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Abstract18

Recent progress in multiplexed tissue imaging is advancing the study of tumor microenvironments19

to enhance our understanding of treatment response and disease progression. Cellular neighborhood20

analysis is a popular computational approach for these complex image data. Despite its popular-21

ity, there are significant challenges, including high computational demands that limit feasibility for22

large-scale applications and the lack of a principled strategy for integrative analysis across images.23

This absence hampers the precise and consistent identification of spatial features and tracking of24

their dynamics over disease progression. To overcome these challenges, we introduce SpaTopic, a spa-25

tial topic model designed to decode high-level spatial architecture across multiplexed tissue images.26

This algorithm integrates both cell type and spatial information within a topic modelling framework,27

originally developed for natural language processing and adapted for computer vision. Spatial infor-28

mation is incorporated into the flexible design of documents, representing densely overlapping regions29

in images. The model employs an efficient collapsed Gibbs sampling algorithm for both statistical and30

computational inference. We benchmarked the performance against five state-of-the-art algorithms31

through various case studies using different single-cell spatial transcriptomic and proteomic imaging32

platforms across different tissue types. Our findings demonstrate that SpaTopic consistently identifies33

biologically and clinically significant spatial “topics” such as tertiary lymphoid structures (TLSs) and34

tracks dynamic changes in spatial features over disease progression. Its computational efficiency and35

broad applicability across various molecular imaging platforms will enhance the analysis of large-scale36

tissue imaging datasets.37

Keywords: Multiplexed tissue imaging, Spatial molecular profiling, Tumor microenvironment, Cellular38

neighborhoods, Topic models39
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Introduction40

Recent advancements in multiplexed tissue imaging allow the profiling of RNA and protein expression41

in situ across thousands to millions of single cells within a whole-slide tissue context [1–5]. These42

technologies generate high-dimensional molecular imaging data, offering significant opportunities for a43

spatially resolved understanding of cellular heterogeneity and organization within tissues. Compared44

to other single-cell technologies (such as single-cell RNA-seq, flow cytometry), multiplexed imaging45

provides unique opportunities to examine spatial patterns of diverse cell types and characterize the46

tissue microenvironment of interest, which may play an essential role in understanding disease progres-47

sion, tissue development, and mechanisms of treatment response [1, 2, 4–7]. One recent discovery in48

cancer, partly enabled by multiplexed spatially resolved omics data, is the presence of tertiary lymphoid49

structures (TLSs) in tumor tissues and its role in the adaptive antitumor immune response [8–11]. TLSs50

have been identified in a wide range of human cancers [9] and have demonstrated a promising positive51

association with improved outcomes in cancer patients who underwent immunotherapy [8].52

53

While promising, the complex cellular architecture revealed by whole-slide multiplexed tissue imaging54

presents significant analytical challenges. Pathology images of tissue samples affected by certain diseases,55

such as cancer, are particularly complex, displaying abnormal cellular structures and significant varia-56

tion between tumor samples. Currently, most analyses focus on individual images, examining elements57

such as cell densities and inter-cellular distances [1, 2, 6], or conducting basic spatial domain analyses58

that primarily focus on binarized tissue compartments, such as tumor versus stroma [12]. Associating59

these features with outcomes requires manual and heuristic aggregation across images. While promising,60

a significant hurdle in spatial pattern analysis is deciphering biologically and clinically relevant patterns61

from the complex architecture within tissue across various slides.62

63

In recent literature, cell neighborhood (niche) analysis is emerging as a popular approach. This analysis64

pipeline typically consists of two primary steps by first identifying neighborhood features for each65

single cell using either a K-nearest-neighbor (KNN) graph or a defined radius, and then applying a66

clustering algorithm, such as k-means, Louvain, or Latent Dirichlet Allocation (LDA) [2, 6, 7, 13–15].67

Seurat v5 [16] for instance, clusters cells using k-means based on similar cell type compositions, offering68

a straightforward niche analysis method. There are different variants of the approach depends on how69

to incorporate spatial information into the clustering process. UTAG [13] averages marker expression70

within the neighborhood for clustering, while BankSY [17] further refines this by combining local mean71

expression with individual cell expression. Spatial-LDA [14] incorporates spatial priors into clustering to72

allow proximity-closed cells to share similar cell neighborhoods. More recently, graph neural networks73

have been employed to discern cell neighborhood patterns, such as CytoCommunity [18]. However, deep74

learning methods like CytoCommunity require significant computational resources, posing challenges for75

individual labs, particularly for large-scale image analysis. Other studies adapt computational methods76

designed for spatial transcriptomics to analyze tissue imaging data [19–21], such as those intended for77

10x Visium, face limitations due to high computational costs [17] and are generally restricted to single78

tissue sections with fewer spots [13, 19]. These methods struggle with large-scale images, like whole-slide79

multiplexed data containing millions of cells, and are challenging to adapt for modern imaging platforms80

like Nanostring CosMx and 10x Xenium.81

82

Highly interpretable and scalable machine learning methods are in great need for analyzing molecular83

tissue imaging data. In this work, we propose SpaTopic, a Bayesian topic model designed to identify84

and interpret spatial tissue architecture across various multiplexed images by considering both the cell85

types and their spatial arrangement of cells (Figure 1A). We adapt an approach originally developed for86

image segmentation in computer vision [22], incorporating spatial information into the flexible design of87

regions (image partitions, analogous to documents in language modeling). Unlike standard image pixels,88

the basic units of analysis in multiplexed tissue images are cells, which are not uniformly distributed89

due to the complexity of human tissue samples, posing a unique challenge. To address these challenges,90

we refined the original model used for image segmentation by using a nearest-neighbor kernel function91

to boost computational efficiency, as well as a unique initialization strategy for robustness. In addition,92

we also provide an efficient implementation of the spatial topic model in our R package SpaTopic.93

94
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SpaTopic offers a scalable solution for cell neighborhood and domain analysis on large-scale, multi-image95

datasets, efficiently handling data without requiring the extraction of cell neighborhood information for96

each individual cell – a process that becomes computationally demanding and inefficient with millions of97

cells. Unlike the rigid clustering strategies of other methods, SpaTopic identifies ‘topics’—tissue microen-98

vironment features—through a probabilistic distribution over cell types and across diverse tissue images99

using a generative model. We demonstrate our method can accurately identify and quantify interpretable100

and biologically meaningful topics from imaging data without human intervention. We also present mul-101

tiple case studies encompassing tissue images from mouse spleen, non-small cell lung cancer, healthy102

lung, and melanoma tissue samples. Finally, we highlight an example of a TLS-like topic and its correla-103

tion with outcomes from SpaTopic analysis across different platforms, as well as a multi-stage example104

showing dynamic changes in spatial tissue architecture across varying disease stages.105

Results106

Overview of SpaTopic, a Bayesian probabilistic model for highly scalable107

and interpretable spatial topic analysis across multiplexed tissue images108

SpaTopic is designed as a flexible spatial analysis module within the current imaging analysis workflow109

(Figure 1B). Its main objective is to identify biologically meaningful topics across multiplexed images110

using unsupervised learning. Here, “topics” refer to latent spatial features defined by distinct cell type111

compositions within tissue microenvironment neighborhoods. SpaTopic incorporates spatial data into a112

Latent Dirichlet Allocation model, assuming that each cell in an image arises from a mixture of spa-113

tially resolved topics, with each topic being a distribution over distinct cell types. Combining cell type114

information with spatial orientation, this method enables the automated and simultaneous detection of115

immunological patterns across multiple images. Subsequent analyses can further link these topics with116

patient data, such as treatment response and survival.117

118

We adopt a Bayesian approach for inference to model the uncertainties inherent in tissue spatial patterns.119

SpaTopic requires cell types and their locations as input, with the cell types determined by the users’120

preferred phenotyping algorithm tailored to the specific marker panel of the dataset. The algorithm121

generates two key statistics for further analysis: 1) topic content, a spatially-resolved topic distribution122

over cell types, and 2) topic assignment for each cell within the images. After Gibbs sampling, the topic123

assignment of each cell is determined by the topic with the highest posterior probability. Cell types124

enriched in the same topic tend to be spatially correlated across images, leading to the identification of125

recurrent patterns of cell-cell interactions.126

127

We developed an R package to efficiently implement the SpaTopic pipeline as outlined in Figure 1A,128

which details the primary steps of the pipeline (See the Methods section). Figure 1C displays a graphical129

representation of the spatial topic model. The key inputs for SpaTopic are the cell type annotations C and130

their locations X across all images. Here, Zgi denotes the topic assignment, and Dgi indicates the region131

assignment of cell i in image g. Analogous to how computer vision algorithms segment images by spatially132

co-occurring pixel patterns with similar color, intensity or texture for object detection, SpaTopic identifies133

topics as clusters of spatially co-occurring cell types (shown in Figure 1D), potentially corresponding to134

biologically meaningful cellular structures (e.g., tertiary lymphoid structure). The process involves the135

following steps:136

• Initialization: Anchor cells are chosen as regional centers via spatially stratified sampling. For each137

image, a KNN graph is constructed between anchor cells and all other cells: For each cell, we retrieve138

its top m closest anchor cells. The initial region assignments of cells are made based on proximity to139

region centers.140

• Collapsed Gibbs sampling: for every individual cell, there are two main steps per iteration:141

– Sample topic assignment Zgi conditional on its region assignment Dgi and cell type cgi, as well as142

the topic distribution of the region Dgi and the cell type distribution of the topic Zgi.143
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– Sample region assignment Dgi conditional on current topic assignment Zgi, distance of the cell xc
gi144

to the region center xd
Dgi

, and the topic distribution of the region Dgi. The spatial information is145

weakly incorporated with a kernel function.146

• After Gibbs sampling, the output includes the posterior probabilities Zgi of each cell and the per-topic147

cell type distribution {β̂k}. Each cell in the image is assigned to a topic with the highest posterior148

probability P (Zgi|C,X ).149

150

We applied SpaTopic to multiple datasets from diverse imaging platforms, including spatial proteomics151

data from Co-detection by Indexing (CODEX), Multiplexed ImmunoFluorescence (mIF), and Imaging152

Mass Cytometry (IMC) platforms, as well as spatial transcriptomics data from Nanostring CosMx (Table153

S1). In the next few sections, we apply SpaTopic to analyze tissue imaging data from a variety of154

spatial molecular profiling platforms and benchmark analysis of SpaTopic with other popular algorithms155

for spatial domain/niche analysis, including Seurat v5 [16], Spatial-LDA [14], CytoCommunity [18],156

UTAG [13], and BankSY [17] (Table S2). The benchmark datasets contain between 0.1 to 1 million cells157

per image; making it challenging to apply methods with high computational costs. In contrast, SpaTopic158

processes these large-scale images in just a few minutes.159

SpaTopic identifies global and local spatial features of human lung cancer160

tissue with higher precision and interpretability161

We applied our method to a single non-small cell lung cancer (NSCLC) tissue image generated using162

a 960-plex CosMx RNA panel on the Nanostring CosMx Spatial Molecular Imager platform, which is163

publicly available on the Nanostring website. We selected a Lung5-1 sample containing approximately164

100,000 cells, with 38 cell types annotated using Azimuth [23] based on the human lung reference v1.0165

(Figure 2A).166

167

To illustrate the general tissue architecture, Figure 2A displays the distribution of the top 10 main168

cell types and the expression patterns of key genes including KRT17, C1QA, IL7R, TAGLN, MS4A1.169

These genes serve as markers for tumor cells (KRT17 ), macrophages, CD4 T cells, stroma cells, and B170

cells, respectively (Figure 2B). Our results demonstrate that SpaTopic identified seven distinct topics171

from the complex image (Figure 2A), with each topic representing a unique spatial niche characterized172

by a specific cell-type composition, as detailed in Figure 2C. For example, Topic 2 is predominantly173

composed of tumor cells, indicating the tumor region in the image, while other topics correspond to dis-174

tinct immune-enriched stromal regions. Topic 4 represents a stromal region enriched with macrophages.175

Notably, Topic 3 captures tertiary lymphoid-like structures in the lung tissue, consisting of B cells, CD4176

T cells, and smaller proportions of dendritic cells and CD8 T cells. This composition aligns with the cur-177

rent understanding of cell types in tertiary lymphoid structures, which are strong predictive biomarkers178

associated with a good prognosis and response to immunotherapy in non-small cell lung cancer [24].179

180

We compared results from SpaTopic with Seurat v5, Spatial-LDA, CytoCommunity, BankSY, and UTAG.181

BankSY and UTAG directly use cell-level gene expression as input, whereas the other four methods,182

including SpaTopic, rely on cell-type annotations. All methods can detect the global structure of the183

image and classify tumor and stromal regions. However, BankSY and UTAG appear to miss the lymphoid184

structure, likely because they do not use the detailed information provided by cell-type annotations.185

Reference-based cell type annotation typically offers more detailed information and can be more robust186

for noisy data when matched with a single-cell reference [25, 26]. SpaTopic distinctly identified the187

lymphoid structure as Topic 3, comprising a mix of CD4 T cells and B cells (Figure 2F). Additionally,188

when we focused on two local tumor tissue regions (Figures 2D and 2E), SpaTopic identified the tumor189

region with higher precision (Topic 2), more consistently matching the expression pattern of KRT17,190

a lung cancer marker gene. SpaTopic and UTAG are the only two methods showing the consistency191

(between tumor domain and KRT17 expression) higher than 0.8 across the entire image (Figure 2G),192

which aligns with the visual measure in Figure 2D and 2E.193
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SpaTopic identifies tertiary lymphoid structures from whole-slide melanoma194

tissue imaging195

We applied SpaTopic to a whole-slide melanoma tissue image obtained from our internal multiplexed196

immunofluorescent (mIF) imaging platform, which uses a 12-plex marker panel [27]. This analysis covered197

a whole-slide soft tissue image containing 0.4 million cells, annotated into seven major cell types (CD4198

T cells, Tumor/Epithelial, B cells, CD8 T cells, Macrophages, Regulatory T (Treg) cells, and Others).199

The categorization was based on the expression of six lineage markers: CK/SOX10, CD3, CD8, CD20,200

CD68, and Foxp3. Cells were annotated as ‘Other’ if they showed negative expression for all six markers.201

202

Despite using fewer markers compared to the Nanostring CosMx platform, SpaTopic identified five203

distinct topics (Figure 3A): Topic 1 (tumor), Topic 2 (CD4 immune zone), Topic 3 (stroma), Topic204

4 (immune-enriched tumor-stroma boundary), and Topic 5 (tertiary lymphoid structures). The tissue205

structures revealed by these topics visually correspond to the histological pattern seen in the co-206

registered H&E image (Figure 3B) and the merged raw mIF images (Figure 3C) with three key markers:207

CD3 (T cells), CD20 (B cells), and PANCK/SOX10 (tumor cells). Figure 3D demonstrates that topic 5208

(tertiary lymphoid structures) mainly consists of B cells, CD4 T cells, a few CD8 T cells, and Treg cells,209

consistent with the TLS-like pattern identified in the Nanostring dataset discussed earlier. Due to the210

lack of a dendritic cell marker in the mIF dataset, dendritic cells could not be identified and included in211

topic 5. This analysis demonstrates that SpaTopic can consistently detect the same biologically relevant212

patterns across various tumor tissues and imaging platforms, which may be clinically significant, as213

tertiary lymphoid structure have been recognized as a promising biomarker for cancer immunotherapy.214

215

SpaTopic recovers spatial domain from cell type spatial organization in216

healthy lung tissue217

We further demonstrate that SpaTopic can effectively distill signals from noisy cell type annotations218

and identify clear tissue architecture based solely on the spatial arrangement of cells. To illustrate this,219

we applied SpaTopic to the IMC dataset from the UTAG paper [13], which includes 26 small regions of220

interest (ROIs) images from healthy lung tissue. For comparison, we used the UTAG result provided in221

the paper [13] without rerunning UTAG.222

223

Our analysis shows that SpaTopic can recover tissue architectures directly from the spatial distribution224

of cell type annotations, yielding results consistent with manual annotations (Figure 4A). SpaTopic per-225

forms comparably to UTAG using only cell type annotations (Figure 4B), as indicated by the adjusted226

Rand index, which shows similar performance levels. Additionally, Figure 4C illustrates the topic content227

and cell type composition for each topic identified by SpaTopic. This demonstrates SpaTopic’s capability228

to perform domain analysis without discarding existing cell type annotations, offering valuable flexibility229

for datasets with cell-type annotations or for incorporating any existing cell-type annotation method.230

Unlike UTAG, which learns spatial tissue architecture directly from cell features due to noisy cell type231

annotations, we demonstrate that SpaTopic can effectively identify tissue architecture from these annota-232

tions. Thus SpaTopic is a robust alternative that leverages existing data without the need for additional233

cell-level features.234

SpaTopic identifies disease-specific topics and tracks topic evolution in235

mouse spleen over disease progression236

We also applied SpaTopic to a CODEX mouse spleen dataset [2] to demonstrate its proficiency in iden-237

tifying spatial topics across multiple images. This dataset includes nine images: three control normal238

BALBc spleens (BALBc 1-3) and six MRL spleens (samples 4-9) at varying disease stages—early (MRL239

4-6), intermediate (MRL 7-8), and late (MRL 9) (Figure 5A). Using a 30-plex protein marker panel, the240

study identified 27 major splenic-resident cell types across the nine tissue images. We use the cell type241

annotation in the original paper [2].242

243
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SpaTopic identified six topics from approximately 0.7 million cells across the nine images, highlighting244

the dramatic changes in spatial tissue structures associated with disease progression from normal spleen245

to spleen tissue at different disease stages (Figure 5A). Figure 5B and 5C highlight per-topic cell type246

compositions, aiding in labeling each topic. The normal spleen tissue samples predominantly comprised247

three topics: Topic 1 (red pulp), Topic 2 (periarteriolar lymphoid sheath, PALS), and Topic 3 (B-follicle).248

Figures S2 and S3 show the cell type distribution and domain annotations from the original paper,249

demonstrating SpaTopic’s ability to capture the main structures consistent with these annotations, as250

compared to other methods (Figures S2 and S4). With an increasing number of topics, SpaTopic also251

successfully delineated the marginal zone from the B-follicle (Figure S2).252

253

Topics identified by SpaTopic were comparable across normal and diseased spleens, allowing us to254

identify condition-specific topics and quantify changes in topic proportions as the disease progressed.255

In contrast to normal spleens, MRL spleens showed a decrease in B cells and F4/80(+) macrophages256

but an increase in granulocytes and erythroblasts within the red pulp region, indicating inflammation257

or systemic infection in the spleen tissue. This shift was marked by the predominance of Topic 6 in258

MRL spleens, superseding Topic 1 (red pulp). Topic 4 emerged in the mouse spleen tissue affected by259

autoimmune disease, characterized by a high abundance of CD106+ stroma cells, indicative of leukocyte260

recruitment to inflamed areas. This topic also shows a high concentration of immune cells, including261

CD4 and CD8 T cells. Unique to MRL spleens, Topic 5 is characterized by an enrichment of B220+262

double negative (DN) T cells and conventional CD4 T cells, predominating in tissues during advanced263

stages of the disease, indicating a shift in the immune cell landscape. These dynamics indicate immune264

surveillance or dysregulation in the spleen tissue with MRL/lpr progression [2].265

266

Furthermore, SpaTopic’s capability to identify topics based on the spatial proximity of cell types267

suggests that cell types grouped within the same topic are likely close to each other and prone to268

interaction. Figure 5D illustrates the changes in topic proportions throughout the course of the disease.269

The distinct contributions of cell types to each topic are highlighted in Figure 5E, selected based on270

their specific composition and evaluated based on the lift and FREX metrics [28, 29] (Figures S5). Cell271

types are clustered into topics that exhibit similar dynamics across different slides.272

273

SpaTopic is highly scalable on large-scale modern images274

To benchmark the scalability of SpaTopic as the number of cells in images increases, we conducted tests275

using simulated datasets of varying scales. Figure 6A demonstrates that our method is scalable with an276

increasing number of cells within a single image, compared to Seurat v5. Figure 6B further confirms277

the high scalability of SpaTopic when evaluating the user time of all methods on real datasets. For the278

Nanostring CosMx NSCLC image with around 0.1 million cells, SpaTopic runs within 1 minute on a279

standard MacBook Air. SpaTopic is in the same tier as Seurat v5. BankSY and UTAG are in the second280

tier since they use similar strategies. CytoCommunity, limited by GPU support, was run with reduced281

epochs and only on CPU for the NSCLC dataset, which compromised its performance and underscored282

its impracticality for labs without extensive computing resources.283

284

Discussion285

In summary, we introduced SpaTopic, a spatial topic model designed to identify and quantify biologically286

relevant topics across multiple multiplexed tissue images. This represents a novel approach to apply-287

ing language modeling techniques to decipher the tissue microenvironment from tissue imaging data.288

SpaTopic stands out as one of the few unsupervised learning methods capable of discerning clinically289

relevant spatial patterns [13, 17, 19]. Unlike other methods that rely on hard clustering strategies for290

analyzing samples, SpaTopic is a probabilistic model-based approach using Bayesian inference methods291

to identify complex tissue architectures. The model generates two key outputs: The first of these, the292

topic content maps the cell type composition in spatial niches, allowing direct interpretation of the293

corresponding topic (e.g., TLS); The second output, topic assignment for each single cell allows the294

quantification of each topic in individual tissue samples for subsequent association analysis with patient295
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outcome. Application to multiple datasets along with benchmark analysis show that SpaTopic achieves296

higher precision in defining global and local spatial niches and higher sensitivity at capturing complex297

structures such as TLS. Notably, our method is highly scalable to large-scale imaging data with efficient298

runtime, handling millions of cells on a standard laptop.299

300

SpaTopic is designed as a flexible spatial analysis module within the current imaging analysis workflow.301

A standard image analysis pipeline includes cell segmentation, data normalization/batch correction,302

cell phenotyping/clustering, and the analysis of cell type content and spatial relationships. Downstream303

statistical analysis typically starts with cell-level metadata derived from image analysis. Due to varied304

marker panels and molecular imaging platforms, a one-size-fits-all solution for cell phenotyping across305

diverse platforms seems unlikely. In practice, we find that reference-based cell annotation works best on306

single-cell imaging data, rather than unsupervised clustering. SpaTopic does not specify any upstream307

method, and thus can be seamlessly integrated with other cell phenotyping modules tailored for datasets308

from different platforms. This design offers users adaptability, accommodating datasets from different309

panel designs.310

311

In our proposed analysis pipeline for imaging data, we separate cell phenotyping from cell neighbor-312

hood/domain analysis for image-based spatial data, with SpaTopic directly taking cell types as input.313

This key difference sets SpaTopic apart from UTAG and BankSY, which use protein/gene expression314

as input for niche/domain analysis. UTAG performs dimension reduction before message passing,315

while BankSY engineers new spatial features for each cell before dimension reduction. We propose316

that treating cell phenotyping and neighborhood/domain analysis as distinct steps is a better analysis317

strategy for datasets generated by image-based technology with selected marker panels. Using cell type318

annotations as input for cell neighborhood analysis enhances the interpretability of different tissue319

microenvironments and undoubtedly increases the computational efficiency when analyzing large-scale320

images. The performance of SpaTopic may rely on the accuracy of cell phenotyping. A better strategy321

for cell phenotyping is to annotate cells directly from cell images instead of using summary statistics,322

such as mean marker expression or gene count data. As part of the analysis pipeline, we are developing323

an image-based deep learning method for cell phenotyping, incorporating subcellular information, as324

well as domain knowledge [30].325

326

For multi-sample analysis, addressing the batch effect is a key challenge. Our proposed analysis pipeline327

seeks to mitigate the batch effect during cell phenotyping using a reference-based cell phenotyping328

method. For spatial transcriptomics data, a supervised classification method with a reliable single-cell329

reference can mitigate batch effects and inherent noises in the imaging data. Batch effect is more critical330

for algorithms that directly consider the gene expression data as input. When analyzing the mouse331

spleen dataset, we used Combat [31] for batch correction across multiple images before applying UTAG332

and BankSY. However, Combat appears to over-correct for batch effects (Figure S4), thus failing to dis-333

tinguish between normal and diseased red pulp tissue. This might stem from the substantial differences334

between normal and diseased tissues.335

336

Modern datasets from platforms like 10x Xenium and Nanostring CosMx require scalable computational337

methods to handle their size and complexity. Existing spatial domain analysis methods, originally338

designed for 10x Visium spatial transcriptomics data and optimized for datasets with thousands of cells339

or spots per slide, find it challenging to handle these more advanced, datasets with millions of cells per340

image. SpaTopic meets this need by efficiently managing neighborhood calculations and constructing341

the KNN graph only among m anchor cells instead of all n cells in the image. This reduces the time342

complexity from O(n log n) to O(m logm), where m ≪ n. Additionally, SpaTopic maintains linear time343

complexity relative to the number of cells and iterations with collapsed Gibbs sampling and uses an344

approximate fast approach for constructing the KNN graph. These optimizations ensure SpaTopic’s345

computational efficiency, making it accessible on standard laptops and practical for analyzing large-scale346

imaging data from platforms like the 10x Xenium and Nanostring CosMx.347

348

Moreover, advances in technology now enable the quantification of immune cell spatial diversity and the349

characterizing of tumor microenvironments in 3D tissues [32]. While SpaTopic can be adapted to infer350
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immunological topics from 3D tissue, a refined strategy is needed to select anchor cells in the 3D spaces, as351

the spatial information obtained by SpaTopic primarily stems from the relationships between the anchor352

cells and other cells. Incorporating a hierarchical Dirichlet prior on topic distributions across regions353

would allow regions within the same image to share priors while differing across images. Furthermore,354

optimizing the initialization strategy is needed when applying SpaTopic to extremely large datasets with355

hundreds of images. These improvements would broaden the applicability of SpaTopic.356

8

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted October 13, 2024. ; https://doi.org/10.1101/2024.10.08.617293doi: bioRxiv preprint 

https://doi.org/10.1101/2024.10.08.617293
http://creativecommons.org/licenses/by-nc-nd/4.0/


Methods357

SpaTopic358

Notations359

We assume there are total V cell types that contribute to K different tissue microenvironments (topics)360

across G multiplexed images. Let cgi be the ith cell at the location xc
gi = (xcgi1, x

c
gi2), g = 1, 2, . . . , G, i =361

1, 2, . . . , ng, on the gth image with total ng cells. Let cgi = v if the cell has been classified to the vth cell362

type. Let C = {cgi}g=1,2,...,G
i=1,2,...,ng

and X = {xgi}g=1,2,...,G
i=1,2,...,ng

denote all observed cell types and cell locations363

across all G images.364

365

Model366

In a conventional LDA model, each image is treated as an individual document, employing a bag-of-367

words approach without accounting for spatial information. This approach is similar to our prior work368

on longitudinal flow cytometry data analysis [28]. Here, in order to incorporate spatial information369

within images, we introduce a spatial topic model, SpaTopic, integrating spatial data into the founda-370

tional LDA framework. This spatial topic framework was first proposed for image segmentation [22],371

instead of viewing each image as a singular document, we treat each image consisting of densely placed372

overlapping regions (documents). Unlike the conventional LDA model where relationships between373

documents and words are known and fixed, the word-document relationship here is unknown: each cell374

(word) is flexible to be assigned to all possible regions (documents). This flexible region (document)375

design allows us to identify spatial structure with irregular shape.376

377

For SpaTopic, we introduce a new hidden variable Dgi to denote cell region (document) assignment.378

Thus, each cell is associated with two hidden variables: the latent topic assignment Zgi ∈ {1, 2, . . . ,K}379

and the latent region assignment Dgi ∈ {1, 2, . . . ,M}, M =
∑

gMg, where Mg denote the number of380

regions on the image g. During the initialization, we pre-selected anchor cells as region centers. Let381

X d = {xd
d}d=1,2,··· ,M be the set of all M region centers across all images. Let θd be the proportion of382

region d over K topics and βk be the proportion of topic k over V cell types. Hyperparameters ψ and383

α specify the nature of the Dirichlet priors of {βk} and {θd}, respectively.384

385

Then we are ready to describe our generative model:386

• For each topic k, sample βk (topic weights over V cell types) from a Dirichlet prior βk ∼ Dir(ψ).387

• For each image region d (centered at xd
d), sample topic proportion θd ∼ Dir(α)388

• For each cell, the ith cell in the image g:389

– Sample its region assignment Dgi from a uniform prior over possible documents (regions) in the390

image g.391

– Sample the location xc
gi conditional on its region assignment Dgi with a kernel function based on

the distance between the cell location xc
gi and the region center xd

d.

xc
gi|Dgi = d ∝ K(xc

gi,x
d
d).

– Sample topic assignment Zgi|Dgi = d ∼Multi(θd, 1).392

– Sample cell type cgi|Zgi = k ∼Multi(βk, 1).393

Hyperparameters α and ψ should be chosen based on the belief on {θd} and {βk} in a Bayesian perspec-394

tive. In our application, both α and ψ are set very small by default (default: αk = .01, ∀k; ψv = .05, ∀v)395

to encourage the sparsity in region-topic distributions {θd} and topic-celltype distributions {βk}.396

Nearest-neighbor Exponential Kernel397

The flexible relationships between regions and cells in SpaTopic allow each cell to be assigned to any398

one of its proximate regions. We employ a nearest-neighbor Gaussian kernel to capture the spatial399

correlation between cells and their respective regions, as previously used in the nearest-neighbor Gaussian400
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process [33]. For computational efficiency, especially with large-scale images, we restrict our consideration401

to the top nearest-neighbor regions for each cell. Let N (xgi) ⊂ X d be the collection of m closed region402

centers to the cell xgi (default: m = 5 ). In practice, the commonly used squared exponential Gaussian403

kernel function decays too rapidly. This rapid decay often results in cells predominantly being linked to404

their closest region, irrespective of their cell types. Let σ be the lengthscale that controls the strength of405

decay of correlation with distance in the kernel function. Thus, drawing inspiration from [34], instead of406

the squared exponential kernel, we used the following exponential kernel,407

K(xc
gi,x

d
d) ∝ 1{xd

d ∈ N (xc
gi)} exp{−||xc

gi − xd
d||2/σ}, (1)

where ||xc
gi − xd

d||2 represents the Euclidean distance between the cell location xc
gi and the region408

center xd
d. We fix σ for computational efficiency, but it can also be sampled during the Gibbs sampling.409

Increasing σ would reduce the strength of the spatial correlation, resulting in a diminished spatial effect410

when assigning cells to regions.411

412

Collapsed Gibbs Sampling413

We use collapsed Gibbs Sampling for model inference. The collapsed Gibbs Sampling algorithm was first414

introduced as the Bayesian approach of Latent Dirichlet Allocation [35]. This method’s comprehensive415

derivation and implementation can be found in the paper [36]. Similar to [22], we further adapted and416

extended the algorithm for our proposed spatial topic model. It’s noteworthy that during the collapsed417

Gibbs sampling process, the parameters βk and θd are integrated out and are not explicitly sampled.418

Instead, our focus is on the two hidden variables associated with each cell: the topic assignment Zgi and419

the region (or document) assignment Dgi. These variables undergo iterative sampling using the collapsed420

Gibbs Sampler:421

1. Sample topic assignment Zgi conditional on region assignment Dgi with [35]422

P (Zgi = k | Dgi = d, cgi = v,D−gi,Z−gi, C−gi,ψ,α) ∝
n
(v)
k,−gi + ψv∑V

t=1 n
(t)
k,−gi + ψt

n
(k)
d,−gi + αk∑K

k′=1 n
(k′)
d,−gi + αk′

(2)

where n
(v)
k,−gi refers the number of times that cell type v has been observed with topic k and n

(k)
d,−gi423

refers the number of times that topic k has been observed in region d, both excluding the current cell424

gi, the ith cell on the gth image. The first ratio expresses the probability of cell type v under topic425

k, and the second ratio expresses the probability of topic k in region d. D−gi, Z−gi, and C−gi denote426

collections of D, Z, and C excluding cell cgi.427

2. Sample Dgi conditional on Zgi with428

P (Dgi = d | Zgi = k,D−gi,Z−gi,x
c
gi,x

d
d,α, σ)

∝P (Zgi = k | Z−gi, Dgi = d,D−gi,α)P (x
c
gi | Dgi = d,xd

d, σ)P (Dgi = d)

According to [36], P (Zgi = k | Z−gi, Dgi = d,D−gi,α) can be obtained by integrating out θd, that429

P (Zgi = k | Z−gi, Dgi = d,D−gi,α) =
n
(k)
d,−gi + αk∑K

k′=1 n
(k′)
d,−gi + αk′

.

We can further omit P (Dgi = d) due to uniform prior. ThusDgi can be sampled based on the following430

conditional distribution:431

P (Dgi = d | Zgi = k,D−gi,Z−gi,x
c
gi,x

d
d,α, σ) ∝ K(xc

gi,x
d
d)

n
(k)
d,−gi + αk∑K

k′=1 n
(k′)
d,−gi + αk′

(3)
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Algorithm 1 Collapsed Gibbs Sampling for SpaTopic

1. Identify M anchor cells (located at {xd
d}d=1,2,...,M ) as the region centers across images.

2. For each image, pre-compute a k-nearest-neighbor graph between all cells and the selected region
centers.

3. Initialize topic assignment Zgi and region assignment Dgi for each cell. Compute region-topic

counts n
(k)
d and topic-celltype counts n

(v)
k .

4. Gibbs sampling over burn-in and sampling period. For each cell, do

(a) Update counts n
(k)
d and n

(v)
k excluding the current Zgi and Dgi.

(b) Sample topic assignment Zgi conditional on region assignment Dgi based on equation (2).
(c) Sample region assignment Dgi conditional on topic assignment Zgi based on equation (3).

(d) Update counts n
(k)
d and n

(v)
k with the updated Zgi and Dgi.

5. Check convergence. If converged during burn-in and L posterior samples drawn, output posterior
samples and parameters estimated based on equation (4) and (5). If not, increase the number of
iterations for burn-in.

Initialization432

During the initialization, we employ a spatially stratified sampling approach to randomly select anchor433

cells from each image, which will serve as region centers. The number of anchor cells selected from each434

image is determined by a predetermined region radius r (default: r = 400), as well as the image size.435

The radius should be set with the consideration of the image resolution and complexity of the images,436

and an adequate number of cells are expected within each region since it is crucial for estimating topic437

distribution θd precisely. In practice, for whole-slide imaging, we expect at least 100 cells per region438

on average. For each individual image, an m-nearest-neighbor graph will be constructed between all439

cells and the chosen anchor cells. For computational efficiency, distances between each cell and its top440

m-nearest anchor cells will be pre-computed before Gibbs sampling.441

442

The performance of SpaTopic depends on anchor cells selected in the initialization, especially on images443

with highly complex spatial structures. Thus, we take a warm start approach rather than starting444

Gibbs sampling from a random initialization. This involves running multiple Gibbs sampling initializa-445

tions (default: ninit = 10), each having a unique set of anchor cells. After a few iterations (default:446

niter init = 100), only the one with the highest log-likelihood is retained and continued.447

448

Implementation449

We implemented SpaTopic in Rcpp and made it an R package SpaTopic (officially available on CRAN450

after Jan 17, 2024). The complete algorithm is shown in Algorithm 1. For the Gibbs sampling, we have451

set the default parameters as follows: iter = 200, burnin = 1000, thin = 20 (200 Gibbs sampling draws452

are made with the first 1000 iterations discarded and then every 20th iteration kept). We can infer topic453

distributions across all images using the posterior samples drawn from the Gibbs sampling. For each of454

these posterior samples, the predictive distributions of parameters {βk} and {θd} are obtained as follows:455

β̂kv =
n
(v)
k + ψv∑V

t=1 n
(t)
k + ψt

, (4)

θ̂dk =
n
(k)
d + αk∑K

k′=1 n
(k′)
d + αk′

. (5)

456

Moreover, we also keep the posterior distribution of Zgi from all posterior samples for each individual457

cell. Notably, Dgi has been marginalized during this process and each cell in the end is assigned to the458

topic with the highest posterior probability. Thus we are also able to visualize the spatial distribution of459

cell topics in the images.460
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Model Selection461

The likelihood of the topic model is intractable to compute in general, but we can approximate the model462

log-likelihood in terms of model parameters {βk} and {θd} [37]. With the law of total probabilities, we463

take into account uncertainties both in cells’ region and topic assignment, then the log-likelihood of the464

spatial topic model can be presented as465

ll(C,X ) =
∑
g

Ng∑
i=1

log

[
K∑

k=1

M∑
d=1

V∑
v=1

I(cgi = v)θdkβkvη
d
gi

]
, (6)

where ηdgi = P (xc
gi | Dgi = d,xd

d)P (Dgi = d) ∝ K(xc
gi,x

d
d).466

467

We use the Deviance Information Criterion (DIC) [38] to select the number of topics, a generalization of468

the Akaike Information Criterion (AIC) in Bayesian model selection:469

DIC = pD +D(C,X ), (7)

where the Deviance is defined as D(C,X ) = −2ll(C,X ) and pD = 1
2V ar(D(C,X )).470

471

DIC requires calculating the log-likelihood for every posterior sample, which is time-consuming. To472

determine the optimum number of topics, we run SpaTopic with a varied number of topics (2-9 in473

practice) and collect a few posterior samples (such as the first 20 posterior samples) after convergence474

(with trace=1). The number of topics was selected based on DIC (7). Otherwise, we only output the475

deviance and the log-likelihood of the final posterior sample (default: trace=0).476

477

Comparing to other methods478

We compared the performance of SpaTopic with five other niche analysis methods: spatial-LDA, Seurat-479

v5, UTAG, CytoCommunity, and BankSY. For BankSY and UTAG, we used protein or gene expression480

data and cell spatial coordinates as inputs, while the other methods used existing cell-type annotations481

and cell spatial coordinates. We followed the pre-processing procedures and parameters described in the482

original papers and tutorials for each method, with some hyperparameters slightly adjusted for computa-483

tional efficiency on large datasets or when clear guidelines for tuning parameters were available. Details484

of these adjustments and the rationale for not using the default settings are described in this section.485

486

All methods were initially run using R Studio (for R-based methods) or Jupyter Lab (for Python-based487

methods) on a standard MacBook Air (M2, 2022). If a method could not be run on a standard Mac488

due to memory constraints, we used our high-performance computing server with a single-core CPU489

and 200GB of assigned memory. For the Nanostring CosMx NSCLC dataset, both CytoCommunity and490

UTAG were run on the server due to high memory usage. Additionally, for the CODEX mouse spleen491

dataset, UTAG can be run on the Mac only without the default parallel mode due to memory constraints.492

493

SpaTopic (v1.1.0). We ran SpaTopic with region radius = 400, 150, 300 for the NSCLC, the mouse494

spleen, and the melanoma datasets, respectively, allowing around 100 cells per region on average dur-495

ing initialization, which is necessary for accurately estimating the topic-region distribution. We chose496

length-scale sigma = 20 for the mouse spleen dataset and used the default parameters for the NSCLC497

dataset. Posterior samples were collected after the convergence of the Gibbs sampling chain, with a498

burn-in period of 2000 iterations for the NSCLC dataset and 1500 iterations for the mouse spleen499

dataset. For the Melanoma dataset, SpaTopic was run with a burn-in period of 2000 iterations. For the500

healthy lung dataset with 26 small ROIs, SpaTopic was run with sigma = 5 and radius = 60 to identify501

the complex local structures. In addition, we increase the number of initializations to 200 times to502

increase the robustness of identifying consensus patterns across ROIs while increasing the running time.503

504

Seurat-v5 (v5.0.2). We used the default niche analysis in Seurat v5, specifically the BuildNicheAssay()505

function in the Seurat R package. Seurat v5 employs k-means clustering to group cell neighborhood506
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features, which are derived from the shared-nearest-neighbor graph (default neighbors.k = 30), a variant507

of the k-nearest-neighbor graph, as part of its image-based spatial data analysis pipeline. We ran Build-508

NicheAssay() with all default parameters except for the NSCLC datasets, for which we set neighbors.k509

= 100. We found that increasing neighbors.k from 10 to 100 (testing neighbors.k = 10, 30, 50, 100)510

significantly improved the algorithm’s performance on this dataset, with results presented in Figure S1.511

512

Spatial-LDA (v0.1.3). When working on mouse spleen datasets, we used the same parameters as the513

authors used in the original methodology paper, though we now use neighborhoods of all cells as the514

input, not only B cells. For the NSCLC datasets, we also use neighborhoods of all cells as the input515

but set radius = 400 to extract neighborhood cell type compositions. To reduce the computational516

complexity for both datasets, we set the threshold = 0.01 for ADMM Primal-Dual optimizer. Finally,517

we output the topic weights for every cell and assign every cell to a topic with the maximal weight.518

519

CytoCommunity (Github version obtained on 2024 February). CytoCommunity (unsupervised520

version) was run on a CPU with 200GB of assigned memory and evaluated only on the NSCLC dataset521

due to its demand for large-memory GPU resources and the unsupervised version’s inability to learn522

Tissue Cell Neighborhoods (TCNs) across multiple images (TCNs learned from individual images are523

not comparable). We set KNN-K = 300 for 0.1M cells, as suggested in the original paper. For large524

image data, the second step of CytoCommunity is time-consuming when trained on a CPU. Therefore,525

we greatly reduced num RUN to 10 and Num Epoch to 100 per run while ensuring the final loss was526

less than -0.2 for each run. Other parameters were set to their defaults.527

528

UTAG (v0.1.1). UTAG was primarily developed for protein expression data with limited marker529

channels. For the Nanostring CosMx NSCLC datasets with 960 genes, we used typical pre-processing530

steps suggested by Scanpy (v1.9.8) for analyzing scRNA-seq datasets. These steps included filtering531

low-prevalence genes, log transformation, and retaining only highly variable genes. We then performed532

z-score normalization, truncated at 10 standard deviations, followed by PCA. Only the top 50 principal533

components were used as input for UTAG. UTAG was run under multiple clustering resolutions [0.05,534

0.1, 0.3, 0.5] and mix dist = 60, with an image resolution of 0.18 microns per pixel, since the authors535

suggested setting mix dist between 10 and 20 microns in the user manual. For the CODEX mouse spleen536

dataset (with intensity values already transformed), we performed z-score normalization truncated at537

10 standard deviations, followed by Combat batch correction [31] and a second z-score normalization538

truncated at 10 standard deviations, a similar procedure as introduced in the UTAG paper for prepro-539

cessing IMC data [13]. We also set mix dist = 60, with an imaging resolution of 0.188 microns per pixel.540

541

BankSY (v0.99.9). In contrast to UTAG, BankSY is specifically designed to analyze spatial tran-542

scriptomics datasets. We ran BankSY with lambda = 0.8 to identify spatial domains, as recommended,543

with other parameters set to default, as described in the GitHub tutorial. For the NSCLC dataset, we544

followed the same pre-processing procedures outlined in the domain analysis tutorial, using k geom =545

30, npcs = 50, and clustering resolutions of 0.1, 0.2, 0.3, and 0.5. For the mouse spleen datasets, we546

used the same input as UTAG, after batch correction and normalization. We followed the tutorial for547

multi-sample analysis, running the results under npcs = 30 since the dataset has only 30 markers.548

549

Data Preprocessing550

Nanostring CosMx Human NSCLC. The Nanostring CoxMx NSCLC dataset is551

available on the Nanostring Website (https://nanostring.com/products/cosmx-spatial-552

molecularimager/ffpe-dataset/nsclc-ffpe-dataset/). For our analysis, we selected Lung5-1553

sample and annotated about 0.1M cells into 38 cell types using Azimuth [23] with554

a human lung reference v1.0 (https://azimuth.hubmapconsortium.org/references/). We555

used the same cell annotations from the Seurat image analysis pipeline tutorial556

(https://satijalab.org/seurat/articles/seurat5 spatial vignette 2.html). Since healthy lung tissue was557

used as the reference, the ‘basal’ cells were re-labeled as tumor cells since they are the most closed558

cell type. We checked that the tumor locations indicated by the reference-based cell annotations are559

generally consistent with the tumor region labeled by the Nanostring company.560
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CODEX Mouse Spleen. We used the cell type annotation, marker expression level, and561

imaging coordinates from the original paper [2]. The image dataset can be downloaded from562

https://data.mendeley.com/datasets/zjnpwh8m5b/1. For cell coordinates, we only use the X and Y axes563

of the samples, ignoring Z axis. However, the result is similar when considering all three dimensions.564

IMC Healthy Lung. We used the cell type annotation, marker expression level, cell imaging coordi-565

nates, and cell UTAG domain labels in the original paper [13]. This image dataset can be downloaded566

from https://zenodo.org/records/6376767.567

mIF Melanoma. This is one of the whole-slide images from our internal mIF melanoma tissue568

samples [27]. Those whole tissue sections were stained using Ultivue UltiMapper I/O Immuno8 Kit569

(Cambridge, MA, USA) containing CD8, PD-1, PD-L1, CD68, CD3, CD20, FoxP3, and pancytokeratin570

+ SOX10 (panCK-SOX10) followed by opal tyramide staining containing TCF1/7, TOX, Ki67, LAG-3.571

The whole imaging preprocessing pipeline has been previously described [27]. Here, we used only the cell572

phenotypes (classified based on marker expression of CD8, panCK-SOX10, CD68, CD3, CD20, FoxP3)573

and cell locations as the input of SpaTopic.574

Simulation575

We tested methods on simulated datasets of different scales to benchmark the scalability of SpaTopic576

with an increasing number of cells in images. We randomly sampled 10k, 40k, 90k, 160k, and 250k pixels577

from an image, similar to the simulation method described in [21], to represent cell locations. We did not578

simulate gene expression levels for every individual cell. Instead, for each domain, we randomly sampled579

cells with domain-specific cell type distributions, with parameters simulated from Dirichlet(1, 1, 1, 1, 1),580

anticipating five distinct cell types per domain. Five unique datasets were generated for each simulation581

scenario. We also scaled the X and Y axes to maintain consistent cell densities across all simulation582

scenarios.583
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Figure 1. SpaTopic unsupervisedly identifies distinct tissue 
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Fig. 1 SpaTopic unsupervisedly identifies distinct tissue microenvironments across images, utilizing topic model concepts
in computer vision. A. Overview of SpaTopic. SpaTopic identifies biologically relevant topics across multiple images, while
each topic is a distribution of cell types, reflecting the spatial tissue architecture across images. B. Image analysis pipeline
designed for multiplexed immunofluorescence images. SpaTopic is designed as a critical step for spatial analysis after cell
phenotyping. C. Graphic representation for SpaTopic. The observed and hidden variables are colored orange and blue
accordingly. D. SpaTopic groups cells in an unsupervised manner based on spatially co-occurrent cell types, similar to
image segmentation based on spatially co-occurrent colors in the photo.
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Fig. 2 SpaTopic better detects tumor microenvironment in a nanostring human non-small cell lung cancer tissue image.
A. We compare SpaTopic, Seurat v5, Spatial-LDA, CytoCommunity, BankSY, and UTAG results on the human lung tumor
tissue samples. We also visualize the distribution of the top 10 most abundant cell types and five unique mRNA molecules
(KRT17, C1QA, IL7R, TAGLN, MS4A1 ), showing the tissue architecture. We only show up to a total of 20k molecules
due to limitations in visualization. B. Dot plots showing gene marker expression across all 38 annotated cell types. KRT17,
C1QA, IL7R, TAGLN, and MS4A1 are marker genes for tumor, macrophage, CD4 T, stroma, and B cells, respectively.
C. Heatmap shows per-topic cell type composition. Topic 2 represents tumor regions. The other topics represent distinct
immune-enriched stroma regions, including topic 3, which captures the lymphoid structure in the lung tissue consisting
of B cells and CD4 T cells, and topic 4, which is a macrophage-enriched stroma region. D. and E. SpaTopic can better
capture the local structure of the lung tumor tissue. F. Topic 3 (green) captures the lymphoid structures, consistent with
the distribution of IL7R (CD4 T cells, red) and MS4A1 (B cells, blue). G. We compare the consistency of different results,
presenting the percentage of cells in the identified tumor domains expressing the KRT17 gene. SpaTopic and UTAG
generally show higher consistency than other methods.
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Fig. 3 SpaTopic identifies tertiary lymphoid structures from a whole-slide melanoma tissue sample. A. SpaTopic identifies
five topics from the whole-slide melanoma tissue sample: topic 1 for tumor region, topic 2 for CD4 T cell region, topic 3 for
stroma region, topic 4 for immune-enriched stroma-tumor boundary, topic 5 for the potential tertiary lymphoid structures,
with three Region of Interests (ROIs) highlighted in the subfigures. B. H&E staining images for the whole-slide melanoma
tissue sample and three ROIs. C. Merged mIF image for the whole-slide melanoma tissue sample and three ROIs with three
channels: PANCK/SOX10 (red), CD3 (royal blue), and CD20 (green). D. Heatmap shows per-topic cell type composition
for the five topics identified by SpaTopic. Topic 5 (tertiary lymphoid structures) mainly consists of B cells and CD4 T cells,
with a small proportion of CD8 T cells and regulatory T (Treg) cells.
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Fig. 4 SpaTopic recovers spatial domain architecture from cell type spatial layout in healthy lung. A. Spatial distribution
of cell type annotations, manual domain annotations, and spatial domains recovered by SpaTopic and UTAG from the
healthy lung tissue samples. B. Consistency comparing manual spatial domain to the cell type annotation, SpaTopic, and
UTAG with and without ad hoc relabel across 26 images. UTAG results are obtained from the original publication. C.
Heatmap shows per-topic cell type composition for the four topics identified by SpaTopic.
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Fig. 5 SpaTopic captures main dynamics in tissue architecture of normal and diseased mouse spleen A. Six topics were
identified by SpaTopic across nine mouse spleen samples representing normal (BALBc 1-3) and different disease stages:
early (MRL 4-6), intermediate (MRL 7-8), and late (MRL 9). B. Heatmap shows per-topic cell type composition for the six
main topics identified by SpaTopic. Based on cell type compositions, the first three topics are labeled as red pulp, PALS
(periarteriolar lymphoid sheath), and B-follicle in normal mouse spleen tissue, while the other three topics are unique to
the disease stages. C. Barplots shows the top 10 per-topic cell types for the six main topics identified by SpaTopic. D.
Dynamic change in the topic proportion of the six topics during disease progression. Normal spleen samples are primarily
characterized by topics 1, 2, and 3, which reflect red pulp (mixed of B cells, erythroblasts, and F4/80(+) mphs), B-follicle
(most B cells), and PALS (mixed of CD8 T cells and CD4 T cells), respectively. There is an increase in Topic 1 and
depletion of Topic 6 in MRL samples, representing much fewer B cells and F4/80(+) mphs but more granulocytes and
erythroblasts in the red pulp regions. Topic 1 (mainly B220(+) DN T cells and CD4(+) T cells) is enriched in tissue at
late disease stage. E. Dynamic change of key immunological cell types within each topic, identified by FREX(omega = 0.9)
and lift metrics (See Figure S5).
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Figure 4: SpaTopic is scalable to large-scale images and can be run 
on a regular laptop within minutes.

A B

Fig. 6 SpaTopic is scalable to large-scale images and can be run on a regular laptop within minutes. A. Runtime of
SpaTopic (region radius r = 60) and Seurat-v5 on simulated datasets for increasing cell numbers. B. Runtime of SpaTopic,
Seurat-v5, BankSY, UTAG, Spatial-LDA, and CytoCommunity on large-scale nanostring and mouse spleen datasets. All
methods were benchmarked on a standard MacBook Air (M2, 2022) unless exceeding the memory limitation.
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