S4) of four
example drugs from two datasets confirmed that the good perfor-
mance of the combination model is not affected by a small number
of outliers. In addition, the MC model is better than CSN, DSN,
and the integrated model for about 90%, 90%, and 70% drugs in
two datasets (see Table S4). The RR model is superior to CSN for
the PI3K dataset but worse than DSN and significantly worse than
the integrated model for all datasets (see Table S5). The boxplots
(see Figure S5) showed the correlation comparison among six
different models in two datasets, consistent with the above
conclusions.

It is of note that there are other prediction models that consider
various, additional information. For example, Stanfield et al.25 inte-
grated cell line mutation data and protein-protein interaction.
HNMDRP, a heterogeneous network-based method, introduced cell
line genomic profile, drug chemical structure, and drug-target and
protein-protein interaction.26 Due to the different data information,
we here did not compare with them.

The common techniques to further test the predictive power of a
model are to assess its reliability in identifying the estimation of
missing data and to evaluate its ability in classifying cell lines sensitive
or resistant to a specific drug. The estimation of missing data is
considered to be reliable if they exhibit a consistent distribution
678 Molecular Therapy: Nucleic Acids Vol. 21 September 2020
pattern with that of observed data. Following this rule, we discussed
twoMEK inhibitors, PD-0325901 and RDEA119, in GDSC, for which
about 7% response values are missing across all cell lines. We utilized
p value to illustrate “consistent pattern” statistically. As is shown in
Figure 4, the observed response values of wild cell lines are signifi-
cantly higher than that of BRAF mutant cell lines when treated
with both PD-0325901 (p = 7.75e�07) and RDEA119 (p =
6.39e�07). Consistently, the predicted (missing) response values of
wild cell lines are also significantly higher than that of BRAF mutant
cell lines when treated with both PD-0325901 (p = 0.04841) and
RDEA119 (p = 0.02999). In summary, BRAF mutant cell lines are
more sensitive to MEK inhibitors than wild cell lines, which is in
agreement with published literature.15–17 In addition, with the use
of a similar method in Wei et al.,16 Dong et al.,27 and Staunton
et al.,28 we ranked cell lines for each drug according to the observed
response values. Specifically, we referred to the top 200 cell lines as
“sensitive,” the bottom 200 cell lines as “resistant,” and the remaining
cell lines as “intermediate,” which were removed from our analysis.
Based on this criterion, we discussed that the cell line is sensitive or
resistant to a specific drug based on the predicted response values
of the combination model and obtained better results than our previ-
ous study.16 Figure 5 illustrated the desired cell line-type recognition
to the example drug PD-0325901 in two datasets, with accuracy =
0.885, AUC = 0.956 (the area under the receiver operating character-
istic [ROC] curve), and p = 4.286159e�56 in CCLE, and accuracy =
0.9, AUC = 0.964, and p = 1.82395e�64 in GDSC. The detailed cell
line type to PD-0325901 in CCLE, identified by the combination
model, was listed in Table S6. We found that many non-small cell
lung carcinoma (NSCLC) cell lines (such as A549, CAL12T,
NCIH1299, NCIH23) and NRAS mutant cell lines (such as
CHP212, IPC298, SKMEL2, HUT78, HDMYZ, SKNAS,
TT2609C02, HEC151, HT1080, NCIH1299, KMM1) are more sensi-
tive to PD-0325901, in agreement with the previous studies.6,29 It is
well known that activating mutations in NRAS are top predictors of
sensitivity for the MEK inhibitor PD-0325901.2

Drug-Response-Associated Genes and Their Function

Enrichment Analyses

We assembled the top 1,000 genes for each drug in three datasets
based on the RR model (see Table S7). Interestingly, many of the
selected genes are well-known drug-sensitivity biomarkers. For
example, NQO1, in which its expression produces a high-potency in-
termediate (17-AAGH2), was identified as the top-most predictive
feature for the response of the heat shock protein 90 (HSP90) inhib-
itor 17-AAG. This finding is consistent with other literature.6,7,30,31

SPRY2, which encodes a regular of MAPK output, was also verified
as the top predictive feature for the MEK inhibitors PD-0325901
and AZD6244.2,6,7 SLFN11—with the top-most features of two
DNA topoisomerase I inhibitors, irinotecan and topotecan—was
also known to be associated with the sensitivity of two drugs.6 In addi-
tion, SLFN11 was observed to be associated with the response of
microtubule-stabilizing agent paclitaxel, which is cytotoxic, as are iri-
notecan and topotecan. It was suggested that topoisomerase I inhib-
itors and microtubule-stabilizing agents might offer an effective



Figure 3. Prediction Performance Analysis of the Combination Model in CCLE

(A) Bar graph showing the Pearson correlations between the predicted and observed activity areas of six different models for 24 drugs. CSN, based on the cell line similarity

network; DSN, based on the drug similarity network; Integrated, based on the dual-layer integrated cell line-drug networkmodel that integrates CSN and DSN;MC, based on

the matrix completion model; RR, based on the ridge regression model; COMB, based on the MC-RR combination model. (B) Boxplot showing the Pearson correlation

distributions of six models. (C) Scatterplots of observed and predicted responses for four example drugs using the combination model.

Table 1. Prediction Comparison of the Combination Model with CSN, DSN,

and the Integrated Models in Two Datasets (the Entry Is the Percentage of

Drugs in the Dataset in Which the Correlations Are Higher Than That of the

Compared Model)

Dataset >CSN (%) >DSN (%) >Integrated (%)

PI3K 96 96 93

ERK 100 93 87
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treatment option for some cancer type. There were other top predic-
tors, including ERBB2 and HGF, for the epidermal growth factor
receptor (EGFR)/HER2 inhibitor lapatinib6,7,32 and mesenchymal-
epithelial transition (MET)/anaplastic lymphoma kinase (ALK) in-
hibitor PF-2341066.6,33 Top genes IGF1R, EGFR, and MDM2 have
been demonstrated to be associated with the response of the IGF-
1R inhibitor AEW541,6,34 EGFR inhibitor erlotinib,6,35 and MDM2
inhibitor nutlin-3,6,36 respectively. Notably, PTEN expression was
significantly correlated with 13 drug sensitivities in CCLE, which
indicated that PTEN expression might inform the therapeutic selec-
tivity of many anticancer drugs.

Besides the aforementioned gene features, we also detected many
other drug-response-related genes not mentioned in Barretina
et al.6 but that played significant roles in our RR model. For example,
BCL11A, a transcriptional repressor that inhibits expression of fetal
globin genes in adults and a potential therapeutic target for the treat-
ment of globinopathies,37 was related to 6 drug responses in CCLE.
BCL11B, closely correlated to BCL11A, was also a common valuable
feature gene for 4 drugs. FAM19A1, belonging to a novel secreted
family with conserved cysteine residues and restricted expression in
the brain,38 was identified as the top predictor for the gamma-secre-
tase inhibitor L-685458 and MDM2 inhibitor nutlin-3. DPEP3, en-
coding a membrane-bound glycoprotein from the family of dipepti-
dases involved in hydrolytic metabolism of various dipeptides,
made the highest contributions to the sensitivities of multi-kinase in-
hibitors sorafenib and TKI258. ENPP6, highly expressed in liver sinu-
soidal endothelial cells and developing oligodendrocytes,39 was veri-
fied as the top predictor for IGF-1R inhibitor AEW541, ALK
inhibitor TAE684, and multi-kinase inhibitor TKI258. PPIA, a key
target for treating APOE4-mediated neurovascular injury and the re-
sulting neuronal dysfunction and degeneration,40 not only had the
top 2 features for histone deacetylase (HDAC) inhibitor panobinostat
Molecular Therapy: Nucleic Acids Vol. 21 September 2020 679
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A B Figure 4. Consistent Drug-Response Patterns

between Predicted (Missing) and Observed (Existing)

Data for the BRAF Mutant and Wild Cell Lines When

Treated with Two MEK Inhibitors in GDSC

(A) The responses of the BRAF mutant and wild cell lines to

PD-0325901. (B) The responses of the BRAF mutant and

wild cell lines to RDEA119.
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and DNA topoisomerase I inhibitor irinotecan but also closely asso-
ciated with 5 drug responses in CCLE, which indicated that PPIA
might be involved in some fundamental mechanisms of the multi-
drug targeting process. APOL4, which may play a role in lipid ex-
change and transport throughout the body, as well as in reverse
cholesterol transport from peripheral cells to the liver, also exhibited
substantial connections with the sensitivity of vascular endothelial
growth factor receptor (VEGFR) and EGFR inhibitor ZD-6474, Abl
inhibitor nilotinib, and Src and Abl inhibitor AZD0530. All of these
prioritized genes could act as candidate biomarkers of drug sensitivity
and might ultimately be useful for the deployment of targeted thera-
pies in cancer.

We also performed function enrichment analyses of drug-response-
associated genes by the Database for Annotation, Visualization and
Integrated Discovery (DAVID) tools41 (https://david.ncifcrf.gov/
home.jsp) and listed the terms with Benjamini false discovery rate
(FDR) less than 0.05 in Table S8. The word cloud plot of the 186 func-
tions existing in at least 2 drugs in CCLE was drawn in Figure 6.
Clearly, many functions have a close relationship with cancers. For
example, “transcription” and “transcription regulation” were the
two most significant terms and enriched in 11 drugs, respectively. It
has been reported that changes in certain genes during transcription
play an important role in cancer development.42 “mRNA processing”
and “SH2” (Src homology 2) domain were the second most enriched
terms. The mechanisms of 30 end mRNA processing and of its regu-
lation are highly relevant both in biology and in medicine.43 SH2
domain, a structurally conserved protein domain, is important to
the treatment of breast cancer.44 Besides the gene functions
mentioned above, “RNA binding” and “zinc” also deserve attention.
Alterations in the expression and function of RNA-binding proteins
amplify the effects of cancer driver genes, accelerate tumor progres-
sion, and promote aggressiveness.45 Zinc supplementation should
have beneficial effects on cancer by decreasing angiogenesis and in-
duction of inflammatory cytokines while increasing apoptosis in can-
cer cells.46

The word cloud plots of the enriched gene functions for two other da-
tasets were shown in Figure S6. As an example, the term “kinase” was
enriched in multiple drugs. It has been discovered that receptor tyro-
680 Molecular Therapy: Nucleic Acids Vol. 21 September 2020
sine kinases (RTKs) play key roles in growth,
metabolism, adhesion, motility, death, and onco-
genesis;47 protein kinases are critical in many
cellular processes;48 and the Src family of protein
tyrosine kinases is also related with oncogenesis,
proliferation, and survival.49 In addition, several other top enriched
gene functions have also been verified to associate with cancers,
such as ATP binding, which plays a role in human breast cancer
drug resistance;50 cell membrane, an adjuvant in cancer therapy;51

nucleotide binding, contributing to cancer cell radioresistance;52

cell junction molecules, which are diagnostic and prognostic
markers;53 and SH3 domain, a potential target for anticancer drug
design.54 In a word, these results showed that the drug-response-
related genes prioritized by the RR model indeed are involved in
various biological activities of carcinomas.

DISCUSSION
The aim of this study is to utilize gene-expression profiles of
cell lines and observed cell line-drug responses to predict known/
unknown anticancer drug sensitivities. To our best knowledge, it
is the first time to model the drug-response prediction as a combi-
nation of MC and RR, for which MC is superior in prediction
sensitivity, whereas RR presents biological interpretable results.
As expected, the combination model outperforms a popular inte-
grated model in three tested data. To improve the prediction per-
formance further, one direction is to introduce more drug-
response-associated features, for example, the information of chem-
ical structure of drugs and the genomic information of cell lines,
including gene mutation and copy variation number.27,55 The other
possible direction is to incorporate more efficient mathematical
models. The performance of an ensemble method usually increases
with the number of predictors. However, it is out of the scope of
this study.

Based on the RR model, we consistently found many important drug-
response-associated genes. For example, SLFN11 is one of the top
genes inferred by our model, which has been demonstrated to be
topoisomerase inhibitors.6 Furthermore, functional analyses priori-
tized transcription, SH2/3 domain, “cell cycle,” “ATP binding,” and
“zinc finger” as top functions enriched in drug-response-associated
genes, which is also consistent with previous literature. However,
the finding that AHR expression is strongly correlated with sensitivity
of the MEK inhibitor PD-0325901 in Barretina et al.6 was not
observed in our work. It might be caused by the different feature se-
lection methods. To enhance the identification of strong biomarkers
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Figure 5. The Results of Cell Line-Type Recognition

(Sensitive or Resistant) to an Example Drug PD-

0325901, Respectively, in Two Datasets

(A) Boxplot of type recognition for PD-0325901 in CCLE. (B)

ROC curve of type recognition for PD-0325901 in CCLE.

(C) Boxplot of type recognition for PD-0325901 in GDSC.

(D) ROC curve of type recognition for PD-0325901 in

GDSC.
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of the RR model, further attention should be paid on gene screening.
In addition, as we all know, many genes function corporately. Thus, it
might be better to add this information by adopting a group feature-
based model, like group lasso.

Finally, we compared prediction results of 19 common drugs in
PI3K and ERK signaling pathways based on AUC (see Figure S7).
Most drugs have different correlations between predicted and
observed response values in two pathways under three models.
The disagreements are mainly from three aspects, including
different cell line-drug-response matrices, different sample groups
of 10-fold crossvalidation, and different final screened genes corre-
sponding to two pathways. It is interesting that the disagreements
derived by the combination model are the lowest, which indicates,
to a certain degree, that the combination model usually produces
a more stable prediction.

MATERIALS AND METHODS
Datasets

The CCLE6 and GDSC7 projects provide two most important pub-
licly available resources for investigating the anticancer drug
response in which drug responses of several hundred cancer cell
lines, together with their genomic and transcriptomic information,
including gene expression, mutation, and copy number variation,
Molecular Thera
were profiled. For CCLE (https://portals.
broadinstitute.org/ccle), there are 491 cancer
cell lines with both drug-response profiles of
24 anticancer drugs (measured by the activity
area, the more sensitive cell lines will get higher
activity areas to a drug) and expression profiles
of 18,900 genes available. Specifically, the cell
line-drug-response information can be formu-
lated as a matrix of size 491 � 24 (11,784 en-
tries) with row representing cell lines and col-
umn representing drugs, among which 424
(3.6%) are missing values. For GDSC (release-
5.0; https://www.cancerrxgene.org), there are
655 cancer cell lines with both responses of
140 drugs (measured by AUC, the more sensi-
tive cell lines will get lower AUC values to a
drug) and expression profiles of 12,072 genes
available. The drug-response profile can be
formulated as a matrix of size 655 � 140
(91,700 entries), among which 18,029 (19.66%)
are missing. Our data and software are publicly available at
https://zenodo.org/record/1325121#.W2IiA1i0Xcs.

The MC Model

MC is a traditionalmathematical model that has been applied inmany
fields, such as influenza antigenic cartography56,57 and microRNA
(miRNA)-disease association.58,59 The aim of MC is to impute the
missing entries in an incomplete matrix by taking the advantages of
the relationships among row vectors and column vectors. Thus, the
anticancer drug-response prediction can be formulated as the MC
problem. We first replaced all missing values in the observed cell
line-drug-response matrix with 0, and then standardized each column
by Z scores to derive the normalized matrix denoted byM= ½Mik�m�p,
where m is the number of cell lines, and p is the number of drugs. Let
E = fði; kÞjMik s0; i˛½m�; k˛½p�g, here ½m�= f1; 2; /; mg
and ½p�= f1; 2; /; pg, and let Z= ½Zik�m�p denote the underlying
cell line-drug-response matrix. Then we could use the following opti-
mization problem to estimate the drug-response matrix,

min
1
2

X
ði; kÞ˛E

ðZik �MikÞ2 + q1GðZÞ

s:t: Z=Um�rSr�r

�
Vp�r

�T (1)
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Figure 6. The Word Cloud Plot of 186 Functional Annotations Occurring in at Least 2 out of 24 Drugs in CCLE
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where q1 is a model parameter. Similar to previous studies,56,57

the regularization function isGðZÞ= Pm
i= 1

g

�
kUik2
3ar

�
+
Pp
k= 1

g

�
kVik2
3ar

�
,

where gðzÞ= eðz�1Þ2 � 1 when zR1, and gðzÞ= 0 otherwise. Ui ðViÞ
denotes the ith row of U ðVÞ, and a=maxðm; pÞ.

We utilized the alternating gradient descend (AGD) algorithm56 to
solve the problem (Equation 1) by the following steps.

(1) Trimming: randomly assign some observed values to 0s from a
row (column) in M when the row (column) contains more
than ð2jEj =mÞð2jEj =pÞ observed values, and denote the resulted
matrix by Mð0Þ:

(2) Initialization: do singular value decomposition Mð0Þ = USVT .
Set U ð0Þ =U0 �

ffiffiffiffi
m

p
and Vð0Þ =V0 �

ffiffiffiffi
m

p
, where U0 and V0 are

the first r columns of U and V ; respectively.
(3) Iteration:

(a) Fix U ðkÞ and VðkÞ, and calculate the matrix Sr�r to minimize
the squared error

1
2

X
ði; kÞ˛E

ðZik �MikÞ2
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(b) Set Uðk+ 1Þ =U ðkÞ + t � VU ðkÞ and V ðk+ 1Þ =VðkÞ + t � VV ðkÞ .
(c) Repeat (a) and (b) until they converge or reach predetermined

iteration times.

Here; suppose U =

24 a11 / a1r
« 1 «

am1 / amr

35and V =

24 b11 / b1r
« 1 «
bp1 / bpr

35
Then,
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��
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�
VST +UQU + q1

4
3ar

UV
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��

USVT
�E �M

�T
US+VQV + q1
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3ar

VV

where QU =
1
m
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The RR Model

It has been suggested that regression models, such as elastic net and
RR, tend to exhibit good and robust performance in different set-
tings.60,61 Here, we applied RR to predict drug responses by assuming
a linear relationship between the gene-expression profiles of cell lines
and drug responses. However, the number of genes is much larger
than that of cell lines in our data. To avoid overfitting, for each
drug, we need to filter out unimportant genes.

Let X = ½Xij�m�n denote the cell line-gene-expression matrix, where
n is the number of genes. Let Mk be the kth column of
M ð1%k%pÞ. We then divided Mk into ten nonoverlapping
groups randomly with almost the same size and selected nine
groups as the training set and the remaining group as the test
set. Without loss of generality, we selected the qth group as the
test set and the other 9 groups as the training set. With the deletion
of all zeros in the training set, we obtained the resulting vector

MðqÞ
k . Meanwhile, we deleted gene-expression values of correspond-

ing cell lines, normalized the remaining gene-expression values by

Z score, and obtained the matrix XðqÞ. Let XðqÞ
j be the jth column of

XðqÞ, j= 1; /; n: We computed PCCs r, such that the size of the

set U
s
ðqÞ
k

= fj j j˛½n� and
			rðXðqÞ

j ;MðqÞ
k Þ
			Rs

ðqÞ
k g is close to the

number of cell lines as much as possible. We set sk = min{sðqÞk ;

q= 1; /; 10}, and repeated the above procedure 10 times.
The minimum value of the 10 sks was referred to as csk .
Under the help of csk , we could use the above training sets
to find tk easily (satisfying that the size of the set

Utk = fj j j˛½n� and
			rðXðqÞ

j ;MðqÞ
k Þ
			Rtkg is close to the number
of cell lines as much as possible) and to train the RR model by
minimizing the following formula:

1
2

X
i˛Ek

0@X
j˛Utk

Xijl
tk
jk �Mik

1A2

+ q2
X
j˛Utk

�
ltkjk

�2
(Equation 2)

Here, Ek = fi j i˛½m� and Mik s0g, ltkjk are RR estimators, and q2 is
a penalty factor for reducing the number of effective features associ-
ated with drug responses. Finally, we used the test sets to determine
the optimal parameters in the formula (Equation 2).

Let t = ½t1; /;tk ;/; tp�, and lt = ½ljk�n�p, ljk = ltkjk if j˛Utk, other-
wise ljk = 0. Then, the predicted cell line-drug-response matrix Y un-
der t can be formulated as Y=Xlt .
The MC-RR Combination Model

Ensemble learning usually achieves better predicting accuracy than
single predictors and thus is promising in prediction.15,62–64 It is
reasonable to combine the MC and RR models since the former
emphasizes relationships among drugs and deals with all drugs
simultaneously, whereas the latter takes advantage of the close
relationship between drug-response and gene-expression profiles
and tackles each drug separately. We combined two models as
follows:bMk = bkZk + ð1� bkÞYk; 1%k%p (Equation 3)

where bMk is the kth column of the prediction matrix bM of the com-
bination model; Zk and Yk, respectively, denote the kth column of the
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Figure 7. The Workflow of the MC-RR Combination Model
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MC-prediction matrix Z and RR-prediction matrix Y; and bk is a
weight parameter. Figure 7 showed the workflow of the MC-RR com-
bination model.

Crossvalidation and Evaluation Criteria

We conducted 10-fold crossvalidation to evaluate the performance
of models and determine model parameters. Observed values in
M were divided into 10 groups randomly with almost the same
size. One group was taken as the testing set and the rest as the
training set each time. The operation was repeated 10 runs, such
that each value in M was predicted once, and PCCs between pre-
dicted and observed values in M were calculated. It is of noting
that the MC model was performed on the wholeM with all of the
drugs simultaneously, but the RR model and the combination model
were applied to each drug separately. Hence, to each drug, we
restricted the grouping of training and testing sets to train a separate
model in each run and required model parameters to be equal for all
10 runs to avoid overfitting. The whole crossvalidation was run 10
times, the average PCC was used to measure the performance of
models, and the optimal parameters were determined by maxi-
mizing the average PCC.
SUPPLEMENTAL INFORMATION
Supplemental Information can be found online at https://doi.org/10.
1016/j.omtn.2020.07.003.
684 Molecular Therapy: Nucleic Acids Vol. 21 September 2020
AUTHOR CONTRIBUTIONS
J.Y. and Y.L. conceived the concept of the work and designed the ex-
periments. C.L. and D.W. performed the literature search and exper-
iments. C.L., F.R., and Y.L. completed theoretical derivation. J.X. and
L.H. collected and analyzed the data. D.W., J.L., and G.T. conducted
case studies. Y.L., J.Y., and C.L. wrote the paper. All authors have
approved the manuscript.
CONFLICTS OF INTEREST
The authors declare no competing interests.
ACKNOWLEDGMENTS
This work was supported by the Natural Science Foundation of Hebei,
China (grant no. A2020203021); Natural Science Foundation of Hu-
nan, China (grant no. 2018JJ2461 and 2018JJ3568); National Natural
Science Foundation of China (grant nos. 61807029 and 61702054);
and Scientific Research Fund of Education Department of Hunan
Province, China (grant no. 17A024).
REFERENCES

1. Druker, B.J., Talpaz, M., Resta, D.J., Peng, B., Buchdunger, E., Ford, J.M., Lydon, N.B.,
Kantarjian, H., Capdeville, R., Ohno-Jones, S., and Sawyers, C.L. (2001). Efficacy and
safety of a specific inhibitor of the BCR-ABL tyrosine kinase in chronic myeloid leu-
kemia. N. Engl. J. Med. 344, 1031–1037.

https://doi.org/10.1016/j.omtn.2020.07.003
https://doi.org/10.1016/j.omtn.2020.07.003
http://refhub.elsevier.com/S2162-2531(20)30192-X/sref1
http://refhub.elsevier.com/S2162-2531(20)30192-X/sref1
http://refhub.elsevier.com/S2162-2531(20)30192-X/sref1
http://refhub.elsevier.com/S2162-2531(20)30192-X/sref1


www.moleculartherapy.org
2. Solit, D.B., Garraway, L.A., Pratilas, C.A., Sawai, A., Getz, G., Basso, A., Ye, Q., Lobo,
J.M., She, Y., Osman, I., et al. (2006). BRAF mutation predicts sensitivity to MEK in-
hibition. Nature 439, 358–362.

3. Dalerba, P., Kalisky, T., Sahoo, D., Rajendran, P.S., Rothenberg, M.E., Leyrat, A.A.,
Sim, S., Okamoto, J., Johnston, D.M., Qian, D., et al. (2011). Single-cell dissection
of transcriptional heterogeneity in human colon tumors. Nat. Biotechnol. 29,
1120–1127.

4. Shoemaker, R.H. (2006). The NCI60 human tumour cell line anticancer drug screen.
Nat. Rev. Cancer 6, 813–823.

5. Lamb, J., Crawford, E.D., Peck, D., Modell, J.W., Blat, I.C., Wrobel, M.J., Lerner, J.,
Brunet, J.P., Subramanian, A., Ross, K.N., et al. (2006). The Connectivity Map: using
gene-expression signatures to connect small molecules, genes, and disease. Science
313, 1929–1935.

6. Barretina, J., Caponigro, G., Stransky, N., Venkatesan, K., Margolin, A.A., Kim, S.,
Wilson, C.J., Lehár, J., Kryukov, G.V., Sonkin, D., et al. (2012). The Cancer Cell
Line Encyclopedia enables predictive modelling of anticancer drug sensitivity.
Nature 483, 603–607.

7. Garnett, M.J., Edelman, E.J., Heidorn, S.J., Greenman, C.D., Dastur, A., Lau, K.W.,
Greninger, P., Thompson, I.R., Luo, X., Soares, J., et al. (2012). Systematic identifica-
tion of genomic markers of drug sensitivity in cancer cells. Nature 483, 570–575.

8. Seashore-Ludlow, B., Rees, M.G., Cheah, J.H., Cokol, M., Price, E.V., Coletti, M.E.,
Jones, V., Bodycombe, N.E., Soule, C.K., Gould, J., et al. (2015). Harnessing
Connectivity in a Large-Scale Small-Molecule Sensitivity Dataset. Cancer Discov. 5,
1210–1223.

9. Rees, M.G., Seashore-Ludlow, B., Cheah, J.H., Adams, D.J., Price, E.V., Gill, S., Javaid,
S., Coletti, M.E., Jones, V.L., Bodycombe, N.E., et al. (2016). Correlating chemical
sensitivity and basal gene expression reveals mechanism of action. Nat. Chem.
Biol. 12, 109–116.

10. Geeleher, P., Cox, N.J., and Huang, R.S. (2016). Cancer biomarker discovery is
improved by accounting for variability in general levels of drug sensitivity in pre-clin-
ical models. Genome Biol. 17, 190.

11. Szakács, G., Annereau, J.P., Lababidi, S., Shankavaram, U., Arciello, A., Bussey, K.J.,
Reinhold, W., Guo, Y., Kruh, G.D., Reimers, M., et al. (2004). Predicting drug sensi-
tivity and resistance: profiling ABC transporter genes in cancer cells. Cancer Cell 6,
129–137.

12. Liu, X., Yang, J., Zhang, Y., Fang, Y., Wang, F., Wang, J., Zheng, X., and Yang, J.
(2016). A systematic study on drug-response associated genes using baseline gene ex-
pressions of the Cancer Cell Line Encyclopedia. Sci. Rep. 6, 22811.

13. Tran, T.P., Ong, E., Hodges, A.P., Paternostro, G., and Piermarocchi, C. (2014).
Prediction of kinase inhibitor response using activity profiling, in vitro screening,
and elastic net regression. BMC Syst. Biol. 8, 74.

14. Bansal, M., Yang, J., Karan, C., Menden, M.P., Costello, J.C., Tang, H., Xiao, G., Li, Y.,
Allen, J., Zhong, R., et al.; NCI-DREAM Community; NCI-DREAM Community
(2014). A community computational challenge to predict the activity of pairs of com-
pounds. Nat. Biotechnol. 32, 1213–1222.

15. Zhang, N., Wang, H., Fang, Y., Wang, J., Zheng, X., and Liu, X.S. (2015). Predicting
Anticancer Drug Responses Using a Dual-Layer Integrated Cell Line-Drug Network
Model. PLoS Comput. Biol. 11, e1004498.

16. Wei, D., Liu, C., Zheng, X., and Li, Y. (2019). Comprehensive anticancer drug
response prediction based on a simple cell line-drug complex network model.
BMC Bioinformatics 20, 44.

17. Liu, H., Zhao, Y., Zhang, L., and Chen, X.; Anti-cancer Drug Response Prediction
Using Neighbor-Based Collaborative Filtering with Global Effect Removal (2018).
Anti-cancer Drug Response Prediction Using Neighbor-Based Collaborative
Filtering with Global Effect Removal. Mol. Ther. Nucleic Acids 13, 303–311.

18. Zhang, L., Chen, X., Guan, N.N., Liu, H., and Li, J.Q. (2018). A Hybrid Interpolation
Weighted Collaborative Filtering Method for Anti-cancer Drug Response Prediction.
Front. Pharmacol. 9, 1017.

19. Wang, L., Li, X., Zhang, L., and Gao, Q. (2017). Improved anticancer drug response
prediction in cell lines using matrix factorization with similarity regularization. BMC
Cancer 17, 513.
20. Guan, N.N., Zhao, Y., Wang, C.C., Li, J.Q., Chen, X., and Piao, X. (2019). Anticancer
Drug Response Prediction in Cell Lines Using Weighted Graph Regularized Matrix
Factorization. Mol. Ther. Nucleic Acids 17, 164–174.

21. Azuaje, F. (2017). Computational models for predicting drug responses in cancer
research. Brief. Bioinform. 18, 820–829.

22. Boehm, J.S., and Golub, T.R. (2015). An ecosystem of cancer cell line factories to sup-
port a cancer dependency map. Nat. Rev. Genet. 16, 373–374.

23. Klijn, C., Durinck, S., Stawiski, E.W., Haverty, P.M., Jiang, Z., Liu, H., Degenhardt, J.,
Mayba, O., Gnad, F., Liu, J., et al. (2015). A comprehensive transcriptional portrait of
human cancer cell lines. Nat. Biotechnol. 33, 306–312.

24. Fang, Y., Qin, Y., Zhang, N., Wang, J., Wang, H., and Zheng, X. (2015). DISIS: pre-
diction of drug response through an iterative sure independence screening. PLoS
ONE 10, e0120408.

25. Stanfield, Z., Coşkun, M., and Koyutürk, M. (2017). Drug Response Prediction as a
Link Prediction Problem. Sci. Rep. 7, 40321.

26. Zhang, F., Wang, M., Xi, J., Yang, J., and Li, A. (2018). A novel heterogeneous
network-based method for drug response prediction in cancer cell lines. Sci. Rep.
8, 3355.

27. Dong, Z., Zhang, N., Li, C., Wang, H., Fang, Y., Wang, J., and Zheng, X. (2015).
Anticancer drug sensitivity prediction in cell lines from baseline gene expression
through recursive feature selection. BMC Cancer 15, 489.

28. Staunton, J.E., Slonim, D.K., Coller, H.A., Tamayo, P., Angelo, M.J., Park, J., Scherf,
U., Lee, J.K., Reinhold, W.O., Weinstein, J.N., et al. (2001). Chemosensitivity predic-
tion by transcriptional profiling. Proc. Natl. Acad. Sci. USA 98, 10787–10792.

29. Suphavilai, C., Bertrand, D., and Nagarajan, N. (2018). Predicting Cancer Drug
Response using a Recommender System. Bioinformatics 34, 3907–3914.

30. Guo, W., Reigan, P., Siegel, D., Zirrolli, J., Gustafson, D., and Ross, D. (2005).
Formation of 17-allylamino-demethoxygeldanamycin (17-AAG) hydroquinone by
NAD(P)H:quinone oxidoreductase 1: role of 17-AAG hydroquinone in heat shock
protein 90 inhibition. Cancer Res. 65, 10006–10015.

31. Kelland, L.R., Sharp, S.Y., Rogers, P.M., Myers, T.G., and Workman, P. (1999). DT-
Diaphorase expression and tumor cell sensitivity to 17-allylamino, 17-demethoxygel-
danamycin, an inhibitor of heat shock protein 90. J. Natl. Cancer Inst. 91, 1940–1949.

32. Konecny, G.E., Pegram, M.D., Venkatesan, N., Finn, R., Yang, G., Rahmeh, M.,
Untch, M., Rusnak, D.W., Spehar, G., Mullin, R.J., et al. (2006). Activity of the
dual kinase inhibitor lapatinib (GW572016) against HER-2-overexpressing and tras-
tuzumab-treated breast cancer cells. Cancer Res. 66, 1630–1639.

33. Zou, H.Y., Li, Q., Lee, J.H., Arango, M.E., McDonnell, S.R., Yamazaki, S.,
Koudriakova, T.B., Alton, G., Cui, J.J., Kung, P.P., et al. (2007). An orally available
small-molecule inhibitor of c-Met, PF-2341066, exhibits cytoreductive antitumor ef-
ficacy through antiproliferative and antiangiogenic mechanisms. Cancer Res. 67,
4408–4417.

34. Moreau, P., Cavallo, F., Leleu, X., Hulin, C., Amiot, M., Descamps, G., Facon, T.,
Boccadoro, M., Mignard, D., and Harousseau, J.L. (2011). Phase I study of the anti
insulin-like growth factor 1 receptor (IGF-1R) monoclonal antibody, AVE1642, as
single agent and in combination with bortezomib in patients with relapsed multiple
myeloma. Leukemia 25, 872–874.

35. Greshock, J., Bachman, K.E., Degenhardt, Y.Y., Jing, J., Wen, Y.H., Eastman, S.,
McNeil, E., Moy, C., Wegrzyn, R., Auger, K., et al. (2010). Molecular target class is
predictive of in vitro response profile. Cancer Res. 70, 3677–3686.

36. Müller, C.R., Paulsen, E.B., Noordhuis, P., Pedeutour, F., Saeter, G., and Myklebost,
O. (2007). Potential for treatment of liposarcomas with the MDM2 antagonist
Nutlin-3A. Int. J. Cancer 121, 199–205.

37. Canver, M.C., Smith, E.C., Sher, F., Pinello, L., Sanjana, N.E., Shalem, O., Chen, D.D.,
Schupp, P.G., Vinjamur, D.S., Garcia, S.P., et al. (2015). BCL11A enhancer dissection
by Cas9-mediated in situ saturating mutagenesis. Nature 527, 192–197.

38. TomTang, Y., Emtage, P., Funk,W.D., Hu, T., Arterburn,M., Park, E.E., and Rupp, F.
(2004). TAFA: a novel secreted family with conserved cysteine residues and restricted
expression in the brain. Genomics 83, 727–734.

39. Morita, J., Kano, K., Kato, K., Takita, H., Sakagami, H., Yamamoto, Y., Mihara, E.,
Ueda, H., Sato, T., Tokuyama, H., et al. (2016). Structure and biological function of
Molecular Therapy: Nucleic Acids Vol. 21 September 2020 685

http://refhub.elsevier.com/S2162-2531(20)30192-X/sref2
http://refhub.elsevier.com/S2162-2531(20)30192-X/sref2
http://refhub.elsevier.com/S2162-2531(20)30192-X/sref2
http://refhub.elsevier.com/S2162-2531(20)30192-X/sref3
http://refhub.elsevier.com/S2162-2531(20)30192-X/sref3
http://refhub.elsevier.com/S2162-2531(20)30192-X/sref3
http://refhub.elsevier.com/S2162-2531(20)30192-X/sref3
http://refhub.elsevier.com/S2162-2531(20)30192-X/sref4
http://refhub.elsevier.com/S2162-2531(20)30192-X/sref4
http://refhub.elsevier.com/S2162-2531(20)30192-X/sref5
http://refhub.elsevier.com/S2162-2531(20)30192-X/sref5
http://refhub.elsevier.com/S2162-2531(20)30192-X/sref5
http://refhub.elsevier.com/S2162-2531(20)30192-X/sref5
http://refhub.elsevier.com/S2162-2531(20)30192-X/sref6
http://refhub.elsevier.com/S2162-2531(20)30192-X/sref6
http://refhub.elsevier.com/S2162-2531(20)30192-X/sref6
http://refhub.elsevier.com/S2162-2531(20)30192-X/sref6
http://refhub.elsevier.com/S2162-2531(20)30192-X/sref7
http://refhub.elsevier.com/S2162-2531(20)30192-X/sref7
http://refhub.elsevier.com/S2162-2531(20)30192-X/sref7
http://refhub.elsevier.com/S2162-2531(20)30192-X/sref8
http://refhub.elsevier.com/S2162-2531(20)30192-X/sref8
http://refhub.elsevier.com/S2162-2531(20)30192-X/sref8
http://refhub.elsevier.com/S2162-2531(20)30192-X/sref8
http://refhub.elsevier.com/S2162-2531(20)30192-X/sref9
http://refhub.elsevier.com/S2162-2531(20)30192-X/sref9
http://refhub.elsevier.com/S2162-2531(20)30192-X/sref9
http://refhub.elsevier.com/S2162-2531(20)30192-X/sref9
http://refhub.elsevier.com/S2162-2531(20)30192-X/sref10
http://refhub.elsevier.com/S2162-2531(20)30192-X/sref10
http://refhub.elsevier.com/S2162-2531(20)30192-X/sref10
http://refhub.elsevier.com/S2162-2531(20)30192-X/sref11
http://refhub.elsevier.com/S2162-2531(20)30192-X/sref11
http://refhub.elsevier.com/S2162-2531(20)30192-X/sref11
http://refhub.elsevier.com/S2162-2531(20)30192-X/sref11
http://refhub.elsevier.com/S2162-2531(20)30192-X/sref12
http://refhub.elsevier.com/S2162-2531(20)30192-X/sref12
http://refhub.elsevier.com/S2162-2531(20)30192-X/sref12
http://refhub.elsevier.com/S2162-2531(20)30192-X/sref13
http://refhub.elsevier.com/S2162-2531(20)30192-X/sref13
http://refhub.elsevier.com/S2162-2531(20)30192-X/sref13
http://refhub.elsevier.com/S2162-2531(20)30192-X/sref14
http://refhub.elsevier.com/S2162-2531(20)30192-X/sref14
http://refhub.elsevier.com/S2162-2531(20)30192-X/sref14
http://refhub.elsevier.com/S2162-2531(20)30192-X/sref14
http://refhub.elsevier.com/S2162-2531(20)30192-X/sref15
http://refhub.elsevier.com/S2162-2531(20)30192-X/sref15
http://refhub.elsevier.com/S2162-2531(20)30192-X/sref15
http://refhub.elsevier.com/S2162-2531(20)30192-X/sref16
http://refhub.elsevier.com/S2162-2531(20)30192-X/sref16
http://refhub.elsevier.com/S2162-2531(20)30192-X/sref16
http://refhub.elsevier.com/S2162-2531(20)30192-X/sref17
http://refhub.elsevier.com/S2162-2531(20)30192-X/sref17
http://refhub.elsevier.com/S2162-2531(20)30192-X/sref17
http://refhub.elsevier.com/S2162-2531(20)30192-X/sref17
http://refhub.elsevier.com/S2162-2531(20)30192-X/sref18
http://refhub.elsevier.com/S2162-2531(20)30192-X/sref18
http://refhub.elsevier.com/S2162-2531(20)30192-X/sref18
http://refhub.elsevier.com/S2162-2531(20)30192-X/sref19
http://refhub.elsevier.com/S2162-2531(20)30192-X/sref19
http://refhub.elsevier.com/S2162-2531(20)30192-X/sref19
http://refhub.elsevier.com/S2162-2531(20)30192-X/sref20
http://refhub.elsevier.com/S2162-2531(20)30192-X/sref20
http://refhub.elsevier.com/S2162-2531(20)30192-X/sref20
http://refhub.elsevier.com/S2162-2531(20)30192-X/sref21
http://refhub.elsevier.com/S2162-2531(20)30192-X/sref21
http://refhub.elsevier.com/S2162-2531(20)30192-X/sref22
http://refhub.elsevier.com/S2162-2531(20)30192-X/sref22
http://refhub.elsevier.com/S2162-2531(20)30192-X/sref23
http://refhub.elsevier.com/S2162-2531(20)30192-X/sref23
http://refhub.elsevier.com/S2162-2531(20)30192-X/sref23
http://refhub.elsevier.com/S2162-2531(20)30192-X/sref24
http://refhub.elsevier.com/S2162-2531(20)30192-X/sref24
http://refhub.elsevier.com/S2162-2531(20)30192-X/sref24
http://refhub.elsevier.com/S2162-2531(20)30192-X/sref25
http://refhub.elsevier.com/S2162-2531(20)30192-X/sref25
http://refhub.elsevier.com/S2162-2531(20)30192-X/sref26
http://refhub.elsevier.com/S2162-2531(20)30192-X/sref26
http://refhub.elsevier.com/S2162-2531(20)30192-X/sref26
http://refhub.elsevier.com/S2162-2531(20)30192-X/sref27
http://refhub.elsevier.com/S2162-2531(20)30192-X/sref27
http://refhub.elsevier.com/S2162-2531(20)30192-X/sref27
http://refhub.elsevier.com/S2162-2531(20)30192-X/sref28
http://refhub.elsevier.com/S2162-2531(20)30192-X/sref28
http://refhub.elsevier.com/S2162-2531(20)30192-X/sref28
http://refhub.elsevier.com/S2162-2531(20)30192-X/sref29
http://refhub.elsevier.com/S2162-2531(20)30192-X/sref29
http://refhub.elsevier.com/S2162-2531(20)30192-X/sref30
http://refhub.elsevier.com/S2162-2531(20)30192-X/sref30
http://refhub.elsevier.com/S2162-2531(20)30192-X/sref30
http://refhub.elsevier.com/S2162-2531(20)30192-X/sref30
http://refhub.elsevier.com/S2162-2531(20)30192-X/sref31
http://refhub.elsevier.com/S2162-2531(20)30192-X/sref31
http://refhub.elsevier.com/S2162-2531(20)30192-X/sref31
http://refhub.elsevier.com/S2162-2531(20)30192-X/sref32
http://refhub.elsevier.com/S2162-2531(20)30192-X/sref32
http://refhub.elsevier.com/S2162-2531(20)30192-X/sref32
http://refhub.elsevier.com/S2162-2531(20)30192-X/sref32
http://refhub.elsevier.com/S2162-2531(20)30192-X/sref33
http://refhub.elsevier.com/S2162-2531(20)30192-X/sref33
http://refhub.elsevier.com/S2162-2531(20)30192-X/sref33
http://refhub.elsevier.com/S2162-2531(20)30192-X/sref33
http://refhub.elsevier.com/S2162-2531(20)30192-X/sref33
http://refhub.elsevier.com/S2162-2531(20)30192-X/sref34
http://refhub.elsevier.com/S2162-2531(20)30192-X/sref34
http://refhub.elsevier.com/S2162-2531(20)30192-X/sref34
http://refhub.elsevier.com/S2162-2531(20)30192-X/sref34
http://refhub.elsevier.com/S2162-2531(20)30192-X/sref34
http://refhub.elsevier.com/S2162-2531(20)30192-X/sref35
http://refhub.elsevier.com/S2162-2531(20)30192-X/sref35
http://refhub.elsevier.com/S2162-2531(20)30192-X/sref35
http://refhub.elsevier.com/S2162-2531(20)30192-X/sref36
http://refhub.elsevier.com/S2162-2531(20)30192-X/sref36
http://refhub.elsevier.com/S2162-2531(20)30192-X/sref36
http://refhub.elsevier.com/S2162-2531(20)30192-X/sref37
http://refhub.elsevier.com/S2162-2531(20)30192-X/sref37
http://refhub.elsevier.com/S2162-2531(20)30192-X/sref37
http://refhub.elsevier.com/S2162-2531(20)30192-X/sref38
http://refhub.elsevier.com/S2162-2531(20)30192-X/sref38
http://refhub.elsevier.com/S2162-2531(20)30192-X/sref38
http://refhub.elsevier.com/S2162-2531(20)30192-X/sref39
http://refhub.elsevier.com/S2162-2531(20)30192-X/sref39
http://www.moleculartherapy.org


Molecular Therapy: Nucleic Acids
ENPP6, a choline-specific glycerophosphodiester-phosphodiesterase. Sci. Rep. 6,
20995.

40. Bell, R.D., Winkler, E.A., Singh, I., Sagare, A.P., Deane, R., Wu, Z., Holtzman, D.M.,
Betsholtz, C., Armulik, A., Sallstrom, J., et al. (2012). Apolipoprotein E controls cere-
brovascular integrity via cyclophilin A. Nature 485, 512–516.

41. Huang, D.W., Sherman, B.T., Tan, Q., Collins, J.R., Alvord, W.G., Roayaei, J.,
Stephens, R., Baseler, M.W., Lane, H.C., and Lempicki, R.A. (2007). The DAVID
Gene Functional Classification Tool: a novel biological module-centric algorithm
to functionally analyze large gene lists. Genome Biol. 8, R183.

42. Ongen, H., Andersen, C.L., Bramsen, J.B., Oster, B., Rasmussen, M.H., Ferreira, P.G.,
Sandoval, J., Vidal, E., Whiffin, N., Planchon, A., et al. (2014). Putative cis-regulatory
drivers in colorectal cancer. Nature 512, 87–90.

43. Danckwardt, S., Hentze, M.W., and Kulozik, A.E. (2008). 30 end mRNA processing:
molecular mechanisms and implications for health and disease. EMBO J. 27,
482–498.

44. Morlacchi, P., Robertson, F.M., Klostergaard, J., and McMurray, J.S. (2014).
Targeting SH2 domains in breast cancer. Future Med. Chem. 6, 1909–1926.

45. Pereira, B., Billaud, M., and Almeida, R. (2017). RNA-Binding Proteins in Cancer:
Old Players and New Actors. Trends Cancer 3, 506–528.

46. Prasad, A.S., Beck, F.W., Snell, D.C., and Kucuk, O. (2009). Zinc in cancer prevention.
Nutr. Cancer 61, 879–887.

47. Sharma, P.S., Sharma, R., and Tyagi, T. (2009). Receptor tyrosine kinase inhibitors as
potent weapons in war against cancers. Curr. Pharm. Des. 15, 758–776.

48. Manning, G., Plowman, G.D., Hunter, T., and Sudarsanam, S. (2002). Evolution of
protein kinase signaling from yeast to man. Trends Biochem. Sci. 27, 514–520.

49. Roskoski, R., Jr. (2005). Src kinase regulation by phosphorylation and dephosphory-
lation. Biochem. Biophys. Res. Commun. 331, 1–14.

50. Leonessa, F., and Clarke, R. (2003). ATP binding cassette transporters and drug resis-
tance in breast cancer. Endocr. Relat. Cancer 10, 43–73.

51. Zalba, S., and Ten Hagen, T.L. (2017). Cell membrane modulation as adjuvant in can-
cer therapy. Cancer Treat. Rev. 52, 48–57.

52. Fukumoto, M., Amanuma, T., Kuwahara, Y., Shimura, T., Suzuki, M., Mori, S.,
Kumamoto, H., Saito, Y., Ohkubo, Y., Duan, Z., et al. (2014). Guanine nucleotide-
686 Molecular Therapy: Nucleic Acids Vol. 21 September 2020
binding protein 1 is one of the key molecules contributing to cancer cell radioresist-
ance. Cancer Sci. 105, 1351–1359.

53. Knights, A.J., Funnell, A.P., Crossley, M., and Pearson, R.C. (2012). Holding Tight:
Cell Junctions and Cancer Spread. Trends Cancer Res. 8, 61–69.

54. Smithgall, T.E. (1995). SH2 and SH3 domains: potential targets for anti-cancer drug
design. J. Pharmacol. Toxicol. Methods 34, 125–132.

55. Costello, J.C., Heiser, L.M., Georgii, E., Gönen, M., Menden, M.P., Wang, N.J., Bansal,
M., Ammad-ud-din, M., Hintsanen, P., Khan, S.A., et al.; NCI DREAM Community
(2014). A community effort to assess and improve drug sensitivity prediction algo-
rithms. Nat. Biotechnol. 32, 1202–1212.

56. Cai, Z., Zhang, T., and Wan, X.F. (2010). A computational framework for influenza
antigenic cartography. PLoS Comput. Biol. 6, e1000949.

57. Huang, L., Li, X., Guo, P., Yao, Y., Liao, B., Zhang, W., Wang, F., Yang, J., Zhao, Y.,
Sun, H., et al. (2017). Matrix completion with side information and its applications in
predicting the antigenicity of influenza viruses. Bioinformatics 33, 3195–3201.

58. Chen, X., Wang, L., Qu, J., Guan, N.N., and Li, J.Q. (2018). Predicting miRNA-disease
association based on inductive matrix completion. Bioinformatics 34, 4256–4265.

59. Chen, X., Sun, L.G., and Zhao, Y. (2020). NCMCMDA: miRNA-disease association
prediction through neighborhood constraint matrix completion. Brief. Bioinform.
Published online January 12, 2020. https://doi.org/10.1093/bib/bbz159.

60. Jang, I.S., Neto, E.C., Guinney, J., Friend, S.H., and Margolin, A.A. (2014). Systematic
assessment of analytical methods for drug sensitivity prediction from cancer cell line
data. Pac. Symp. Biocomput. 63–74.

61. Cancer Cell Line Encyclopedia Consortium; Genomics of Drug Sensitivity in Cancer
Consortium (2015). Pharmacogenomic agreement between two cancer cell line data
sets. Nature 528, 84–87.

62. Cortés-Ciriano, I., vanWesten, G.J., Bouvier, G., Nilges, M., Overington, J.P., Bender,
A., and Malliavin, T.E. (2016). Improved large-scale prediction of growth inhibition
patterns using the NCI60 cancer cell line panel. Bioinformatics 32, 85–95.

63. Wan, Q., and Pal, R. (2014). An ensemble based top performing approach for NCI-
DREAM drug sensitivity prediction challenge. PLoS ONE 9, e101183.

64. Chen, X., Zhu, C.C., and Yin, J. (2019). Ensemble of decision tree reveals potential
miRNA-disease associations. PLoS Comput. Biol. 15, e1007209.

http://refhub.elsevier.com/S2162-2531(20)30192-X/sref39
http://refhub.elsevier.com/S2162-2531(20)30192-X/sref39
http://refhub.elsevier.com/S2162-2531(20)30192-X/sref40
http://refhub.elsevier.com/S2162-2531(20)30192-X/sref40
http://refhub.elsevier.com/S2162-2531(20)30192-X/sref40
http://refhub.elsevier.com/S2162-2531(20)30192-X/sref41
http://refhub.elsevier.com/S2162-2531(20)30192-X/sref41
http://refhub.elsevier.com/S2162-2531(20)30192-X/sref41
http://refhub.elsevier.com/S2162-2531(20)30192-X/sref41
http://refhub.elsevier.com/S2162-2531(20)30192-X/sref42
http://refhub.elsevier.com/S2162-2531(20)30192-X/sref42
http://refhub.elsevier.com/S2162-2531(20)30192-X/sref42
http://refhub.elsevier.com/S2162-2531(20)30192-X/sref43
http://refhub.elsevier.com/S2162-2531(20)30192-X/sref43
http://refhub.elsevier.com/S2162-2531(20)30192-X/sref43
http://refhub.elsevier.com/S2162-2531(20)30192-X/sref43
http://refhub.elsevier.com/S2162-2531(20)30192-X/sref44
http://refhub.elsevier.com/S2162-2531(20)30192-X/sref44
http://refhub.elsevier.com/S2162-2531(20)30192-X/sref45
http://refhub.elsevier.com/S2162-2531(20)30192-X/sref45
http://refhub.elsevier.com/S2162-2531(20)30192-X/sref46
http://refhub.elsevier.com/S2162-2531(20)30192-X/sref46
http://refhub.elsevier.com/S2162-2531(20)30192-X/sref47
http://refhub.elsevier.com/S2162-2531(20)30192-X/sref47
http://refhub.elsevier.com/S2162-2531(20)30192-X/sref48
http://refhub.elsevier.com/S2162-2531(20)30192-X/sref48
http://refhub.elsevier.com/S2162-2531(20)30192-X/sref49
http://refhub.elsevier.com/S2162-2531(20)30192-X/sref49
http://refhub.elsevier.com/S2162-2531(20)30192-X/sref50
http://refhub.elsevier.com/S2162-2531(20)30192-X/sref50
http://refhub.elsevier.com/S2162-2531(20)30192-X/sref51
http://refhub.elsevier.com/S2162-2531(20)30192-X/sref51
http://refhub.elsevier.com/S2162-2531(20)30192-X/sref52
http://refhub.elsevier.com/S2162-2531(20)30192-X/sref52
http://refhub.elsevier.com/S2162-2531(20)30192-X/sref52
http://refhub.elsevier.com/S2162-2531(20)30192-X/sref52
http://refhub.elsevier.com/S2162-2531(20)30192-X/sref53
http://refhub.elsevier.com/S2162-2531(20)30192-X/sref53
http://refhub.elsevier.com/S2162-2531(20)30192-X/sref54
http://refhub.elsevier.com/S2162-2531(20)30192-X/sref54
http://refhub.elsevier.com/S2162-2531(20)30192-X/sref55
http://refhub.elsevier.com/S2162-2531(20)30192-X/sref55
http://refhub.elsevier.com/S2162-2531(20)30192-X/sref55
http://refhub.elsevier.com/S2162-2531(20)30192-X/sref55
http://refhub.elsevier.com/S2162-2531(20)30192-X/sref56
http://refhub.elsevier.com/S2162-2531(20)30192-X/sref56
http://refhub.elsevier.com/S2162-2531(20)30192-X/sref57
http://refhub.elsevier.com/S2162-2531(20)30192-X/sref57
http://refhub.elsevier.com/S2162-2531(20)30192-X/sref57
http://refhub.elsevier.com/S2162-2531(20)30192-X/sref58
http://refhub.elsevier.com/S2162-2531(20)30192-X/sref58
https://doi.org/10.1093/bib/bbz159
http://refhub.elsevier.com/S2162-2531(20)30192-X/sref60
http://refhub.elsevier.com/S2162-2531(20)30192-X/sref60
http://refhub.elsevier.com/S2162-2531(20)30192-X/sref60
http://refhub.elsevier.com/S2162-2531(20)30192-X/sref61
http://refhub.elsevier.com/S2162-2531(20)30192-X/sref61
http://refhub.elsevier.com/S2162-2531(20)30192-X/sref61
http://refhub.elsevier.com/S2162-2531(20)30192-X/sref62
http://refhub.elsevier.com/S2162-2531(20)30192-X/sref62
http://refhub.elsevier.com/S2162-2531(20)30192-X/sref62
http://refhub.elsevier.com/S2162-2531(20)30192-X/sref63
http://refhub.elsevier.com/S2162-2531(20)30192-X/sref63
http://refhub.elsevier.com/S2162-2531(20)30192-X/sref64
http://refhub.elsevier.com/S2162-2531(20)30192-X/sref64

	An Improved Anticancer Drug-Response Prediction Based on an Ensemble Method Integrating Matrix Completion and Ridge Regression
	Introduction
	Results
	Parameter Optimization
	Prediction Performance of the Proposed Models
	Drug-Response-Associated Genes and Their Function Enrichment Analyses

	Discussion
	Materials and Methods
	Datasets
	The MC Model
	The RR Model
	The MC-RR Combination Model
	Crossvalidation and Evaluation Criteria

	Supplemental Information
	Author Contributions
	Acknowledgments
	References




