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Abstract

Background: Perilla (Perilla frutescens (L) var frutescens) produces high levels of a-linolenic acid (ALA), a w-3 fatty
acid important to health and development. To uncover key genes involved in fatty acid (FA) and triacylglycerol
(TAG) synthesis in perilla, we conducted deep sequencing of cDNAs from developing seeds and leaves for
understanding the mechanism underlying ALA and seed TAG biosynthesis.

Results: Perilla cultivar Dayudeulkkae contains 66.0 and 56.2 % ALA in seeds and leaves, respectively. Using lllumina
HiSeqg 2000, we have generated a total of 392 megabases of raw sequences from four mRNA samples of seeds at
different developmental stages and one mature leaf sample of Dayudeulkkae. De novo assembly of these sequences
revealed 54,079 unique transcripts, of which 32,237 belong to previously annotated genes. Among the annotated
genes, 66.5 % (21,429 out of 32,237) showed highest sequences homology with the genes from Mimulus guttatus, a
species placed under the same Lamiales order as perilla. Using Arabidopsis acyl-lipid genes as queries, we searched
the transcriptome and identified 540 unique perilla genes involved in all known pathways of acyl-lipid metabolism.
We characterized the expression profiles of 43 genes involved in FA and TAG synthesis using quantitative PCR. Key
genes were identified through sequence and gene expression analyses.

Conclusions: This work is the first report on building transcriptomes from perilla seeds. The work also provides the
first comprehensive expression profiles for genes involved in seed oil biosynthesis. Bioinformatic analysis indicated
that our sequence collection represented a major transcriptomic resource for perilla that added valuable genetic
information in order Lamiales. Our results provide critical information not only for studies of the mechanisms
involved in ALA synthesis, but also for biotechnological production of ALA in other oilseeds.
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Background

Perilla frutescens, commonly called perilla, is a cultivated
crop of the mint family Lamiaceae. Two distinct
varieties, P. frutescens var. frutescens, the oilseed crop for
source of perilla oil, and P. frutescens var. crisp for the
aromatic leafy herb, are cultivated in East Asia countries
mainly in Korea, Japan and China [1]. P. frutescens var.
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frutescens, hereafter called perilla, contains 35-45 % tri-
acylglycerol (TAG) in seeds. It is a rich source of poly
unsaturated fatty acids (FA) showing 54-64 % of w-3 FA
(a-linolenic acid, ALA or 18:3) and 14 % w-6 FA (linoleic
acid, LA or 18:2) [2]. Major oil seed crops (e.g., soybean,
rapeseed, maize, peanut and sunflower) have relatively
low -3 FA content (below 10 % in total FAs) in seed
TAGs. The »-3 and w-6 FAs confer various health bene-
fits for human [3]. The recommended w-6/w-3 FA ratio
in human diet is 2:1 or lower [4, 5]. However, a typical
human diet has high w-6/w-3 FA ratio (approximately
15:1) which is considered as a major contributor to
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cardiovascular diseases [5]. Perilla seed oils have an ap-
proximately 0.2:1 ratio of w-6/w-3 FAs. This extremely
low ratio of w-6/w-3 FAs makes perilla a desirable diet-
ary source of vegetable oils [2]. Perilla oil also has many
industrial uses, such as for drying oil in paint, varnish
and ink manufacturing or as a substitute for linseed oil
[6]. Perilla seed cakes are used as animals and birds feed.

Most research for perilla has been focused on identifi-
cation of metabolites and their biological activities for
human health [7, 8]. Some of the genes involved in the
biosynthesis of anthocyanins, flavones and monoterpe-
noids have been studied [9, 10]. Recent reports on the
generation of transcriptome using high-throughput se-
quencing were primarily for identification of genes for
anthocyanin pathways associated with red or green leaf
varieties of perilla [11, 12]. In contrast, studies on the
molecular basis of seed FA and TAG synthesis in perilla
have been limited. A seed-specific omega-3 fatty acid
desaturase cDNA has been cloned [13] and character-
ized in perilla [14]. An oleosin promoter from perilla
was found to have a seed-specific activity in transgenic
Arabidopsis [15]. Besides perilla, flax (Linum usitatissi-
mum), sacha inchi (Plukenetia volubilis L.), and chai
(Salvia hispanica L., a member of mint family Lamia-
cease) also contain high percentage of ALA in seed oil
[14]. Seed transcriptome data of Chai [16] and sacha
inchi (Plukenetia volubilis L.) [17] have been published,
but a few genes contributing to the accumulation of w-3
FA have been characterized for their expression profiles
during seed development.

In this study, we adopted Illumina HiSeq 2000 platform
aiming at analyzing the seed transcriptome of perilla. A leaf
transcriptome was also included which allows comparison
and detection of differentially expressed gene (DEG) in de-
veloping seeds of perilla. We have identified 54,079 unique
transcripts from a total of 392 mega-base raw sequences,
including transcripts for the majority of enzymes involved
in lipid biosynthesis and metabolism. We further
characterize the expression profiles of 43 key genes in-
volved in FA and TAG in developing seeds and leaf using
quantitative PCR (qPCR) assays. To our knowledge this
work describes the first seed transcriptome of perilla, and
also the first spatial and temporal expression patterns of all
known key genes for FA and TAG synthesis in perilla. Our
results provide important information for understanding
the mechanisms involved in ALA accumulation in perilla.

Results and discussion

Fatty acid profile in developing seeds and leaf

To investigate the relationships between FA profile and
gene expression, we studied seed development in perilla.
We harvested developing seeds 1-4 weeks after flower-
ing (WAF) during seed development and found that
seeds matured at 5 WAF (Fig. 1a). These harvested seed
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Fig. 1 Seed development and fatty acids composition of Perilla
frutescens (L) var. frutescens. a Photographs of seeds from 1 to 4 weeks
after flowering (WAF) and mature seeds. Scale bar indicate 0.5 cm. b
Change of total fatty acid content during seed development. ¢ Fatty acid
composition during seed development. Biological triplicates were

averaged. Bars indicate the standard error (SE) of the mean

samples were analyzed for their FA content and compos-
ition by gas chromatograph (GC). During seed develop-
ment, total FAs were measured at a very low level of
2.8 ug.mg ' in seeds at 1 WAF and increased steadily to
43 pgmg ' at 2 WAF, 205 pg.mg ' at 3 WAF and
353 pug.mg ' at 4 WAF (Fig. 1b). We measured an aver-
age of total FA at 415 pg.mg " in mature seeds (5 WAF
and older), which is about 40 % of seed dry weight. Ma-
ture seeds at 5 WAF contained 66 % of ALA, 13.8 % of
LA, 11.2 % of oleic acid (18:1 A9), 1.7 % of stearic acid
(18:0), and 7.3 % of palmitic acid (16:0) (Fig. 1c). ALA
was also found to be a predominant FA in young seeds,
showing 30.9 and 50.5 % at 1 and 2 WAE, respectively
(Fig. 1c). After 2 WAF, ALA level gradually reached a
plateau level of 66 %. Oleic acid was 7.7 % in seeds at 1
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WAF and increased to 15.1 % at 2 WAF and maintained
similar levels thereafter to the maturation stage. The
remaining three FAs, palmitic acid, stearic acid and LA,
had slight declining accumulation patterns during seed
development. These FAs had levels at 25.7, 6.8 and 29 %,
respectively at 1 WAEF, then declined to about half of their
beginning levels at 2 WAF, and maintained the levels
throughout the remaining stages of seed development. In
a leaf sample, we also detected a high level of ALA at
56.2 %, similar to that of mature seeds (Additional file 1:
Table S1). Besides ALA, there are six FAs in leaves, repre-
sented at 14.9 % for LA, 3.3 % for oleic acid, 2 % for ste-
aric acid, 4.3 % for hexadecatrienoic acid (16:3), 2.2 % for
palmitoleic acid (16:1), and 17.2 % for palmitic acid
(Additional file 1: Table S1). Our observed spatial and
temporal patterns of FAs in developing seeds and leaf tis-
sues were similar to described [14].

Transcriptome sequencing of perilla and de novo assembly

RNA samples from four different stages of developing
seeds (1-4 WAF) and leaf were sequenced using Illumina
Hiseq2000 system, which generated total 392,479,798
reads. After trimming the adapter and low quality reads
and removing those shorter than 25 bp, a total
372,171,322 high quality reads were obtained from com-
bined four different stages of developing seeds and one
leaf libraries (Table 1). These reads were assembled into
191,545 contigs (or transcripts) (N50=1900 bp) and
80.7 % of them (154,621 transcripts) were annotated
(Additional file 1: Table S2). Using a sequence similarity
cutoff of 95 %, the assembled sequences were clustered
into 54,079 unique transcripts, with an average length of
871 bp and total size of 47.1 Mb (Additional file 1: Table
S2). Transcripts and unique transcripts were searched
against the Phytozome database (http://phytozome.jgi.-
doe.gov) using BLASTx with E-value cut-off of 1E-10. The
search resulted 154,621 transcripts and 32,237 unique
transcripts (Additional file 1: Table S2). These sequences
had at least one match to known protein sequences in 39
plant species (Additional file 1: Tables S2, S3 and S4).
Analysis of length distribution in assembled transcripts in-
dicated that the transcripts varied between 1 to >3601 bp
(Additional file 2: Figure S1). Transcripts with 301-600 bp
were the most abundant among the assembled transcripts
and unique transcripts (Additional file 2: Figure S1). Two
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transcriptome data from leaves of perilla variety, P. frutes-
cens var. frutescens Britt (Accession name:PF98095) [11]
and P. frutescens var. crispa [12], were yielded 48,009 and
54,500 transcripts with average length of 873, and 824 bp,
respectively. Our transcriptome assembly showed similar
number of 54,079 unique transcripts. However, our N50
unique transcript size of our perilla was 1401, which is
higher than 904 bp for P. frutescens var. frutescens Britt
[11] and 1349 bp for P. frutescens var. crispa [12].

Functional annotation of perilla transcriptome

We validated and annotated the unique transcripts with
BLASTx homology search in Phytozome database. Among
total 32,237 annotated unique transcripts, 21,429 tran-
scripts (66.5 %) are highly matched with proteins from
Mimulus guttatus (Monkey flower), followed by 1709
(5.3 %), 1431 (4.4 %), and 977 (3.0 %) transcripts matched
with proteins from Solanum tuberosum, Solanum lycoper-
icum and Vitis vinifera, respectively. The remaining 6691
(21 %) transcripts matched protein sequences from 37
plant species (Additional file 2: Figure S2). It is not a sur-
prise that most perilla transcripts have high sequence
homology to M. guttatus [18], as both species are under
the same Lamiales order. The results allow the translation
of genomics and genetics research findings between AM.
guttatus and perilla.

Analysis of differentially expressed genes (DEG) in perilla
developing seeds

To examined the difference in gene expression between
seeds and leaves, we performed a DEG analysis using bow-
tie2 (v2.1.0) [19]. The up- or down-regulated genes were
determined by comparison with the level of corresponding
genes in leaf. The number of transcripts with > 2-fold
change with a false discovery rate (FDR) <0.01 was pre-
sented in Additional file 2: Figure S3. In developing seeds
at 1, 2 and 3 WAF, the numbers of up-regulated genes
were about 28-48 % less than that of down-regulated
genes, showing 1184, 1052 and 1032, respectively; whereas
the number of down-regulated genes presented at 1640,
2027 and 2151, respectively (Additional file 2: Figure S3).
When seeds reached to maturation at 4 WAF, the number
of up- and down-regulated genes had almost identical
numbers, 2059 or 2058 (Additional file 2: Figure S3). As
we can see, the numbers (1032-1184 counts) of up-

Table 1 Summary of sequencing data of P. frutescens seeds and leaf transcriptomes

Seed Leaf Total

1 week 2 weeks 3 weeks 4 weeks
Total number of raw reads 59,619,730 64,434,520 98,130,006 67,528,198 102,767,344 392,479,798
Total number of clean reads 57,081,328 61,445,940 92,851,684 63,305,772 97,486,598 372,171,322
“Trimmed/raw (%) 95.7 954 94.6 937 94.9 948

“Trimmed/raw: Total trimmed read/total raw read
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regulated genes were similar in seeds at the first three
stages (1-3 WAF), and increased to 2-fold (2,059 counts)
in 4 WAF. Whereas the numbers of down-regulated genes
(2027-2059 counts) were similar in seeds at late three
stages (2—4 WAF). The DEG detected in this study pro-
vides a global view of seed transcriptome which is import-
ant for further investigation of the molecular basis of seed
development not only in perilla, but also in other oilseeds.

Clustering of DEGs

Hierarchical clustering was performed with the 6012 DEGs
using Another Multidimensional Analysis Package (AMAP)
library in R [20] to examine the similarity and diversity of
expression profiles. Similarity of expression pattern of genes
was estimated with pearson’s correlation. The results are
displayed by Java Treeview (Additional file 2: Figure S4A).
The normalized values are represented by different colors,
with red representing positive values and green represent-
ing negative values. The analysis resulted in twelve clusters
(Additional file 2: Figure S4B). Cluster 1 (374 DEGs) and 6
(602) had a similar declining pattern showing a higher level
in seeds at 1 WAF, and decreased levels during the rest
stages of the development (Additional file 2: Figure S4B).
These DEGs may be important for early seed development.
DEGs in Cluster 2 (1851) were down-regulated in seeds at
all stages indicating that these genes were involved in cell
metabolism in leaf. In contrast, DEGs in Cluster 3, 4 and 5
were all up-regulated with slightly different trends showing
concave/flat, concave/rise and convex/flat, respectively.
These DEGs were likely seed specific genes. Genes in
Cluster 7-12 were less differentially expressed between leaf
and seeds (Additional file 2: Figure S4B). Cluster 7 (51) had
a convex/flat pattern with slightly higher expression levels
in seeds at early (1 WAF) and late (4 WAF) stages. Cluster
8 (106) and 10 (118) had similar concave/flat expression
patterns and both peaked in 2 WAF seeds. Cluster 9 (478)
and 11 (131) were both flat/rise and peaked at 4 WAF.
Cluster 12 (37) showed concaved/rise with a peaked expres-
sion at 3 WAF. The above variable temporal patterns indi-
cate that multiple mechanisms were involved in regulating
gene expression during perilla seed development. Similar
temporal patterns of DEGs were also observed in other oil-
seeds [21-23].

Analysis of seed abundant DEGs in Cluster 3, 4, 5 and 10

Gene Ontology (GO) analysis was further used to clas-
sify functions of transcripts in cluster 3, 4, 5, 10 DEG.
Using DAVID (http://david.abcc.ncifcrf.gov/tools.jsp)
based on the Arabidopsis Information Resource Gene
Ontology classification [24], a total of 2870 DEGs were
categorized into 43 functional groups under main GO
terms: cellular component, molecular function and bio-
logical process. DEGs in all four Cluster 3, 4, 5 and 10
showed similar functions. In the biological process, most

Page 4 of 18

transcripts were assigned to “nitrogen compound meta-
bolic process (264 counts,)”, followed by “cellular meta-
bolic process (235)”, “biosynthetic process (221) and
“primary metabolic process (141)”. In the cellular com-
ponents category, the majority of transcripts were asso-
ciated with the terms “cell periphery (264)”, followed by
“protein complex (57)”, and “organelle membrane (31)”.
In the molecular function group, the majority of tran-
scripts were related to the terms “ion binding (299)”,
“transferase activity (281)” “hydrolase activity (249)”,
“oxidoreductase activity (180)” and “transmembrane
transporter activity (81)” (Additional file 1: Table S5).
Additional file 1: Table S6 lists the top 50 DEGs from
Cluster 3, 4, 5 and 10. Among them, the most abundant
genes are seed storage proteins (cruciferin, cupins and
late embryogenesis abundant (LEA) proteins) and lipids
biosynthesis genes, including oleosins, hydroxysteroid
dehydrogenase I for TAG biogenesis, acyl carrier protein
and FAB2, FAD7/8 and FAD?2 for FA synthesis.

Analysis of acyl-lipid genes in developing seeds

The most comprehensive database of plant acyl-lipid
genes and pathways have been constructed for Arabi-
dopsis (http://arabidopsisacyllipids.plantbiology.msu.edu/
pathways/pathways) [25]. To identify acyl-lipid genes in-
volved in seed oil biosynthesis in perilla, we searched pe-
rilla assembled genes using Arabidopsis acyl-lipid genes
as queries. Among 975 queries, a total of 540 unique
transcripts were identified from perilla transcriptome
(Additional file 1: Table S7), which is about 55 %
matchup. A similar result (57 % match up) was obtained
when searching lesquerella (Physaria fendleri) transcrip-
tome using Arabidopsis acyl-lipid genes as queries [26].
Considering lesquerella and Arabidopsis both belong to
the same Brassicaceae, whereas perilla and Arabidopsis
are from different order, our results indicate that acyl-
lipid genes are conserved among different plant species.
Furtherly, we have focused on 43 major genes whose
functions are likely responsible for FA and TAG biosyn-
thesis based on our knowledge from model Arabidopsis
(Additional file 1: Table S8). Deduced amino acid
sequences of perilla genes had varied sequence identities
with those of Arabidopsis genes, showing a relatively
higher range of 74-92 % for FA biosynthesis than 41—
87 % for TAG assembly. Perilla oleosins involved in oil-
body formation showed 51-69 % identity compared with
those of Arabidopsis. Our data indicate that between pe-
rilla and Arabidopsis, genes for FA biosynthesis in plas-
tid are more conserved than those for TAG assembly in
ER. The high content of ALA in perilla seed TAG
(Fig. 1b and c) is probably resulted from some the genes
in ER modified through evolution and become favorable
for generating ALA in seed oils.
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Genes for FA biosynthesis in plastids for PDHC: PDH (Ela), PDH (EIf$) EMB3003 (E2),
Knowledge of genes and pathways involved in seed oil LTA2(E2) and LPDI (E3) (Additional file 1: Table S8).
biosynthesis has been extensively studied. FAs are Spatial and temporal analysis of gene expression of these
synthesized in plastid and then exported to cytosol to be ac-  five subunits indicated that they all expressed in leaf and
tivated to acyl-Coenzyme A (CoA) for TAG assembly in ER  seeds; during seed development, they all had similar bell-
[25, 27, 28]. Key genes and pathways involved in de novo  shaped patterns with peaks at 2 WAF (Fig. 3c). The results
FA biosynthesis in perilla plastids are proposed (Fig. 2). suggest that genes encoding subunit of PDHC are coordi-
Acetyl-CoA generated from pyruvate by the plastidial pyru-  nated regulated for synthesizing acetyl-CoA in seed and
vate dehydrogenase complex (PDHC) is used as a starting  leaf (Fig. 3).

substrate for FA synthesis (Figs. 2 and 3b). The PDHC is a Once acetyl-CoA is synthesized, a heteromeric com-
large multienzyme containing three components: E1 (pyru-  plex enzyme, acetyl-CoA carboxylase (ACC) catalyzes
vate dehydrogenase or PDH, composed of Ela and E1f8  acetyl-CoA to form malonyl-CoA (Figs. 2 and 4a) [30].
subunits), E2 (dihydrolipoyl acyltransferase or DHLAT), A malonyl-CoA ACP transferase (MCMT) then further
and E3 (dihydrolipoamide dehydrogenase or LPD) [29]. In  converts malonly-CoA to malonly-ACP. Perilla MCMT
perilla transcriptomes, we have identified five subunit genes  ortholog (Locus_14579) was identified showing 86 %
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— . :_' ‘.:i “\.‘ \*
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Fig. 2 Predicted FA and TAG biosynthetic pathways in perilla seeds. Numbers after the genes (#W) indicate the highest WAF of its expression in
developing seeds. Inside of bright green rectangle presents FA biosynthesis and fatty acid export from plastid. Inside of bright red rectangle
presents glycerolipids biosynthesis for TAG formation in ER. Yellow circle indicate TAG in oil body. WRI1 transcription factor regulates a-PDH, BCCR,
MCMT, KASIII and EAR genes in FA biosynthesis. Red rectangles inside of ER represent acyl-CoA pools and reaction of desaturation by FAD2 and
FAD3 in PC, respectively. Acyl-CoA dependent Kennedy pathway is indicated with red arrow. PC-mediated TAG synthesis pathways are indicated
with green (by PDAT), blue (by PDCT and CPT) and orange (by LPCAT). Abbreviations: WRI1, wrinkled1; PDHC, plastidial pyruvate dehydrogenase complex;
PDH, pyruvate dehydrogenase; DHLAT, dihydrolipoly acyltransferase; LPD, dihydrolipoamide dehydrogenase; ACC, acetyl-CoA carboxylase; CT, carboxyltransferase;
BC, biotin carboxylase; BCCP, biotin carboxy! carrier protein; CoA, coenzyme A; ACP, acyl carrier protein; MCMT, malonly-CoA ACP transferase; KAS, ketoacyl-ACP
synthase; KAR, 3-ketoacyl-ACP reductase; HAD, 3-hydroxyacyl-ACP dyhydratase; EAR, 2-enoyl-ACP reductase; FAB2, fatty acid biosynthesis2; FATA, acyl-ACP
thioesterase A; FATB, acyl-ACP thioesterase B; LACS, long-chain acyl-CoA synthase; FAD2, A12 oleic acid desaturase; FAD3, A15 (w-3) linoleic acid desaturase;
GPAT9, glycerol 3-phosphate acyltransferase 9; LPAT2, lysophosphatidic acid acyltransferase 2; LPCAT, lysophosphatidylcholine acyltransferase; DGAT,
diacylglycerol acyltransferase; PDAT, phospholipid: diacylglycerol acyltransferase; CPT, CDP-cholineDAG cholinephosphotransferase; PDCT, phosphatidylcholine-
diacylglycerol cholinephosphotransferase; G3P, glycerol-3-phosphate; LPA, lysophosphatidic acid; PA, phosphatidic acid; LPC, lysophosphatidylcholine; PC,
phosphatidylcholine; DAG, diacylglycerol; TAG, triacylglycerol; OLN, oleosin
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Fig. 3 Synthesis of acetyl-CoA from pyruvate in plastids. a Expression of WRINKLED1 (WRI1). b Pyruvate dehydeogenase complex (PDHC) reaction.
¢ Expression of five subunits genes of PDHC. Abbreviations are described as in Fig. 2

developing seeds

homology with Arabidopsis MCMT (At2g30200) and it
is expressed high in 2 WAF developing seeds (Fig. 8a).
ACC is composed of 4 subunits, 3 of them, biotin
carboxyl-carrier protein (BCCP), biotic carboxylase (BC)
and alpha-carboxyltransferase (a-CT) are encoded from
nuclear genome; and beta-carboxyltransferase (B-CT) is
encoded in plastid genome [31]. Six subunit genes were
identified from perilla seeds and leaf transcriptomes
(Additional file 1: Table S8). They are isoforms of
BCCP1 and BCCP2, BC, isoforms of a-CTa and a-CTb,
and B-CT. Spatial and temporal analysis of gene expres-
sion revealed that all of them were expressed signifi-
cantly in leaf. During seed development, BCCPI
(Locus_29162) had flat-rise from 2 to 4 WAF, and
BCCP2 (Locus_17340) had a bell-shaped pattern with
high levels at 2 and 3 WAF. The BC also had a bell-
shaped pattern, but with a high level only at 2 WAF.

Isoforms a-CTa (Locus_8492) had a bell-shaped pattern
similar to that of BCCP2. However a-CTh (Locus_2178)
did not expressed in developing seeds. The S-CT
(Locus_53041) was expressed moderately from 2 to 4
WAF (Fig. 4b). Thus, with exception of a-CTb, the other
5 genes a-CTa, -CT, BC and BCCPI or BCCP2 may co-
ordinately work together in seeds.

FA elongation is conducted by an acyl-chain specific
condensing enzyme subunit, 3-keto-acyl-ACP synthase
(KAS). and 3 common components, 3-ketoacyl-ACP re-
ductase (KAR), 3-hydroxylacyl-ACP dehydratase (HAD)
and 2-enoyl-ACP reductase (EAR) (Fig. 5a) [32]. KAS
III, T and II specifically catalyze the reaction of acyl-
chain elongation for 2:0-ACP to 4:0-ACP, 4:0-ACP to
16:0-ACP and 16:0-ACP to 18:0-ACP, respectively. Based
on the sequence homology with Arabidopsis genes, we
have identified perilla orthologs for all these subunits
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(Additional file 1: Table S8). Three KAS isoforms and
three component of fatty acid synthase (FAS) showed
similar temporal expression patterns during seed devel-
opment (Fig. 5b). WRINKELD1 (WRI1) is a transcrip-
tion factor for regulating some of the genes associated to
FA biosynthesis in plastids. Arabidopsis WRII regulates
a-PDH, BCCP2, MCMT, KASIII and EAR genes in FA
biosynthesis in seed development (Fig. 2) [33]. Perilla
WRII ortholog (Locus_23825) showed 82 % identity with
that of Arabidopsis and it had a seed-specific expression
pattern with a peak at 2 WAF (Fig. 3a). Overexpression
of Brassica and maize WRI increased in 10—40 % of seed
oils in transgenic plants [34, 35]. Perilla WRI1 could be
used for engineering oilseeds for increased FA produc-
tion in plastids which would provide increased FA
supply for TAG assembly.

Stearoyl-ACP desaturase (SAD) catalyzes 18:0-ACP to
18:1-ACP in plastid (Fig. 2). Arabidopsis has seven SAD
family genes included FAB2 (At2g43710), and FAB2 plays a
major role in producing 18:1 [36]. Perilla ortholog
(Locus_13564) of Arabidopsis FAB2 was detected in the
seed transcriptome, and a homologue of Atlg43710, DES6
(Locus_9486), was detected in the leaf transcriptome.
Detailed analysis of gene expression confirmed that indeed
perilla FAB2 and DES6 were differentially expressed in
seeds and leaf, respectively (Fig. 5b). 16:0-ACP, 18:0-ACP
and 18:1-ACP are hydrolyzed to the acyl moiety from ACP
by two fatty acid thioesterases. FATA and FATB are specific
to 18:1-ACP and 16:0 or 18:0-ACPs, respectively. Two fatty
acid thioesteases FATA (orthologous Locus_29919 of
At3g25110) and FATB (orthologous Locus_6603 of
At1g08510) were both detected in perilla seeds and leaf.



Kim et al. BMC Genomics (2016) 17:474 Page 8 of 18

2:0-ACP

Ii KASIIIl
4:0-ACP

Plastid

e )

FAS .
KAS : ER
KASI |
23 H
FATB
? E 16:0-ACP —» 160 6:0-CoA
l_ KASII
/FAB1 &y 18:0 18:0-CoA
18:0-ACP
~ 18:1 18:1-CoA
FAle V
.

18:1-ACP

KASHl KASI KASH KAR
5 4 8 15
Locus_10821 . Locus_26341 s Locus_1373 Locus_1445
| 3
% ! i
B 5
: 32 ) 3
: g H 2 o)
14 2
,, | 1 :
1 2 3 4 leaf 0- b 2 3 4 leaf 0.0
developing seeds 3 2 3 3w~ P 1 2 3 4 leaf
developing seeds developing seeds —dlulopino e
HAD EAR FAB2 DES6
15 1.5 15 25
Locus_19332 _3 Locus_25443 < |Locus_13564 Locus_9486
2.0
-g u B 1.04 g
: - § £ s
e : : 2 10]
g 0.5 § o. .; 0.54 % i
«© e g E 0.54
0.0 0. 0.04
1 2 3 4 leat 1 2 3 4 leaf d T S S ML 12 3 4 leat
developing seeds daveloping saeds “Jeveloping seeds “Geveloping seeds
FATA FATB LACS8 LACS9
& . 3 15
Locus_29919 - Locus_6603 Locus_3838 Locus_23636
44

-
3

w
i

d
o
T

Relative expression
Relative expression

Relative expression

-
I
-
L

Relative expression
L]

o
?

luuls

1 2 3 4 |leaf

z-I—I—I—I-I
04
1 2 3 4 leaf 1 2 3 4 leaf

developing seeds developing seeds developing seeds

e
e

1 2 3 4  leaf

developing seeds

Fig. 5 Synthesis of FAs and acyl-CoAs. a Pathway of synthesis of FA and acyl-CoA b Expression of genes for FA and acyl-CoA synthesis. Abbreviations
are described as in Fig. 2

-




Kim et al. BMC Genomics (2016) 17:474

However, the temporal expression of FATA and FATB were
complementary to each other, showing a bell-shaped pat-
tern with high levels at 2 and 3 WAF for FATA and
inverted bell curve with high levels at 1 and 4 WAF for
FATB (Fig. 5b). The higher expression of FATA at 2-3
WAF would suggest more 18:1 were terminated and re-
leased to ER, coinciding with the stages when seeds under-
went rapid TAG synthesis. The highest transcript level of
FATB detected in seeds at 1 WAF would suggest a swift de-
mand of 16:0 and 18:0 for membrane biosynthesis at the
onset of seed development, consisting with the higher levels
of 16:0 and 18:0 detected in seeds at 1 WAF (Fig. 1c) [37].
Long chain acyl-CoA synthase (LACS) is located mem-
brane of plastid outer envelope and/or ER and catalyzes
free fatty acid to add Coenzyme A (CoA) for producing
fatty acyl-CoA. Two perilla LACSs, LACS8 (Locus_3838
ortholog of At2g04350) and LACS9 (Locus_23636 ortholog
of Atlg77590), were identified. Expression of the LACS9
exhibited a bell-shaped pattern with a maximum level at 2
WAF (Fig. 5b), which may associate with the increased de-
mand of FA-CoA formation in cytosol [38] when develop-
ing seeds entering rapid growth phase. LACS9 was
localized in plastid outer envelope [38]. For the LACSS,
more transcripts were detected in seeds at 3—4 WAF than
1-2 WAF (Fig. 5b), therefore, the ER-localized LACS8
might be involved in TAG synthesis [39].

Desaturases associated with ER

ER contains two desaturases, FAD2 and FAD3. These en-
zymes catalyze desaturation of FAs attached to PC from
PC-18:1 to PC-18:2 (FAD2) and from PC-18:2 to PC-18:3
(FAD3) [40-42] (Fig. 6a). During the search of perilla
transcriptomes, we uncovered three loci, Locus 773,
Locus_22029 and Locus_5107 encoding desaturases. Re-
sults of sequence alignment showed Locus_773 having
79 % of identity with the first plant FAD2 from Arabidopsis
(AtFAD2, Additional file 2: Figure S5A) [41]. Further phylo-
genetic analysis of 32 plant FAD2s revealed that the perilla
sequence fell in a clade belong to constitutive type FAD2s
(Additional file 2: Figure S5B). We designated this sequence
encoding perilla FAD2 (PfrFAD2, Fig. 6c, Genbank ID:
KP070823). During seed development, PfrFAD2 expressed
at a low level at 1 WFA, but it elevated to 33.8-, 50.0- and
21.2-fold at 2, 3 and 4 WFA, respectively (Fig. 6d). In leaf,
PfrFAD?2 expressed at a significantly level showing 6.3-fold
higher than that of seeds at 1WAF (Fig. 6d). In some plant
species, such as Brassica and Camelina, additional FAD2s
exist as seed-type isoforms [43, 44]. Without whole genome
sequences, we cannot exclude the possibility of perilla hav-
ing a seed-type FAD2 isoform. Nevertheless, our spatial
and temporal gene expression data indicate that PfrFAD2
plays an essential role in generating PC-18:2 by desatur-
ation of PC-181 in both leaf and seed. We found
Locus_22029 and Locus_5107 sharing the same sequence
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as published FAD3 (Genbank ID: KP070824) and FAD7/8
(Genbank ID: U59477.1), thus designated them to encode
PfrFAD3 and PfrFAD7/8, respectively (Fig. 6b). Sequence
alighments showed three His box conserved domains
(HDCGH, HRTHH and HVIHH) among PfiFADS3,
PrFAD7/8, AtFAD3, AtFAD7 and AtFADS8 (Additional file
2: Figure S6) [45]. Besides, PfrFAD3 showed 70 % protein
sequence identity with AtFAD3. PfrFAD7/8 showed 75 and
76 % identity with AtFAD7 and AtFADS, respectively
(Additional file 2: Figure S6). Between PfrFAD3 and
PfrFAD7/8, a 68 % identity in protein sequences was de-
tected (Fig. 6b). Phylogenetic analysis of desaturase genes
among perilla, Arabidopsis [42], cotton [45] and flax [46]
indicated that PfrFAD3 fell to ER-localized clade, whereas
PfrFAD7/8 fell to chloroplast-localized clade (Fig. 6¢). Re-
sults of our gene expression analysis indicated that expres-
sion of PfrFAD3 were highly elevated in seeds at 2—3 WAEF,
showing 45.2- and 160.0-fold induction compared with the
level in seeds at 1 WFA (Fig. 6d). A previous Northern ana-
lysis indicated that PfrFAD3 only expressed in seed, not in
leaf, stem and root tissues of perilla [13]. Since we are using
qPCR which is more sensitive than Northern, we detected
PfrFAD3 expressed in leaf at a significant level similar to
that of PfFAD2 (Fig. 6d). In contrast, expression of
PfrFAD7/8 was not detected during the most stages of seed
development (2—4 WAF), only a low level of the transcript
was detected in young seeds at 1 WAF (Fig. 6d) where no
seed TAG was measured. However, we found that
PfrFAD7/8 was highly expressed in leaf, indicating the im-
portance of its function in leaf. Perilla contains high level of
18:3 FAs not only in seeds (Fig. 1c) but also in leaf
(Additional file 1: Table S1). In leaves, glycerolipid (GL)
moiety as PA or diacylglycerol (DAG) can flux between
chloroplast and ER [31]. There are two linoleate desa-
turases, FAD7 and FADS, structurally related with FAD3 in
chloroplasts of Arabidopsis [47, 48]. Perilla leaf contains a
high level of 18:3 up to 56.2 %, indicating that the majority
of GL are transported from ER to chloroplast where GL-
18:2 are then converted to GL-18:3 by FAD7/8 (Fig. 6a).
Compared with PfrFAD3, PfrFAD7/8 N-terminus contains
extra amino acid sequences encoding chloroplast transit
peptide which supports the role of desaturation for mem-
brane lipid in chloroplasts (Fig. 6b). Overall, our results of
sequence and gene expression analyses provide essential in-
formation that PfrFAD3 and PfrFAD7/8 may be major en-
zymes for synthesizing 18:3 in seed TAGs and leaf
membrane glycerolipids, respectively.

TAG biosynthesis in ER

Multiple mechanisms are involved in TAG biosynthesis
in ER [25, 27, 28]. Acyl-CoAs in the cytosol can be in-
corporated into TAG through the glycerol-3-phosphate
(G3P) pathway or the Kennedy pathway [49, 50], which
involves three sequential acylation of acyl-CoAs into
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G3P. Firstly, G3P is acylated by glycerol-3-phosphate
acyltransferase (GPAT), followed by a second acylation
by the acyl-CoA:acylglycerol-3-phosphate acyltransferase
(LPAT), yielding phosphatidic acid (PA). PA is then hy-
drolyzed to form diacylglycerol (DAG), which is finally
used as a substrate for the diacylglycerol acyltranstrans-
ferase (DGAT) to produce TAG. The acyl-CoAs can also
be incorporated directly into phospatidylcholine (PC) by
the acyl editing reactions [25, 51, 52]. These acyl editing
reactions can be catalyzed either by forward and reverse
reactions of lyso-PC acyltransferase (LPCAT) to yield
acyl-CoA, or by a phospholipase A—type activity to yield
a free FA that then is activated to acyl-CoA. Since PC is
the site for modified FA synthesis including 18:2, ALA,
rapid de-acylation and re-acylation of PC results in an
acyl-CoA pool enriched with unsaturated FAs which are
then utilized for TAG synthesis [53, 54]. Besides, many
plants utilize PC-mediated pathways to synthesize TAG.
The enzyme Phospholipid:DAG acyltransferase (PDAT)
syntheses TAG by transacylation of the sn-2 FA from PC
onto sn-3 position of DAG [55]. FAs at the sn-1 and sn-2
position of PC in perilla can could be converted to TAG
through DAG by phosphatidylcholine:diacylglycerol choli-
nephosphotransferase (PDCT) which exchanges phospho-
choline between PC and DAG [56, 57]. CDP-choline:DAG
cholinephosphotransferase (CPT) catalyzes the reaction of
CDP-choline with DAG to generate PC. This reaction can
be reversible [58—60]. PDCT and the reverse reaction of
CPT would facilitate the FA on PC to be incorporated to
TAG. A schematic drawing of TAG biosynthesis in perilla
seeds is presented in Fig. 7a.

Genes involved in Kennedy pathway and acyl editing
reactions

Based on the putative Arabidopsis GPAT9 (At5g60620) se-
quence [61], a perilla GPAT9 (PfrGPAT9) transcript
(Locus_10180) was found from the transcriptomes showing
81 % sequence identity to At5g60620 (Additional file 1:
Table S8). PfrGPAT9 transcript levels were comparable
among leaf and developing seeds at different stages, al-
though a bell-shaped pattern peaked at 2 WAF, the overall
changes were about 2-fold or less (Fig. 7b). Perilla LPAT2
(PfrLPAT2, Locus_6587), was identified using Arabidopsis
LPAT2 (At3g57650) known to be involved in seed TAG
biosynthesis [62]. Perilla and Arabidopsis LPAT2s share
81 % sequence identity. (Additional file 1: Table S8).
PfrLPAT2 expression showed a continuous increase from 1
to 4 WAF during seed development, and its expression is
higher in leave than seeds (Fig. 7b). The spatial and tem-
poral expression patterns of perilla GPAT9 and LPAT2 sug-
gest their constitutive functions with house-keeping roles in
both membrane lipid and TAG synthesis. DGAT is the last
enzyme in Kennedy pathway and often thought to be the
rate limiting step in determining synthesis of TAG [63].
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Perilla Locus_14696, Locus_12629 and Locus 1560 were
revealed to encode PiDGATI, PfrDGAT2, and PfrDGAT3
and showed 79, 67 and 42 % sequence identity with Arabi-
dopsis DGAT1 (At2g19450), DGAT2 (At3g51520) and
DGAT3 (At1g48300), respectively, (Additional file 1: Table
S8). PfrDGATI and PfrDGAT2 were expressed predomin-
antly in seed, whereas DGAT3 expressed both in seeds and
leaf at similar levels (Fig. 7b). PfrDGAT1 and PfrDGAT2
are probably involved in TAG biosynthesis in seeds,
whereas PfrDGATS3 is a house-keeping enzyme.

As polyunsaturated FAs (PUFA) are major components in
TAG of perilla seeds, the acyl editing mechanism [28, 64]
would enrich acyl-CoA pool with PUFA-CoAs, facilitating
the incorporation of PUFAs into TAGs. Although there are
two Arabidopsis LPCATs, (LPCAT1, Atlgl2640 and
LPCAT2, At1g63050) were reported [64, 65], we found only
one perilla LPCAT (Locus_43749) in transcriptomes and it
expressed both in leaf and developing seeds (Fig. 7b). The
finding of PfrLPCAT would suggest acyl-editing through
PfrLPCAT likely utilized in perilla.

Genes involved in PC-mediated pathways for TAG
biosysnthesis

TAG can be synthesized directly between DAG and PC
by Phospholipid:diacylglycerol acyltransferase (PDAT)
through acyl-CoA independent pathway [28, 64]. PDAT
transfers FA of sn-2 position in PC to sn-3 position of
DAG and synthesize TAG (Fig. 7a) [55, 66]. This mechan-
ism has been demonstrated well with a castor PDAT.
Castor seed oil contains 90 % ricinoleic acid (18:10H)
which is synthesized on the sn-2 of PC [58, 67]. When a
castor PDAT (RcPDAT) was introduced into Arabidopsis
expressing a castor fatty acid hydroxylase gene (RcFAHI12,
[59, 60]), the transgenic Arabidopsis with dual ReFHA12
and RcPDAT enhanced 18:10H level in TAG [68, 69].
Two perilla PDAT orthologs, PfrPDAT1 (Locus_7255)
and PfrPDAT2 (Locus_29208), corresponding to Arabi-
dopsis PDAT1 and PDAT?2, respectively, were detected.
PfrPDAT1 expressed in seeds and leaves, whereas
PfrPDAT2 shows seed-specific expression (Fig. 7b). The
spatial and temporal expression profiles of PfrPDATs are
similar to that of Arabidopsis PDATs [66]. Our data of
PfrPDATs provide molecular basis for further investiga-
tion of the role of PfrPDATs in ALA-containing TAG
synthesis.

Perilla seed oil contains 60 % ALA (18:3) distributed
at all three sn-1, 2, 3 positions of TAG, with somewhat
higher at the sn-2 position [68]. However, perilla LPAT2
showed no activity in acylating ALA to the sn-2 position
of TAG [68]. This indicates that the majority of ALA in
the sn-2 TAG could be formed through PC-mediated
DAG pathways, such as PDCT and reverse reaction of
CPT, rather than Kennedy pathway (Fig. 7). We identi-
fied a full-length perilla PDCT (PfrPDCT, Locus_15867)
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c¢DNA showing 62 and 64 % identity with PDCTs from
Arabidopsis and castor (Fig. 8a). PfrPDCT had a bell-
shaped temporal expression pattern during seed devel-
opment and also expressed significantly in leaf (Fig. 8b).
The role of Arabidopsis PDCT (At3g15820) in contrib-
uting of unsaturated FA in TAGs has been demonstrated
[57]. The castor PDCT has also shown to evolve to
effectively convert 18:10H-PC to 18:10H-DAG for
18:10H-containg TAG synthesis in transgenic Arabidop-
sis [56]. Besides, we have also identified two perilla CPT
orthologs, CPT1 (PfrCPT1, Locus_7821) and CTP2
(PfrCPT2, Locus_22567) based on Arabidopsis AAPT1
(Atlgl3560) and AAPT2 (At3g25585). Both PfrCPTI
and PfrCPT2 expressed in seeds and leaves, but PfrCPT2
had a relative higher level in leaves than seeds (Fig. 8b).
The identification of PfrPDCT and PfrCPTs in this study
helps to explain the ALAs at the sn-2 of perilla TAGs
that are likely acquired by PC-mediated DAG formation
through PfrPDCT and PfrCPTs.
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Oil body protein, oleosins

TAGs is covered by single layer of phospholipids of ER
and amphipathic oleosin (OLN) proteins. Arabidopsis en-
codes five seed-specific oleosin genes in the genome [70].
We have identified four different isoforms of oleosin from
perilla seed transcriptome with molecular weight of 15,
16, 18, 19 KD (PfrOLN-15, -16, —18 and -19). Full-length
of PfrOLN-15 (AF210697.1) and PfrOLN-19 (AF237625.1)
isoforms are closer to Arabidopsis OLN1 (AT3G01570)
and they share a conserved harpin domain (~72 hydro-
phobic or neutral residues) with other olesions (Fig. 9a
and b). All four PfrOLNs showed a seed-specific ex-
pression (Fig. 9c). However, the expression of
PfrOLN-15 had a linear-rise pattern showing a max-
imum 673.9-fold induction at 4 WFA compared with
that of 1 WAF. The other PfrOLNs had much less
dynamic changes showing either linear-rise (PfrOLN-
16, -18) or bell-shaped (PfrOLN-19) patterns with a
maximum induction between 103.4- and 188.5-fold
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(Fig. 9¢). PfrOLN-15 may be the major oleosin iso-
form in oil-body of perilla seeds (Fig. 9c).

In general, the expression profiles of genes involved in
fatty acid and TAG biosynthesis detected by RNAseq
analysis (Additional file 1: Table S8) and qPCR (Figs. 3,
4, 5, 6, 7, 8 and 9) are comparable, except for oleison
genes. PfrOLN-15 showed a highest expression in devel-
oping seeds using qPCR whereas PfrOLN-19 and
PfrOLN-19 were highest using RNAseq. The discrepancy
of expression level between RNAseq data and qPCR data
was likely caused by chimeric transcripts generated by
assemble program, which is inevitable in a assemble
process purely based on de novo transcriptome data.

Conclusions

Perilla frutescens (L.) var. frutescens, a valuable oilseed
crop, contains high amount of ALA in seeds and leaves.
Deep sequencing of cDNAs from developing perilla
seeds and leaves was carried out to identify genes in-
volved in the synthesis of seed TAG enriched with ALA.
A total of 54,079 unique genes from 392 mega-base raw
sequences were assembled. The majority (66 %, 21,429
out of 32,237) of the matched genes showed highest
homology to Mimulus guttatus genes, confirming the
close relationship between the two species. Genes in-
volved in the synthesis of FA and TAG were identified
and annotated by detailed sequence alignments. We
have identified nearly all of the known genes for de novo
FA biosynthesis in plastid, export from the plastid and
TAG assembly in ER. In addition, we characterized the
expression profiles of 43 key genes in TAG metabolism
using quantitative PCR (qPCR). Two w-3 fatty acid desa-
turase genes, PfrFAD3 and PfrFAD7/8 were identified as
key genes for ALA synthesis in seeds and leaves, respect-
ively. The identification of PfrDGATs, PfrPDAT5,
PfrPDCT and PfrCPTs provides additional key genes not
only for future studies on the mechanisms of ALA-
containing TAG synthesis in perilla, but also for use as
targets in genetic engineering of other oilseeds to pro-
duce a high level of ALA.

Methods

Plant materials and RNA extraction

Seeds of Perilla frutescens (L.) var frutescens cultivar
‘Dayudeulkkae’ were obtained from the National Institute
of Crop Science, Miryang Republic of Korea. Perilla plants
were grown in the greenhouse at temperatures between 18
and 28 °C. After fertilization, developing seeds from 1, 2, 3,
4 weeks and mature leaves were collected, immediately fro-
zen in liquid nitrogen and stored at —80 °C prior to RNA
extraction. Total RNAs from developing seeds and leaves of
three replicates were extracted using the Plant RNA Re-
agent (Invitrogen) and treated with DNase I (Takara) ac-
cording to manufacturer’s instructions. RNA quality was
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examined using 1 % agarose gel and the concentration
was determined using a Nanodrap spectrophotometer
(Thermo). The RNA integrity number determined by Agi-
lent 2100 Bioanalyzer was greater than 7.0 for all RNA
samples to construct cDNA libraries.

Fatty acid content analysis

The fatty acid content of seeds and leaves were analyzed
by gas chromatographic analysis with a known amount of
15:0 fatty acid as an internal standard. Samples were
transmethylated at 90 °C for 90 min in 0.3 mL of toluene
and 1 mL of 5 % H,SO, (v/v methanol). After transmethy-
lation, 1,5 mL of 0.9 % NaCl solution was added, and the
fatty acid methyl esters (FAMEs) were transferred to a
new tube for three sequential extraction with 1.5 mL of n-
hexane. FAMEs were analyzed by gas chromatography
using a GC-2010 plus instrument (Shimadzu, Japan) with
1 30 mx0.25 um (inner diameter) HP-FFAP column
(Agilent, USA), during which the oven temperature was
increased from 170 to 180 °C at 1 °C/min.

cDNA library construction and massive parallel
sequencing

RNA-Seq paired end libraries were prepared using the
[lumina TruSeq RNA Sample Preparation Kit v2 (catalog
#RS-122-2001, Illumina, San Diego, CA). Based on the in-
struction provided by the kit, mRNAs were purified from
total RNA using poly (A) selection, and then chemically
fragmented and converted into single-stranded cDNA.
Using random hexamer priming, a second strand is gener-
ated to create double-stranded (ds) cDNAs. Library con-
struction begins with generation of blunt-end cDNA
fragments from ds-cDNAs. Then Adenine nucleotide (A)-
base added to the blunt-end in order to make them ready
for ligation of sequencing adapters. After the size selection
of ligates, the ligated cDNA fragments which contain
adapter sequences are enhanced via PCR using adapter
specific primers. The library was quantified with KAPA
library quantification kit (Kapa biosystems KK4854) fol-
lowing the manufacturer’s instructions. Each library was
sequenced using Illumina Hiseq2000 platform, which cre-
ated 100 bp paired-end sequencing reads.

De novo assembly and unique transcripts annotation

Raw sequencing data composed of 100 bp paired-end
reads filtered by Phred quality score (Q>20) and read
length (=25 bp) with SolexaQA [71]. We used all the se-
quence reads from different tissue samples to optimize
the de novo assembly using the software tools Velvet
(v1.2.07) [72] to assess k-mer sizes and assembled con-
tigs. The contigs were joined into transcript isoforms
using Oases (v0.2.08) [73]. Velvet and Oases are based
on the de Bruijn graph algorithm. We took several hash
length into consideration to select the best de novo
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assembly. The unique transcripts of perilla were defined
by merging the best de novo assembly and validated by
direct comparison with gene sequences in the Phytozome
(http://www.phytozome.net/) using BLASTx (e-value <
1E-10). The proteins with the highest sequence similarity
were retrieved for analysis.

Short read mapping and expression profiles in
experimental samples

Reads for each sequence tag were mapped to the assem-
bled unique transcripts using Bowtie software (v2.10)
[19]. The number of mapped clean reads for each unique
transcript was counted and then normalized with DESeq
package in [74]. Only those representative transcripts
with mapped reads counts of 1000 or above in at least
one experimental sample were retained for further ana-
lysis. Fold change and binomial-Test were used to iden-
tify differentially expressed genes between each sample.
FDR (false discovery rate) was applied to identify the
threshold of the p-value in multiple tests and analysis
and this value was calculated via DESeq. All correlation
analysis, hierarchical clustering was performed using
AMAP library in R [20].

GO analysis

Gene Ontology (GO) analysis was carried out via DAVID
(http://david.abcc.ncifcrf.gov/tools.jsp) [24]. The gene lists
by annotated TAIR ID of transcripts of up- and down-
regulated DEG were analyzed with counts > 5 and FDR <
0.01 of each GO terms.

Quantitative PCR

Total RNA were reverse transcribed with the PrimeScrip™
1st strand cDNA synthesis kit (Takara, Japan) according
to manufacturer’s protocol. Real-time PCR was performed
using the SYBR® Premix Ex Taq™ II (Takara, Japan) on the
CFX96 Real-Time PCR system (Bio-Rad) with gene-
specific primer pairs (Additional file 1: Table S5). Perilla
ACTIN (AB002819.1) was used as the internal reference
gene. The relative expression value was calculated via the
AACt method.

Full-length cDNA cloning and sequence analysis

A cDNA containing full-length open reading frame
(ORF) for FAD2. FAD3 and PDCT were amplified using
KOD polymerase from total RNA of developing seeds or
leaves samples using primers (Additional file 1: Table
S9). PCR products were cloned into pCR-Blunt vector
(Invitrogen) for Sanger sequencing. The amino acid
sequence alignment of proteins was performed with
CLUSTALW program of DNASTAR software with
default parameters. Phylogenetic tree was built with the
CLUSTALW method with DNASTAR MegAlign
program.
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Additional files

Additional file 1: Table S1. Fatty acid composition of perilla developing
seeds and leaves. All data are averages of three measurements + SE.

Table S2. Statistical summary of de novo transcriptome assembly and
annotation. Table S3. Annotation of 54,079 perilla representative transcripts
and their expression in developing seeds and leaf. Transcripts represents as
Locus. Raw read count and normalized read count were represented as
expression level for each developing seeds and leaves samples. Table S4.
Nucleotide sequences of 54,079 perilla representative transcripts in FASTA
format. Table S5. Gene ontology analysis of DEG cluster 3,4, 5 and 10
transcripts of perilla. Table S6. List of gene products for the top 50 DEGs in
Cluster 3,4, 5 and 10. Table S7. Number of identified genes involved in
acylipid metabolism of perilla transcriptome. Table S8. List of expressed
genes involved in fatty acid and TAG biosynthesis in perilla. Table S9.
Information of perilla gene primers (5'— 3') used in the gPCR analysis and
cDNA cloning. (ZIP 27440 kb)

Additional file 2: Figure S1. Sequence length distribution of transcripts.
Data represent the assembled transcripts (red bar) and unique transcripts
(green bar) from both leaf and seeds. Figure S2. Annotated profile in
Phytozome databases of 32,237 perilla unique transcripts. Perilla
transcripts were searched with BlastX algorithm. Figure S3. Changes in
gene expression during seed development. Numbers of up- (red bar) or
down-regulated (green bar) genes in developing seeds of 1-4 weeks
after flowering were determined by analysis of differentially expression
genes using leaf sample as a control. Figure S4. Hierarchical clustering
analysis of 6012 DEGs based on log ratio RPKM data. (A) Heatmap. (B)
Line plot for 12 clusters. Fold changes of DEGs in developing seeds (1-4
week after flowering, WAF) are calculated based on leaf value. Figure S5.
Characterization of perilla FAD2. (A) Amino acid sequence alignment of
perilla and Arabidopsis FAD2. Red boxes indicate His conserved motifs.
(B) Phylogentic tree of plant FAD2s. Abbreviations: Ah, Arachis hypogaea;
At, Arabidopsis thaliana; Bc, Brassica carinata; Bj, Brassica juncea; Br, Brassica
rapa; Cs, Camelina sativa; Ct, Carthamus tinctorius; El, Euphorbia lagascae;
Gm, Glycine max; Gh, Gossypium hirsutum; Ha, Helianthus annuus; Jc, Jatropha
curcus; Lu, Linum usitatissimum; Oe, Olea europaea; Pfr, Perilla frutescens Rc,
Ricinus communis; Si, Sesamum indicum; So, Spinacia oleracea; Vf, Vernicia
fordii; VI, Vitis labrusca. Figure S6. Perilla FAD3 and FAD7/8 amino acid
sequence alignment with Arabidopsis FAD3, FAD7 and FAD8. Red box
indicate His conserved motifs. Abbreviations are described in

Additional file 2: Figure S5. AtFAD3 (AT2G29980), AtFAD7 (AT3G11170),
AtFADS8 (AT5G05580). (PPTX 1366 kb)
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