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    Chapter 10   

 Application of Humanized Mice in Immunological 
Research       

     Wenwei     Tu      and     Jian     Zheng     

  Abstract 

   During the past decade, the development of humanized mouse models and their general applications in 
biomedical research greatly accelerated the translation of outcomes obtained from basic research into 
potential diagnostic and therapeutic strategies in clinic. In this chapter, we fi rstly present an overview on 
the history and current progress of diverse humanized mouse models and then focus on those equipped 
with reconstituted human immune system. The update advancement in the establishment of humanized 
immune system mice and their applications in the studies of the development of human immune system 
and the pathogenesis of multiple human immune-related diseases are intensively reviewed here, while the 
shortcoming and perspective of these potent tools are discussed as well. As a valuable bridge across the gap 
between bench work and clinical trial, progressive humanized mouse models will undoubtedly continue to 
play an indispensable role in the wide area of biomedical research.  
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1      Introduction 

 During the past century, the application of rodent  animal models  , 
especially diverse gene-engineered  mouse models  , provided indis-
pensable platforms and numerous valuable information for the 
advances in experimental medicine and biological research. 
However, the gap between species is still the most challenging 
obstacle for translation of results from rodents to  humans  . With 
the great advancement of technology in molecular biology and 
gene modifi cation, the attempt to establish “humanized” mouse 
models has made a leap since 1990s [ 1 – 3 ]. Nowadays, a wide vari-
ety of  humanized mouse models   have been generated and applied 
in nearly all fi elds of biomedical research [ 4 ]. In this chapter, we 
briefl y review the history and classifi cation of humanized mouse 
models and then summarize the current situation and recent 
advancement of their application in biomedical research, especially 
in the research of immune-related diseases. 
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   In general, the “humanized mice” are composed of three main 
classes:  human   gene-expressed transgenic mice ( human gene- 
transgenic mice ), which are modifi ed by gene knock-in or replace-
ment technology to express one or more human specifi c genes; 
humanized mice carrying human tissue, such as the liver ( human-
ized liver mice ) in which murine hepatocytes are completely or 
partly replaced by infused human-original hepatocytes; humanized 
mice equipped with functional human immune system ( humanized 
immune system mice ), which are established on immunodefi cient 
mice by transplanting human immune organs or cells to reconsti-
tute human immune system in mice and thus referred to special 
“humanized mice.” In the following section, we briefl y review the 
history and current advance of  human   gene-transgenic mice and 
humanized liver mice, and then focus on humanized immune sys-
tem mice. 

   Human gene-transgenic mice are closer to gene engineered mice 
rather than “humanized mice.” Although the expressions of human 
gene or protein in transgenic mice provides the platform for studying 
in vivo role of specifi c human gene or molecule, the value of these 
data is limited in translational medicine due to the lack of human 
microenvironment and signal networks in these mice. 

 The most widely used human gene-transgenic mice are human 
leukocyte antigen (HLA)-transgenic mice [ 5 ]. These HLA- 
expressed transgenic mice represent for a useful tool in studying 
in vivo TCR-restricted immune responses and thus were adopted in 
the studies of immune-related diseases during the fi rst 10 years of 
this century. For example, HLA-A0201-transgenic mice were used 
in inducing CD8 +  T cell-restricted type I diabetes (T1D) [ 6 ] and 
experimental autoimmune encephalitis (EAE) [ 7 ], while HLA-
DRB1- transgenic mice were applied in establishing CD4 +  T cell- 
mediated EAE [ 8 ], system lupus erythematosus (SLE) [ 9 ] and 
rheumatoid arthritis (RA) models [ 10 ]. More recently, the respec-
tive role of HLA-DR2 and HLA-DQ8 in EAE [ 11 ] and autoim-
mune diabetes [ 12 ] was also studied through transgenic mice. 
Meanwhile, transgenic mice with distinct HLA subtype expression 
favor the study of HLA-related susceptibility on specifi c diseases, 
such as EAE [ 13 ], experimental autoimmune uveitis [ 14 ], arthritis 
[ 15 – 17 ], allergic bronchopulmonary aspergillosis-like pulmonary 
responses [ 18 ], and celiac disease [ 19 ]. Although the application 
of HLA-transgenic mice has been reduced due to the simplifi cation 
of diseases into specialized immune responses, the combination of 
HLA-transgenic technology and reconstitution of human immune 
system in immunodefi cient mice has re-assigned them vitality in 
biomedical research, which will be discussed in the next section. 

 Other transgenic mice used in immune-related studies included 
humanized α1KI mice [ 20 ], humanized θ-defensins mice [ 21 ], 
humanized toll-like receptor (TLR) 4/MD2 mice [ 22 ], 
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humanized type I interferon (IFN) mice [ 23 ], and humanized 
tumor necrosis factor (TNF) mice [ 24 ]. Similar to HLA-transgenic 
mice,  their   combination with humanized-immune system in mice 
will certainly strengthen their translational capability in the future.  

   Humanized liver mice were established as early as 2001 and mainly 
applied in the study of drug metabolism, excretion, toxicity [ 25 , 
 26 ], and the in vivo activity of enzymes such as  human   cytochrome 
P450 [ 27 ]. Moreover, the establishment of chimeric mice with 
humanized liver accelerated the progress of the studies in hepatitis 
virus B [ 28 ,  29 ], C [ 30 ,  31 ], D [ 32 ], and human cytomegalovirus 
infection [ 33 ], which had all been blocked by the lack of optimal 
 animal models   in “pre-humanized mice time.” On the other side, 
Chen et al. tried to stabilize the function of cryopreserved human 
hepatocytes in immune competent mice through a novel system 
called “human ectopic artifi cial livers (HEALs),” which involved 
juxtacrine and paracrine signal in polymeric scaffolds. They claimed 
that mice transplanted with HEALs exhibited persistent normal 
liver function for weeks and thus provided a window for drug- 
related investigation [ 34 ]. However, the effi cacy and value of 
humanized liver mice in the development of drug are still on debate 
due to the proposed side effects such as ongoing liver injury caused 
by transgenic and the infl uences on “normal metabolism” medi-
ated by exogenous  treatment   [ 35 ,  36 ]. Apart from these, the 
potential application of humanized liver mice in immune-related 
research also deserves further exploration because liver also repre-
sents for a critical component of human immune system.  

   The development of humanized immune system mice could be 
divided into three phases corresponding to the establishment of 
 Prkdc  scid  (protein kinase, DNA activated, catalytic polypeptide; 
severe combined immunodefi ciency) mutation in CB17 mice, the 
development of NOD (non-obese diabetic)-SCID mice, and the 
generation of immunodefi cient mice homozygous for mutation at 
IL (interleukin)- 2   receptor γ chain locus [ 2 ,  37 ]. Each break-
through mentioned previously signifi cantly improved the engraft-
ment of  human   immune cells or pluripotent stem cells and stood 
as milestone on the way to “real humanized mice.” The engraft-
ment of multiple human immune components in these mice sur-
passed conventional human-gene knock-in in breaking the limited 
viewpoint of studying specifi c molecules under isolated environ-
ment. This unique advantage of humanized immune system mice 
favors their general application in immune-related studies, and 
opens a window for researchers to observe the interaction among 
human immune cells in vivo. In the following content, we focus on 
the characteristics and application of these  mouse   models and simply 
refer them as “humanized mice” if not otherwise specifi ed. 

1.1.2  Humanized 
Liver Mice

1.1.3  Humanized 
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 Currently, IL2γc −/−  mice established on NOD/scid and recom-
bination activating gene 2 (Rag2) −/−  Balb/C background were most 
widely used strains for the reconstitution of human immune system 
in vivo [ 38 – 40 ]. Recently, by using bone marrow, liver, thymus 
(BLT) co-transplantation, Lavender et al. engrafted high levels of 
multi-lineage hematopoiesis and organized lymphoid tissues in 
C57BL/6-Rag2 −/− γc −/− CD47 −/−  triple-knockout mice. These 
humanized mice sustained human cell and tissue engraftment as long 
as 29 weeks post-transplantation without the development of chronic 
graft-versus-host diseases (GVHD), and thus represented for a new 
advancement in establishment of humanized mice [ 41 ].   

   The reconstitution of functional immune system is the key to evalu-
ate the successful establishment of humanized mice. The graft used 
for reconstituting  human   immune system includes stem cells [ 42 ], 
BLT [ 41 ], and peripheral blood cells [ 43 ] according to specifi c 
objectives. Generally, stem cell and BLT  transplantation   exhibit 
advantage in establishing stable multi-lineage hematopoietic cells 
but might need additional  treatment   for improving development 
of specifi c cell subpopulations. On the contrary, humanized mice 
established by peripheral blood cells provide a ready platform for 
studying the functions of mature immune cells but the length of 
window appropriate for research is still limited by chronic GVHD 
and ongoing reduced engraftment. To maximize the potential of 
 humanized mouse model  , some progresses have been made 
recently. Firstly, pretreatment or gene-engineering of pluripotent 
stem cell exhibited satisfactory effects on improving engraftment 
of immune cells [ 38 ,  42 ,  44 ]. Secondly, human growth factors, 
cytokines [ 44 ,  45 ] or signal regulatory protein alpha (SIRPa)-
expressed [ 46 ] immunodefi cient mice demonstrated superior 
engraftment for specifi c immune cell subpopulations as well. In the 
following paragraphs, we briefl y review current status of the recon-
stitution of specifi c immune cell subpopulations in humanized 
mice. 

 Lymphocytes are most important components of immune 
system and thus draw a major attention. Although human periph-
eral blood mononuclear cells (PBMC) transplantation led to rapid 
reconstitution of human lymphocytes in humanized mice, it was 
found that after initial activation and induction of  antibody   
production, human T cell lymphocytes enter an unresponsiveness 
status due to loss of human professional antigen-presenting cells 
(APC), which could be reversed by adoptive transfer of  human   
APC [ 47 ] or activating organ-resident myeloid  dendritic cells 
(DC)   through poly(I:C) treating [ 48 ]. Meanwhile, stem cell- 
transplanted humanized mice displayed diversifi ed T cell reper-
toire, but the gap between HLA and murine major histocompatibility 
complex (MHC) molecules prohibited the induction of effi cient 
T cell-mediated primary immune responses in vivo [ 49 ,  50 ]. 
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To overcome these problems, HLA-expressed immunodefi cient 
mice were generated and their effi cacy has been confi rmed [ 51 ]. 
Another concern origins from Th1 and Th17 immunocompetence 
in humanized mice [ 52 ], which supports the utility of their appli-
cation as surrogate model in  transplantation   rejection and  autoim-
munity   but might cause some unwanted immune responses against 
murine tissue antigen as well. 

 Distinct from their T cell companion, reconstitution of func-
tional B lymphocytes is generally poor in humanized mice and 
needed to improve in the future although their primary repertoire 
were principally unaltered by the differences between  mouse   and 
human stromal environments [ 53 ] and their ability to produce 
antigen-specifi c  antibody   was partly developed [ 54 ]. 

 As described previously, the reconstitution of myeloid cells not 
only guarantees immune system intact, but also determines the 
development and function of both adaptive and innate lymphocytes 
[ 47 ,  48 ,  55 ]. Unfortunately, monocytes and other myeloid cells 
usually exhibit immature phenotype and impaired function in 
humanized mice [ 56 ], which could be partly rescued by human col-
ony stimulating factor (CSF)-1 [ 57 ]. However, the improvements in 
their survival, differentiation and even migration and residence [ 58 ] 
are still urgently required. Besides leukocytes, other blood compo-
nents also play important roles during immune response and regula-
tion. Recently, Hu et al. established the full reconstitution of  human   
platelets in humanized mice after depletion of murine macrophage 
[ 59 ], which represents for an interesting attempt in constructing a 
more “humanized” circulation in mice. 

 In summary, the optimization of  humanized mouse model   is 
still on the way and the advances in molecular biology, cellular 
biology, and system biology will defi nitely bring new era to the 
development of this useful tool.   

2    Applications of Humanized Mice 

 The applications of humanized mice cover nearly all fi elds of bio-
medical research and here we concentrate on immune-related 
studies, especially those aiming at the mechanisms and translational 
potentials of immune regulation and  suppression  . We also briefl y 
summarize the benefi ts brought by these potent models in tumor, 
infectious diseases, and vaccine studies. 

       Benefi ting from humanized mouse model established by BLT or 
CD34 +  stem cell  transplantation  , research on the development of 
human T cells made a great progress in the past 5 years. In 2011, 
Choi et al. induced human CD4 + CD8 +  double-positive (DP) 
T cells, CD4 +  and CD8 +  single-positive (SP) T cells, 
CD34 + CD38 lo CD1a −  (thymus setting-progenitors, TSP), 
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CD34 + CD38 lo CD1a −  (early T lineage progenitors, ETP), and 
CD34 + CD38 + CD1a +  pre-T cells in liver of humanized mice by 
intrahepatic injection of CD34 +  stem cells, establishing a wonderful 
platform for investigating  human   T cell development [ 60 ]. 
However, Joo et al. found that human T cells educated by murine 
MHC in mice without a human thymus differ from normal human 
T cells marked as higher expression of CD45RO and promyelocytic 
leukemia zinc fi gure protein (PLZF) regardless of similar develop-
ment stages [ 61 ]. Correspondingly, Danner et al. generated HLA-
DR4-expressed NOD-Rag1 −/− γc −/−  mice and demonstrated the 
critical role of HLA class II molecule for development of functional 
T cells by infusion with HLA-DR-matched human hematopoietic 
stem cells [ 62 ]. Meanwhile, the roles of IL-12 [ 63 ] and Notch [ 64 ] 
signals during the development of human CD4 +  and CD8 +  T cells 
were evaluated by human hematopoietic stem cell-transplanted 
mice. Moreover, using a human stem cell factor, granulocyte-mac-
rophage colony-stimulating factor (GM-CSF) and IL-3-expressed 
NOD/scid-γc −/−  mice, Billerbeck et al. found the increased accu-
mulation of human CD4 +  Foxp3 +  T cells   in blood, spleen, bone 
marrow and liver. Most importantly, these CD4 + Foxp3 +  T cells 
exhibited potent suppressive capability on T cell proliferation, 
which made a signifi cant contribution to study of human  regulatory 
T cells (Treg)   development in vivo [ 65 ].  

   As described previously, the development of human B cells in 
humanized mice is relatively weak compared to T cells. In 2011, 
Choi et al. evaluated the effi cacy of Busulfan, a chemotherapeutic 
agent, and claimed that it could effi ciently improve the reconstitu-
tion of human specifi c  antibody  -producing B cells, T cells, macro-
phage, and even DC from CD34 +  cord blood cells with less toxic 
effects [ 66 ]. On the other hand, Kim et al. found that co- 
transplantation of fetal bone tissue with fetal thymus could facili-
tate the development and reconstitution of human B cells from 
fetal liver-derived CD34 +  cells together with T cells [ 67 ].  

   Besides adaptive lymphocytes like T and B  cells  , innate lympho-
cytes development-related factors were also illustrated in  human-
ized mouse model  . As early as in 2008, Huntington and Di Santo 
made a periodic review on the application of humanized mice in 
the research of NK cell development [ 68 ]. In 2011, Pek et al. fur-
ther confi rmed the crucial role of IL-15 in NK cell development in 
bone marrow and liver with humanized mouse model [ 69 ]. We 
believe that more studies in the development of other innate lym-
phocytes such as NKT, γδ-T cells and innate-like T cells (ILT) will 
be reported in the near future.   

   Myeloid cells are generally regarded as more fragile and diffi cult to 
survive in “strange environment”, which made it attractive and 
subtle to improve reconstitution of these sensitive cells. The 
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addition of  human   original cytokines such as GM-CSF and IL-4 
was generally accepted as an effi cient way to improve DC matura-
tion [ 70 ]. Similarly, the effects of macrophage colony-stimulating 
factor (M-CSF) and Fms-related tyrosine kinase (FLT)-3 ligand on 
promoting the development of macrophage [ 71 ], and CD141 +  
and CD1c +  DC [ 72 ] have also been confi rmed in humanized 
mouse model respectively. Moreover, the development of mega-
karyocytes was replicated and used as index of dengue virus- 
infection in humanized mouse model recently [ 73 ], which also 
supported the multi-lineage hematopoietic cell development in 
humanized mice. Finally,  transplantation   of human stem cells from 
bone marrow of patients with bone marrow failure syndrome into 
humanized mice provided invaluable tools for evaluating novel 
gene-targeted therapy before clinical trial [ 74 ]. 

 In summary, the reconstitution of diverse  human   immune cell 
populations from their pluripotent progenitors in immunodefi -
cient mice has become a potent platform for investigating the 
development of human immune system while the next question is 
how to create a more “humanized” environment in mice for 
human cells [ 75 ].   

   The advances in the study of autoimmune diseases in humanized 
mice, especially those T cell-mediated diseases, are always corre-
lated with development of HLA-transgenic technology. In 1999, 
Bachmaier et al. generated a CD4−CD8− double-knockout mice 
transgenic for human CD4 and HLA-DQ6 to specifi cally reconsti-
tute the human HLA-DQ6/CD4 arm in mice and established a 
dilated cardiomyopathy model [ 76 ], which was one of the earliest 
attempt for applying  humanized mouse model   in the study of 
autoimmune diseases. Using similar strategy, Eming et al. estab-
lished a RA model in a HLA-DR4/human CD4/TCR combined 
transgenic mice with the stimulation of a RA-related human 
 autogenic protein HCgp-39 in 2002 [ 77 ]. However, the lack of 
human immune system reconstitution in these models constrained 
their representative for the whole map occurring during autoim-
mune diseases. On the other side, Shultz et al. established T1D 
model in NOD/scid-γc −/−  mice by co-transplanting with human 
stem cell and islet cells [ 78 ,  79 ]. Importantly, this group pointed 
out the potential of HLA-transgenic immunodefi cient mice in 
optimization of these models and provided some interesting pre-
liminary data [ 78 ]. Soon after, infl ammatory arthritis and type 2 
diabetes models were established in HLA-transgenic humanized 
mice by David [ 80 ] and Schultz groups [ 81 ] respectively. As we 
mentioned previously, T cell-mediated immune responses were 
generally incomplete in humanized mice established on conven-
tional immunodefi cient mice, which usually led to insignifi cant 
clinical symptoms [ 82 ] and thus limited the application of these 
models. The involvement of HLA not only improves the effi cacy of 
immune responses, but also provides a platform for study of the 
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relationship between HLA subtypes and specifi c diseases suscepti-
bility. Nevertheless, the complexity and individuality of HLA phe-
notypes in healthy donors or patients still remain as the biggest 
challenge in rebuild of physiopathology process in relatively lim-
ited HLA- expressed humanized mice. 

 Due to relatively weak reconstitution of  human B cells      in 
humanized mice, the establishment of B cell or  antibody  -mediated 
autoimmune diseases seems to be more diffi cult than those T cell- 
mediated autoimmune diseases. Kerekov et al. rebuilt the clinical 
pathogenesis in humanized mice with cells transferred from SLE 
patients and evaluated the potential of B cell-targeted therapy with 
a chimeric molecule containing a monoclonal antibody against 
human inhibitory complement receptor type I coupled to a deca-
peptide that mimic DNA antigenicity [ 83 ]. In 2012, another 
group led by Duffi eld recapitulated systemic vasculitis in human-
ized mice by treating them with anti-proteinase-3 IgG isolated 
from patients [ 84 ]. With the improvement in reconstitution of 
multiple components of human immune system in humanized 
mice, it is predictable that the induction of diverse human B cell- 
mediated autoimmune diseases in vivo will be accessible soon.  

   Application of humanized mice models in transplantation-related 
diseases arises as early as the birth of humanized mice but the pro-
cess is so tortuous till now due to chronic exogenous rejection and 
ongoing decrease of immune cells [ 85 ]. In 2001, Coates estab-
lished an allogeneic skin rejection model in humanized NOD/scid 
chimeric mice and examined the therapeutic effects of human 
myeloid DC transduced with an adenoviral IL-10 gene [ 86 ]. In 
2006, Marcheix et al. rebuilt a human chronic vascular rejection 
model in humanized SCID/beige mice with human mesenteric 
arterial grafts [ 87 ]. In 2012, Yi et al. determined the suppressive 
capacity of in vitro-expanded human CD4 +  Treg on porcine islet 
xenograft rejection in  humanized mouse model   and found the cru-
cial role of IL-10 in Treg-mediated protection [ 88 ]. In above three 
studies, investigators planted solid grafts into immunodefi cient 
mice before reconstitution of human immune system and induced 
rejection by infusion of mature human cells. However, the long- 
term outcome of these models is still not clear. 

 In order to further mimic clinical situation, human CD34 +  
stem cells were applied in establishing humanized mice. Using this 
strategy, three independent groups reported allogeneic islet trans-
plantation [ 89 ], xenogeneic islet rejection [ 90 ], and xenogeneic 
skin rejection [ 91 ] models during 2010–2012. Unfortunately, 
insuffi cient development of immune cell populations in these 
humanized mice still stayed as an obstacle and even led to the fail-
ure of rejection [ 89 ]. To solve this problem, some  other   groups 
tried to develop a more “mature” human immune system in 
humanized mice by transplanting human peripheral blood cells. 

2.3  Transplantation- 
Related  Diseases  
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In 2013, our group reported a novel human allogenic GVHD 
model established on humanized mice reconstituted with human 
PBMC [ 92 ]. This model reproduced typical clinical process of 
acute GVHD occurring during allogeneic bone marrow transplan-
tation without apparent interruption of exogenous reactivity. 
Using this model, we evaluated the protective effects of human 
CD8 +  Treg induced ex vivo by allogeneic CD40-activated B  cells   
and found that human CD8 +  Treg could inhibit GVHD and induce 
long- term  tolerance   without compromising general immunity and 
graft-versus- tumor (GVT) activity [ 92 ]. The potent regulatory 
activity of the CD8 +  Treg was mainly mediated by the expression 
of cytotoxic lymphocyte antigen (CTLA)-4 on cell surface, while 
their alloantigen-specifi city and the ability to induce the long-term 
 tolerance   favor their clinical application. More importantly, this 
strategy might reduce clinical dependence on limited HLA-match 
donors and largely improve the survival chance of millions of 
patients who are waiting for bone marrow transplantation. 

  Humanized mouse model   undoubtedly brings new hope for 
transplantation research, but we also need to keep in mind that 
a lot of questions are still waiting to be answered on this way. As 
emphasized by Brehm and Shultz, keys to successful humanized 
mouse model included available immunodefi cient mouse strains, 
the choice  of   tissue to transplant and the specifi c  human   immune 
cell population that can be grafted [ 85 ].  

   Besides autoimmune diseases and transplantation-related diseases, 
humanized mice models are also useful to study some other infl am-
matory diseases. 

 In 2002, Hammad et al. compared the Th2 allergic infl amma-
tion in the lung of humanized mice reconstituted with PBMC. To 
induce infl ammatory reaction, DCs from home dust mite (HDM)-
allergic patients or healthy donors were injected intratracheally and 
mice were then repeated exposed to aerosol of HDM. In contrast 
to  IFN-γ   secretion induced in mice receiving normal DCs, those 
injected with DCs from patients induced IL-4 and IL-5 produc-
tion accompanied with the increase of IgE production, which rep-
resents characteristics of Th2 response [ 93 ]. In 2003, Firouzi et al. 
used a humanized SCID  mouse   model confi rmed the crucial role 
of T cells during multiple sclerosis-associated retrovirus particle- 
caused brain hemorrhage [ 94 ], while Sheu et al. found that circu-
lating IgM played the main pathogenic role in skeletal muscle 
ischemia-reperfusion injury based on their research on hPBL- 
SCID mice in 2009 [ 95 ]. In the meantime, Unsinger et al. estab-
lished a sepsis model in humanized mice elevated human pro- and 
anti-infl ammatory cytokines as well as a dramatic increase in human 
T and B  cell   apoptosis, which was generally found in patients with 
sepsis [ 96 ]. More recently, Vudattu et al. determined the adverse 
effects of anti-CTLA-4  antibody   (ipilimumab) including hepatitis, 
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lymphadenopathy, and other infl ammatory sequelae in  humanized 
mouse model   [ 97 ]. 

 In addition to immunopathology study, humanized mouse 
model was also applied in studying the underlying mechanisms of 
injury repair. By plating retroviral vector-modifi ed  human   skin on 
nude mice and adding human keratinocyte growth factor (KGF) to 
artifi cial wound in the skin, the re-epithelialization was signifi cantly 
accelerated [ 98 ]. Although this model could not be described as 
“real” humanized mice because no human immune system was 
involved in it, this attempt initiated an innovative application of 
humanized mice. 

 Compared to satisfactory reconstitution of circulating blood 
cells, the successful reconstitution of mucosa immunity in human-
ized mice is still absent till now. Mucosa, especially respiratory and 
digestive tract surface, plays indispensable role in protection and 
immune regulation. However, the residence and exchange of 
immune components in the locus are still diffi cult to rebuild in 
 animal models   because the physiological dynamics remains largely 
unknown [ 99 ]. Another reason is due to their complex gnotobi-
otic microenvironment. To meet this requirement, Gordon’s 
group fi rstly established a humanized gnotobiotic mice by trans-
planting fresh or frozen adult human fecal microbial communities 
into germ-free C57BL/6J mice and then investigated the effect of 
diet on human gut microbiome [ 100 ]. Similarly, Kashyap et al. 
determined the relationship among diet, gastrointestinal transit 
and gut microbiota using the same model [ 101 ], while Macrobal 
et al. further compared the difference between gnotobiotic human-
ized mice and conventional mice urine and fecal metabolomics 
profi les [ 102 ]. Recently, another exciting breakthrough in immune 
reconstitution of the gastrointestinal tract was reported by Nochi’s 
group. They developed  human   gut-associated lymphoid tissue 
(GALT) in  mouse   cryptopatches and succeeded in generating 
functional intestinal immunity marked by human IgA secretion in 
a BLT-NOD/scid mice model [ 103 ]. The combination of this 
 humanized mouse model   and gnotobiotics transfer will greatly 
improve our understanding on intestinal physiology and immune 
regulation.  

     The occurrence of humanized mouse model provided a perfect 
platform for evaluating  immunotherapy   against tumor. The earliest 
attempts of inducing antitumor immune responses in humanized 
mice focused on the generation of specifi c  antibody   but the out-
come varied due to unstable humanization of models [ 104 ,  105 ]. 
In the new century, researchers started to pay more attention on 
developing complete tumorigenicity, especially metastasis process 
and its relationship with stromal cells, in immunocompetent 
humanized mice, and made some signifi cant advances in multiple 
fi elds like human prostate cancer [ 106 ], mixed-lineage leukemia 
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(MLL) [ 107 ], human primary squamous cell carcinoma [ 108 ], 
and human T-cell leukemia virus (HTLV)-induced T cell leukemia 
[ 109 ]. Based on these progresses, some novel immunotherapy 
strategies were evaluated on humanized mouse models, such as 
inhibitory receptor Ig-like transcript (ILT)-3 depletion or block-
ade in melanoma [ 110 ] and IL-15-enhanced NK cell-mediated 
cytotoxicity against human breast cancer [ 111 ]. Recently, our 
group reported a novel application of pamidronate, a phosphoan-
tigen generally used to treat osteoporosis, in treating Epstein-Barr 
virus (EBV)-induced B  cell   lymphoproliferative disease in  human-
ized mouse model   reconstituted with human PBMC [ 112 ]. This 
“new application of an old drug” was mediated by expanding and 
activating  human   Vγ9Vδ2-T cells, a small cell population of human 
lymphocytes, which might inspire further exploration of currently 
available resources. More importantly, the established of donor- 
and tissue-specifi c humanized mouse tumor models will undoubt-
edly play an indispensable role during the development of individual 
therapies in the future [ 113 ].  

     The development of humanized mice represents a milestone in the 
history of human immunodefi ciency virus (HIV) study. The new 
generation of humanized mice not only improved our understand-
ing on transmission, latency, and pathogenesis of HIV [ 114 – 119 ], 
but also provided unprecedented platform for antiviral study. 
Besides further exploration of effi cient virus-specifi c neutralization 
 antibodies   [ 120 – 125 ] and conventional antiretroviral or antimi-
crobial therapies [ 126 – 128 ] in these models, the effi cacy of vec-
tored immunoprophylaxis [ 129 ] and CCR5-targetd  treatment   
[ 130 – 132 ] in preventing HIV transmission were evaluated as well. 
Meanwhile, the crucial roles of HIV-specifi c CD8 +  T cells [ 133 , 
 134 ] and plasmacytoid DC (pDC) [ 135 ,  136 ] in the replication of 
virus and activation of immune responses, and their potentials in 
targeted therapy were also investigated. Other novel  immunother-
apy   assays performed in humanized mouse model included block-
ade of programmed cell death (PD)-1 receptor [ 137 ,  138 ], 
engineering HIV-resistant T cells from short-hairpin RNA 
(shRNA)-expressing hematopoietic stem/progenitor cells [ 139 ], 
and inhibition of HIV replication by a chimera containing an RNA 
aptamer with high binding affi nity to the HIV envelop protein 
gp120 and virus neutralization properties and a small interfering 
RNA (siRNA) triggering sequence-specifi c degradation of HIV 
RNAs [ 140 ]. Moreover, a preliminary study on mechanisms under-
lying viral controlling in HLA-B*57 elite controller or suppressor 
(ES) was completed in humanized BLT mice and demonstrated 
that elite suppressors are capable of controlling HIV-1 due to the 
possession of unique host factors rather than infection with defec-
tive virus in vivo [ 141 ]. Nowadays, we could even make in-depth 
study on the cell dynamics in HIV-infected humanized mice model 

2.5.2  Infectious Disease

2.5.2.1  HIV
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with the help of intravital microscopy [ 142 ]. Therefore, it is countable 
that the future molecular biology will bring more surprise to the 
efforts of gene therapy against HIV [ 143 ].  

   Except for application in HIV-related studies,  humanized mouse 
model   also brought span-new opportunities for other  human   
infectious diseases [ 144 ], especially those blood-borne pathogen- 
caused diseases such as dengue virus infection [ 145 – 149 ], EBV 
infection [ 150 – 155 ], HCMV infection [ 156 ], HTLV infection 
[ 157 ], and malaria parasite infection [ 158 ]. On the other hand, 
humanized mouse models for Leishmaniasis [ 159 ], Salmonella 
Typhi infection [ 160 ,  161 ], herpesvirus infection [ 162 ,  163 ], 
Mycobacteria infection [ 164 ,  165 ], and group B Streptococcus 
(GBS) infection [ 166 ] have been established. These efforts fi ll in 
the lacks of suitable  animal models   for those human-specifi c 
pathogen- caused diseases and push forward the correlating investi-
gations on development of prevention and  treatment  , although 
some technological obstacles like the replication of natural infec-
tion and transmission routes are still needed to resolved. 

 In 2011, our group used PBMC-transplanted  humanized 
mouse model   to evaluate a novel therapeutic strategy by targeting 
the host rather than the virus for treating infl uenza virus infection. 
We demonstrated that aminobisphosphonate can control infl uenza 
disease through boosting human Vγ9Vδ2-T cell immunity and this 
benefi cial effect is active against viruses of varying subtypes and viru-
lence [ 43 ]. Nevertheless, differences in the characteristics of mole-
cules, tissues, and organs between  human   and mice might impair 
effi ciency of pathogen infection and initiation of specifi c immune 
responses [ 167 ]. In 2005, Lassning et al. increased the susceptibility 
of mice on human coronavirus by crossing aminopeptidase N 
(APN), the receptor for human coronavirus (hCoV)-229E, and 
transgenic mice into signal transducer and activator of transcription 
(Stat)-1 null mice [ 168 ]. This work, together with HLA- and human 
cytokines/growth factor-transgenic technology [ 169 ], provided 
successful examples for future studying human infectious agents in 
humanized mice. In the next stage, improvement of versatility and 
variability of human immune system in humanized mouse model 
and application of gene-modifi ed pathogens [ 170 ] will defi nitely 
enhance translational effi ciency of these models.   

   The usage of humanized mice in the development of vaccines tar-
geting human diseases including EBV, HIV-1, dengue virus, infl u-
enza virus, severe acute respiratory syndrome (SARS) corona virus, 
and carcino-embryonic antigen (CEA) has obtained outstanding 
achievements during the past decade, while the introduction of 
HLA transgenic immunodefi cient mice further accelerated the 
advancement in this fi eld [ 171 – 173 ]. With the improvement of 
immune cell population reconstitution, more and more novel 
vaccination protocol will be carried out in humanized mice.    

2.5.2.2  Other Infectious 
Disease

2.5.3  Vaccine
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3    Perspective 

 Compared to conventional mice and non-human primate model, 
humanized mice exhibit great advantage in translational potential, 
reproductive capacity and data repeatability, economical and ethical 
concerns. The increasing applications of diverse humanized mice 
models in biomedical research during the past two decades signifi -
cantly improved our understanding on  human   physiological and 
pathological, especially immunological process at systemic, cellular, 
and molecular levels. This further accelerated the development of 
current translational medicine signifi cantly. Nevertheless, there are 
several major caveats on their development remain to be dealt with, 
including complete replacement of murine MHC with diversifi ed 
HLA molecules and effi cient methodology to express correspond-
ing growth factors and cytokines at specifi c time and organs [ 174 ]; 
how to prolong the maintenance of human engraftment, promote 
the development of myeloid cells and increase relatively weak quan-
tity and quality of immune cells [ 175 ]; and the limited develop-
ment of lymph nodes, inter-organ traffi c of immune cells, and the 
reconstitution of red blood cells and granulocytes [ 176 ]. In 
another word, the most important issue is to fi nd the convenient 
and cost-effective ways to construct appropriate human-like micro-
environment including physical structure, intercellular contact and 
molecular signals transfer in humanized mice. It is foreseeable that 
knowledge exchange in the age of big data will bring an even more 
bright future to this advancing tool than ever.     
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