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Past concussion studies have focused on understanding the injury processes occurring
on discrete length scales (e.g., tissue-level stresses and strains, cell-level stresses and
strains, or injury-induced cellular pathology). A comprehensive approach that connects all
length scales and relates measurable macroscopic parameters to neurological outcomes
is the first step toward rationally unraveling the complexity of this multi-scale system,
for better guidance of future research. This paper describes the development of the
first quantitative end-to-end (E2E) multi-scale model that links gross head motion to
neurological injury by integrating fundamental elements of tissue and cellular mechanical
response with axonal dysfunction. The model quantifies axonal stretch (i.e., tension)
injury in the corpus callosum, with axonal functionality parameterized in terms of axonal
signaling. An internal injury correlate is obtained by calculating a neurological injury
measure (the average reduction in the axonal signal amplitude) over the corpus callosum.
By using a neurologically based quantity rather than externally measured head kinematics,
the E2E model is able to unify concussion data across a range of exposure conditions
and species with greater sensitivity and specificity than correlates based on external
measures. In addition, this model quantitatively links injury of the corpus callosum
to observed specific neurobehavioral outcomes that reflect clinical measures of mild
traumatic brain injury. This comprehensive modeling framework provides a basis for
the systematic improvement and expansion of this mechanistic-based understanding,
including widening the range of neurological injury estimation, improving concussion risk
correlates, guiding the design of protective equipment, and setting safety standards.

Keywords: concussion mechanism, mTBI, internal dose, node of Ranvier, axon injury, axonal dysfunction,
kinematic correlates, dose-response

INTRODUCTION

Concussion is the result of a cascade of events with violent head motion as the initiator. Head
kinematics has previously served as the basis of concussion correlates because it yields readily
measurable external parameters, such as peak linear or rotational head acceleration, which are
assumed to be related to a tissue response and injury. These correlates, however, are usually limited in
applicability to the conditions in which the data are collected (1–6), and thus are restrictive in nature.
Other correlates have been developed from small primate kinematic data, but require empirical
scaling for application to humans (7). External correlates describe the input or exposure conditions
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that drive the injury outcomes but do not explain why an injury
results. However, an internal injury correlate is a fundamental
quantity of injury that is independent of exposure conditions,
boundary conditions, and species. Therefore, correlates developed
from internal injury measures are applicable under a broad range
of conditions, do not require scaling, and provide insight into the
injury mechanism. The development of a robust injury correlate
relies on the quantification of an internal injury measure, requir-
ing a mechanistic understanding of the entire injury pathway.

Years of research into concussion have produced a considerable
volume of knowledge regarding injury mechanisms on discrete
scales (e.g., tissue, cellular) that result in a cascade of underlying
pathophysiological responses (e.g., neuronal depolarization, ionic
imbalance, impaired axonal function). There is a general under-
standing of how these processes combine to translate headmotion
into mechanical disruption and neurophysiological aberrations
on the cellular level, which can then be linked to concussive
outcomes; however, no quantitative models exist that connect
these multi-scale injury mechanisms into an integrated end-to-
end (E2E) model.

Concussion starts with loading to the head (e.g., from impact
or blast exposure), which results in the head inertial acceleration
and/or load transmission through the head or torso that in turn
yields cellular-level neurological injury. Head loadings that pro-
duce violent head motion result in localized dynamic stresses and
strains throughout brain tissue (8, 9). Several finite elementmodel
(FEM) studies have quantified threshold stresses and strains in
localized brain regions (such as the corpus callosum, themidbrain,
and the brainstem) that are associated with concussive outcomes
(3, 6, 10–14). These threshold studies utilized the notion of diffuse
axonal injury, in which bundles of axonal fibers throughout the
brain are affected, likely as a result of loading-related axonal
strains (6, 15–17). These studies indicate that large maximal prin-
cipal strains and strain rates are likely to occur in the corpus
callosum (12), a prominent brain structure that is comprised of
a bundle of myelinated axons that mediate information exchange
between the left and right hemispheres.

Diffusion tensor imaging (DTI) has provided further evidence
linking concussion to injury of the white matter tracts, including
the corpus callosum (12, 18, 19). DTI quantifies molecular diffu-
sion of water in the brain tissue and provides a structural map of
white matter directionality throughout the brain (20). DTI studies
revealed reduced fractional anisotropy and decreased mean diffu-
sivity in the corpus callosum of concussed individuals, implying
that axonal integrity and functionality are affected in concussion
(21). Together with FEM analyses, injury thresholds based on
head kinematics were developed (6, 15). It is not surprising that

myelinated axons are affected by concussive head loadings; long
sections of relatively viscous myelin that are interrupted by short,
relatively elastic non-myelinated regions (nodes of Ranvier) are
likely to make the nodes particularly susceptible to strain concen-
tration, especially at high strain rates. Indeed, severe elongation
of nodes of Ranvier has been observed in histological sections of
axons in tension (22).

Physical stretching of nodes of Ranvier beyond a critical thresh-
old can lead to injury on the subcellular level. Nodal injury can
strongly affect axonal signal propagation, and this can be under-
stood by considering the nodal ultra-structure. Nodes of Ranvier
have a high density of voltage-gated sodium (Na+) channels,
which play a critical role in the regeneration and propagation of
action potentials along the axon. Animal models of axonal stretch
injury have demonstrated that high axonal strains result in strain-
induced injury of nodal tetrodotoxin-sensitive voltage-gated Na+

channels, manifested as a stretch-magnitude dependent shift in
the channels’ activation and inactivation voltages (23), which in
turn triggers a cascade of ion redistribution events (such as influx
of calcium ions) (24), culminating in axonal signaling dysfunction
and potentially in axonal degeneration (25). These observations
suggest that axonal dysfunction can be used as an internal injury
metric of concussion.

The objective of this paper is to translate these fundamen-
tal processes that result in brain injury into a quantitative,
mechanistic-based E2E concussion model that links head kine-
matics to neurological injury following axonal tensile stretching
and subsequent damage to the nodes of Ranvier. By modeling the
internal injury, this model can be applied to describe a range of
exposure types and conditions. More importantly, a mechanistic-
based model has a much broader application beyond estimating
concussion risk; it can be used to guide development of protective
equipment, help set safety standards, and improve current and
future monitoring technologies. Furthermore, once the founda-
tion for linking headmotion to themechanism of injury at the cel-
lular level has been established, extensions can be made to assess
more complicated outcomes, such as neurobehavioral sequelae,
and more subtle mechanisms of action, such as accumulation of
subthreshold head injuries.

MATERIALS AND METHODS

The E2E concussion model is comprised of a multi-scale set of
validated component models that link head kinematics to axonal
signaling dysfunction in the corpus callosum and altered cortical
dynamics (Figure 1). The E2E model starts with input of the head
kinematics into a head FEM. The FEM results are processed to

FIGURE 1 | Schematic of the end-to-end model, showing the relations between the different component models.
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calculate transient axonal strains in the elements of the corpus
callosum, which are then translated into localized axonal strains
and injury of the axonal nodes of Ranvier via a micromechanical
model of the myelinated axon. This physical injury is captured
as signaling dysfunction by a biophysical signaling model that
relates injury of nodal tetrodotoxin-sensitive voltage-gated Na+

channels to injury-induced changes in the amplitude and latency
of action potentials propagating along the injured axons. From
this, a neurologic injury measure (NIM) is calculated by volume-
weighted averaging of signal dysfunction over all elements in the
corpus callosum. The NIM serves as the internal injury correlate
based on which a dose–response curve is derived. A network
model of spiking neurons, capturing intra- and inter-hemispheric
cortical dynamics modulated by the corpus callosum, simulates
changes in the communication dynamics based upon the corpus
callosum injury severity.

Human and Non-Human Primate (NHP)
Head FEMs
Human and NHP head FEMs coupled with DTI data were
developed to translate head kinematics into transient strains in
the axial direction of the corpus callosum myelinated axons. A
detailed FEM of the human head was constructed from computed
tomography (CT) data acquired from the Visible Human Project
(26), with the hexahedral brain mesh segmented into the major
anatomical components (right and left cerebri, right and left cere-
belli, corpus callosum, and brainstem) using the Zygote anatom-
ical dataset,1 as shown in Figure 2. The tentorium cerebelli and
falx cerebri were modeled as shell layers defined by the boundary
nodes between the cerebrum and cerebellum and between the
cerebral hemispheres, respectively. The outermost layer of solid
elements in the brain mesh was separated to represent the dura
mater and cerebrospinal fluid (CSF). The outer surface of the
cerebrum was separated into a single shell layer to represent the
arachnoid and pia mater, which are very thin, stiff membranes,
providing a layer of protection around the cerebrum. While the
FEMs include the geometry of the facial bones and cervical spine,
these structures did not play a role in the current simulations
because measured head kinematics were applied to a rigid skull.
Skull features and properties become necessary when simulating
an impact or blast event to the head, and the resulting headmotion
is calculated.

Tied contact was enforced at the interface between the inner
surface of the skull and the outer surface of the dura–CSF, and
a frictionless sliding (no separation) contact was enforced at the
interface between the inner surface of the dura–CSF and the
outer surface of the pia–cerebrum (27). Additionally, the out-
ermost nodes of the tentorium cerebelli and falx cerebri shell
components were tied to the dura, to model the attachment of
these membranes to the skull. The brain tissue material prop-
erties were bounded by values identified in literature (28). The
tissue was modeled as a nearly incompressible isotropic vis-
coelastic material with initial material properties based upon
the 2001 version of the Wayne State University Head Injury
Model (29). The dura–CSF, pia–arachnoid mater, falx cerebri, and

1https://zygotebody.com.

FIGURE 2 | A cut view of the high-resolution segmented brain mesh of the
finite element model for the (A) human and (B) non-human primate.

tentorium cerebelli components were modeled as elastic, with
property values taken from Ref. (11). The material parameters
were then calibrated to reflect dynamic deformation captured by
cadaver impact studies (8). The model material parameters are
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TABLE 1 | FE model material properties.

Human FE model Monkey FE model

Material Constitutive law ρρρ (kg/m3) K (GPa) G0 (Pa) G∞∞∞ (Pa) βββ (1/s) ρρρ (kg/m3) K (GPa) G0 (Pa) G∞∞∞ (Pa) βββ (1/s)

Corpus Callosum Viscoelastic 1,040 2.19 5,000 500 80 1,040 2.19 18,500 6,700 100
Cerebrum Viscoelastic 1,040 2.19 4,000 400 80 1,040 2.19 10,300 3,700 100
Cerebellum Viscoelastic 1,040 2.19 3,000 300 80 1,040 2.19 10,300 3,700 100
Brainstem Viscoelastic 1,040 2.19 6,000 600 80 1,040 2.19 18,500 6,700 100

Material Constitutive law ρρρ (kg/m3) E (MPa) ννν t (mm) ρρρ (kg/m3) E (MPa) ννν t (mm)

Dura Elastic 1,130 31.5 0.45 – 1,040 40 0.45 –
Falx Elastic 1,140 31.5 0.45 1 1,040 4,000 0.45 1
Tentorium Elastic 1,140 31.5 0.45 1 1,040 4,000 0.45 1
Pia-arachnoid Elastic 1,140 6 0.45 1 1,040 12.5 0.45 1

listed in Table 1. The model was validated against simulation of
four decelerative impacts in which brain displacement data were
measured (9).

The NHP head FEM skull mesh was constructed from high-
resolution CT scans of a rhesus macaque from the Primate
Research Institute of Kyoto University. The hexahedral brain
mesh was segmented to represent different regions of the brain
based on a detailed rhesus macaque brain atlas taken from the
INIA19 Primate Atlas found in the Neuroimaging Informatics
Tools and Resources Clearinghouse (NITRC) database.2 These
regions include the left and right cerebri (gray and white matter),
left and right cerebelli (gray andwhitematter),medulla oblongata,
pons, midbrain, corpus callosum, and ventricles. The treatment
of the meninges and contact definitions were the same as in the
human head FEM. A majority of the material properties were
taken from literature (30). Those not available in the literature
were taken from the human head FEM. The model material
parameters are listed in Table 1.

Axonal strain in the corpus callosumwas calculated by adapting
a post-processing technique proposed by Chatelin et al. (31),
rather than including the direction of white matter tracts within
the constitutive models in the FEM. Wright et al. (32) found
that the axonal strain response of an anisotropic white matter
constitutive model can be fairly well-represented by an isotropic
constitutive model when the continuum strain tensor is projected
into the axonal axial direction using the DTI data. It was deter-
mined to be an acceptable alternative to the increased complexity
and computational cost associated with incorporation of fiber
orientation into the FEM, with both methods resulting in similar
loci of high axonal strain (33). In order to transform the anatom-
ical information from the DTI voxels to the finite elements, the
DTI atlas was rigidly registered to the FEM brain. The average
primary axonal axial directionwas then calculated in each element
of the corpus callosum component of the FEM. The average size
of the corpus callosum elements was on the same order or slightly
larger than the size of the DTI voxels; thus, a simple average of
the primary axonal vectors from the voxels contained in each
element was calculated. All average element axonal vectors were
then normalized to ensure no influence of vector magnitude. The
anatomical information about the primary axonal directions in

2https://www.nitrc.org.

human white matter came from the DTI data contained in the
Illinois Institute of Technology Human Brain Atlas (V. 3) (34);
in NHP, white matter came from the rhesus DTI atlas from the
NITRC database.

Axon Micromechanics Model
A micromechanics model of a myelinated axon was developed
to translate the time histories of axonal strains of each element
calculated by the FEMs into localized strains at the nodes of
Ranvier. The micromechanics model had two major components:
(1) a bare axon without myelin and (2) myelin.

The model of the underlying bare axon in the internodal and
nodal regions followed the formulation of a spring in series with
a Voigt element, as suggested by Dennerll et al. (35). The elastic
moduli of the spring and Voigt elements (E1 and E2, respectively)
and kinematic viscosity (η1) were calculated using

E1 =
k1L
A , E2 =

k2L
A , η1 =

γ1A
L (1)

where k1, k2 are the spring constants, γ1 is the viscous damping
coefficient of the dashpot, L is the length of the section, and A
is the corresponding cross-sectional area. E1, E2, and η1 were
calculated to be 19.9 kPa, 0.42 kPa, and 2.256MPa/s, respectively.
The material properties of the springs and dashpot were based
upon dorsal root ganglion neurite properties with length (L)
and cross-sectional area (A) estimated from Dennerll et al. (35).
For simplicity, we assumed a homogeneous bare axon; thus, the
elastic moduli and viscosity were considered to be constant and
geometry-independent.

Owing to its significant cholesterol content, the viscoelastic
properties of myelin are likely to be quite different from those of
a regular neural bilayer (35). Because the myelin consists of lipid
and proteins, it was assumed that themyelin is viscoelastic, and the
Maxwell material has been chosen to model it. To the best of our
knowledge, the mechanical properties of myelin have not yet been
characterized; thus, the values of the elastic modulus of the spring
(E3) and the viscosity of the damper (η3) were parameterized to
dynamic axonal stretching experiments of Singh et al. (36) and
Rickett et al. (37) with an E3 of 50 kPa and η3 of 1 kPa/s.

Assembly of the bare axon with the myelin formed the myeli-
nated axon model, which is illustrated in Figure 3. The complete
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FIGURE 3 | Microstructure of a myelinated axon. (A) The node of Ranvier contains a high concentration of voltage-gated Na+ channels that are injured as a result of
physical stretching. (B) The micromechanical behavior is modeled as viscoelastic, with the myelin in the internode region exhibiting more viscous behavior compared
with the relatively elastic axon.

myelinated axon model was composed of the myelinated intern-
odal region and the unmyelinated node of Ranvier. Its spring and
viscous damping constants were calculated using

k11 =
E1Ainternode
Linternode

, k12 =
E2Ainternode
Linternode

, γ1 =
η1Ainternode
Linternode

(2)

k21 =
E1Anode
Lnode

, k22 =
E2Anode
Lnode

, γ2 =
η1Anode
Lnode

(3)

k31 =
E3Amyelin

Linternode
, γ3 =

η3Amyelin

Linternode
(4)

where Lnode and Linternode are the nodal and internodal lengths,
respectively, and Anode, Ainternode, Amyelin are the cross-sectional
areas of the node, internode without myelin, and myelin, respec-
tively. Given the inherent material differences between the myeli-
nated region and the nodes of Ranvier, strains along the internode
and the node of Ranvier are likely to depend on axonal strain and
strain rate.

Biophysical Signaling Model
A biophysical signaling model was developed to translate local-
ized physical injury of the axon to functional decrements, using
the NEURON simulator package (38). The biophysical model
simulated action potential generation in the axonal initial seg-
ment, and its saltatory propagation along the myelinated axon,

by considering a realistic ultra-structural axonal organization and
distribution of biochemical mechanisms. Experimental evidence
suggests a link between stretch injury of tetrodotoxin-sensitive
voltage-gated Na+ channels (Nav1.6) and nodal excitability, which
critically determines the function of myelinated axons (39, 40).
Stretch injury has been shown to produce a leftward (toward
more negative values) shift of the activation/inactivation voltages
of these channels, in a manner that depends on the severity of
stretching (23).

The electrochemical kinetics of action potential propagation
were implemented using the NEURON simulator package (38).
A one-dimensional multi-compartmental cable model with cylin-
drical geometry was used for describing the myelinated axon.
The model myelinated axon consisted of a series of intercon-
nected compartments, with compartmental propertiesmatched to
the known biophysical parameters for different axonal segments
(nodes, paranodes connecting to nodes and juxtaparanodes, jux-
taparanodes connecting to paranodes and internodes, and intern-
odes connecting to juxtaparanodes) (25, 41, 42) (Figure 3A).
The axon was ~10mm long (although the length could be eas-
ily adjusted), with 100 fully myelinated internodal segments
(length, 80 μm), interspersed by 101 non-myelinated nodes of
Ranvier (length, 1 μm). On both flanks of each internode, myeli-
nated juxtaparanodal compartments (length, 10 μm), housing
voltage-gated potassium (K+) channels, bridged the internodes
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to the nodes of Ranvier via partially myelinated paranode
compartments. At one of the model axon’s edges, the ultimate
node of Ranvier was connected to a 5-μm-long non-myelinated
axonal initial segment that contained a high density of voltage-
gated Na+ and K+ channels, as well as Na+–K+ pumps. In this
initial segment, channel kinetics were the same as for nodal and
juxtaparanodal compartments (as described below).

For each compartment, the dynamics of the membrane poten-
tial, Vm, were given by the following general equation

Cm
dVm

dt = −
∑

INa −
∑

IK − IL (5)

where Cm is the compartmental membrane capacitance, ΣINa
and ΣIK are the sums of all Na+ and K+ currents for that same
compartment, respectively, and IL is the non-specific leak current
for that same compartment. Membrane capacitance and resis-
tance were set according to the level of compartment myelination
(25). Voltage-gated Na+ channels were incorporated into nodes
of Ranvier, while the presence of voltage-gated K+ channels were
constrained to myelinated juxtaparanodes (43). Kinetics of nodal
Na+ channels were modeled as follows, with the coupled left shift
(CLS) injury modeled as in Boucher et al. (44), and derived from
the original experimental data in Wang et al. (23).

Current due to voltage-gated Na+ channels, INa, was modeled
as

INa = g̃Na

[
fm3

ΔVhΔV + (1 − f )m3
0h0

]
(Vm − ENa) (6)

where ENa is the electrochemical-gradient dependent Nernst
potential of Na+ ions, g̃Na is the single Na+ channel conductance,
f is the fraction of injured channels per node, m and h are the
Hodgkin–Huxley type Na+ channel activation and inactivation
variables, respectively, and the parameter ΔV is the CLS, quan-
tifying the nodal stretch injury.

Current due to voltage-gated K+ channels, IK, was modeled as

IK = g̃Kn4 (Vm − EK) (7)

where EK is the electrochemical-gradient-dependent Nernst
potential of K+ ions, g̃K is the single K+ channel conduc-
tance, and n is the Hodgkin–Huxley type K+ channel activation
variable.

In addition to the above mechanisms, the biophysical model of
the myelinated axon featured Na+–K+ pumps, specific Na+ and
K+ leak currents, extracellular K+-dependent swelling of perin-
odal astrocytes, and longitudinal diffusion of ion species across
the different compartments. A detailed description of the model
organization, biophysical mechanisms, and modeling techniques
is given in Volman and Ng (25, 41).

Injury was imposed uniformly along the model myelinated
axon, with all nodes of Ranvier subjected to the same strain.
To probe signal propagation along the model myelinated axon,
the axon was stimulated at the initial axonal segment (square
stimulus; duration, 1ms; strength, 0.08 nA), and spike amplitude
and latencyweremeasured at the penultimate nodal compartment
at the other edge (to avoid the boundary effects associatedwith the
ultimate, sealed-end, compartment).

Neuronal Network Model
Concussion can induce attention deficits of different types: sus-
tained, selective, alternative, and divided (45, 46). Neuronal
structures that mediate attention (47, 48) include visual, parietal,
frontal, medial temporal, sub-cortical, and reticular areas, with
interhemispheric signaling playing an important role (49, 50).
Mild traumatic brain injury-induced damage to any of these areas
can disrupt attention networks and compromise performance.

A biophysically feasible two-dimensional neuronal network
model was developed to link axonal dysfunction of the cor-
pus callosum to neurobehavioral observables representative of
clinical outcomes. The model consisted of 6,400 neurons, 80%
(5,120 neurons) of which were excitatory pyramidal (PY) neurons
and the remaining 20% (1,280 neurons) were fast spiking (FS)
interneurons. Gross hemispheric organization was modeled by
dividing themodel network into two equally sized symmetric sub-
networks (representing the two hemispheres). Inside each one of
those hemispheric sub-networks, model PY and FS neurons pro-
jected and received synaptic contacts from other neurons found
within their synaptic footprint (a 10× 10 region around a neu-
ron). These connections modeled local intra-columnar cortical
connectivity. In addition, long-range connections between PY and
PY, PY and FS neurons were probabilistically established within
the same hemisphere. Tomodel interhemispheric communication
through callosal axons between model neurons (both PY and
FS neurons), each model neuron established an exact homo-
topic connection with its counterpart in the opposite hemisphere
and a number of loose homotopic connections (with a certain
probability) within the footprint of its contralateral counterpart.

The dynamics of PY and FS neurons were described by
modified Morris and Lecar (51, 52) and Wang and Buzsaki
(53) models, respectively. The synapses between neurons were
modeled by α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic
acid, N-methyl--aspartate, and gamma-aminobutyric acid A
synaptic currents, with distance-dependent axonal conduction
delays. Short-term synaptic depression was modeled as the
Tsodyks–Markram type (54); for each synapse, we assumed a
phenomenological “synaptic resource” that was reduced after each
successful release of synaptic neurotransmitter and recovered
exponentially. To model the effect of axonal injury on synaptic
transmission, we have adopted and modified the model of Des-
texhe et al. (55), which prescribes the relation between the presy-
naptic voltage and the amount of neurotransmitter released. To
model attention deficit, a transient (duration, 500ms) attention-
like stimulation was delivered to two symmetrical sub-networks
(20× 20 model neurons, excluding FS neurons) in different
“hemispheres,” parameterized as an increase of 100Hz over the
rate of the background stimulation that was administered simul-
taneously to all model neurons. The attention-like stimulation
was applied after the network (driven by the background stimula-
tion) reached a steady state. A detailed description of the model
equations, parameters, and analysis methods can be found in
Cui et al. (56).

Neurologic Injury Measure (NIM)
A NIM has been developed for quantifying the extent of cellular-
level injury occurring in brain structures and regions. NIM is an
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internal injury metric and because it represents a fundamental
injury quantity (i.e., axonal function), it is independent of species
or exposure conditions. NIM quantifies the average degradation
of axonal signaling functionality over a region of interest (e.g., the
corpus callosum):

NIM =
∑NE

i=1 ViΔAi∑NE
i=1 Vi

(8)

where Vi is the volume and ΔAi is the average reduction in the
axonal action potential amplitude, calculated from the biophysical
signalingmodel for the i-th element (as defined by the FEM) in the
corpus callosum.

Datasets
The measured head kinematics from three independent and
unique data sets used for simulation in the E2Emodel represented
sports exposure, military combat exposure, and NHP concussive
head motion. The sports data were the National Football League
(NFL) helmet-to-helmet impact data, with six kinematic degrees
of freedom (DOF) per player; the dataset comprised 10 con-
cussed and 14 non-concussed players (2, 57). Themilitary combat
exposure data came from helmet sensors and were provided by
the Joint Trauma Analysis and Prevention of Injury in Combat
(JTAPIC). The triaxial linear head kinematics at the center of
gravity for 23 concussed and 32 non-concussed subjects were
provided. The angular head kinematics for frontal and lateral
directions were estimated using the Pellman et al. (2) correlation
between translational and rotational acceleration. The outcome of
concussion was based on clinical assessment of a state of altered
consciousness or loss of consciousness and was determined by the
data source. The NHP data were derived from the experimental
work of Abel et al. (58). The head acceleration was controlled by
a pneumatic piston that produced consistent head motion. The
peak rotational acceleration and distance from the centroid of
the head to the pivot point were reported in the literature (58)
along with some example traces. The source data are no longer
available, but Lee et al. (59) proposed a shape function for the
rotational acceleration based on published traces. The published
peak rotational acceleration and fixed parameters of the apparatus
(total angle traversed and angle at which deceleration began) were
used for deriving the rotational acceleration traces for the NHP
experiments. Injuries of grades 3 and 4, characterized by a brief
loss of consciousness and neurological alterations, were classi-
fied as concussive, yielding 16 concussed and 13 non-concussed
cases. Below grade 3, unconsciousness or lateralized neurological
deficits were not observed. NIM values were calculated for each
subject and plotted against an outcome of 1 for concussed and
0 for non-concussed. A logistic regression analysis was used for
developing a dose-response curve for a general acute concussion
outcome.

RESULTS

Component Model Analyses
Finite Element Model
The response of the head FEMs was analyzed by examining the
corpus callosum axonal strain time histories. The head kinematics

from the NFL concussion dataset were applied to the human
head FEM. Projection of the resulting corpus callosum tissue
strain along the axial direction of the axons yielded patterns of
higher overall peak tensile axonal strain as well as strain rates for
concussed compared with non-concussed cases. Figure 4 demon-
strates that, overall, the maximum axonal tensile strains over all
time were higher in the concussed versus non-concussed NFL
cases (Figure 4). The same pattern was observed from analysis
of the NHP head FEM after applying head kinematics from the
NHP data. Maximal axonal strain rates were observed during the
relaxing phase of the corpus callosum deformation. These axonal
strain time histories (Figure 4) for each element in the corpus
callosum were then provided to the axon micromechanics model.
The model is comparable to recent FEMs that incorporate axonal
directionality in strain calculations with axonal strains lower than
maximum principal strains (16, 60).

Axon Micromechanics Model
The micromechanics model accounts for the rate-dependence
of a composite structure by mathematically capturing the rel-
atively viscous nature of myelinated regions and the relatively
elastic behavior of the underlying axon. To examine the system’s
response, the micromechanics model was tested using three dif-
ferent ramp inputs, with physiologically relevant strain rates of
0.001, 1, and 10/s (Figure 5). Strain localized at the model nodes
of Ranvier depended on the axonal strain and strain rate, with
the latter playing a very significant role. The myelinated regions
are more viscoelastic than the underlying elastic axon; thus, high
strain rates stiffen the internodes and make them relatively rigid,
resulting in strain concentration at the nodes of Ranvier. Con-
versely, at sufficiently low strain rates, the influence of myelin is
weaker, making the strain more evenly distributed throughout
the myelinated axon. As shown in Figure 5, the nodal strain
can increase more than fourfold in magnitude for a given axonal
strain, depending on the axonal strain rate.

The effect of structural variations was also studied. Varia-
tions, such as a lower g-ratio (increase in the myelin thickness
relative to the bare axon diameter), lower n-ratio (narrowing
of the bare axon diameter in the nodal region), and increased
internodal to nodal length ratio, yielded higher nodal strains
(not shown). Axons in the human corpus callosum are quite
thin, with typical diameters of corpus callosum axons connect-
ing frontal and visual regions (important for executive function
and visual attention) being ~1 μm (61). For axons with diame-
ters in this range, the g-ratios and n-ratios are considered to be
constant (62).

Coupling the Micromechanics Model
with the Biophysical Signaling Model
The biophysical signaling model translates the physical stretching
and injury of the axonal nodes of Ranvier into the functional
degradation of the axonal signal. The results of nerve stretch
injury studies (36, 37)were used to derive the relationship between
the CLS of the activation and inactivation voltages of nodal
voltage-gated Na+ channels and nodal strain (calculated by the
micromechanics model), based on the analysis of nerve conduc-
tion characteristics for nerves subjected to variable strains and
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FIGURE 4 | The head finite element models translate head motion into transient and spatial strains in the corpus callosum. In general, the concussed datasets exhibit
higher peak axonal strain and strain rates over the corpus callosum compared with non-concussed datasets. Depicted are the maximal tensile axonal strains over all
time calculated for each element of the corpus callosum for: a non-concussed and concussed NFL kinematic dataset (left) and a non-concussed and concussed
non-human primate (NHP) kinematic dataset (right). An example of the axonal strain time history for the same single element in a concussed and a non-concussed
case is depicted in the middle plot. The strain time history is input into the micromechanics model, which calculates strain at the nodes of Ranvier.

FIGURE 5 | The micromechanics model calculates the strain at the node of
Ranvier, given the axonal strain and strain rate. The strain at the node of
Ranvier strongly depends on the strain rate, owing to the inherent material
behavior of the heterogeneous structure of myelinated axons. This plot
demonstrates the relationship between the strain at the node of Ranvier and
axonal strain, for a uniform axon diameter in the internode and nodal regions,
for varying axonal strain rates.

strain rates. A relationship between nodal strain and CLS was
derived to account for the effect of nodal strain on alterations
in axonal signal propagation (Figure 6). In these studies, the
effects of strain and strain rate on neurophysiological functional

FIGURE 6 | Relationship between the strain at the node of Ranvier and the
coupled left shift (CLS) resulting from injury of the nodal voltage-gated Na+

channels.

responses of in vivo spinal (36) and in vitro sciatic (37) nerves
were quantified in terms of changes in compound action potential
amplitude and conduction velocity. The applied strains were in the
5–30% range, with strain rates in the 0.0005–0.75/s range. Analysis
of the axonal strains and strain rates from the nerve stretch injury
studies revealed a general trend toward increasing amplitude
reduction with increasing axonal strain. However, when the same
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FIGURE 7 | Strain of the node of Ranvier (right) yields a superior correlate of axonal signaling amplitude reduction, compared with the global axonal strain (left).

FIGURE 8 | Response of the network model to increasing levels of corpus
callosum injury. As the extent of injury increases (i.e., increasing reduction in
the axonal spike amplitude, indicated by NIM), both (A) the theta/alpha
spectral power ratio and (B) the population response time (a proxy of reaction
time) increase, consistent with clinical observations.

data were re-plotted using the strain at the node of Ranvier as a
correlate, the variability in the data was greatly reduced (Figure 7).

Neuronal Network Model
Analysis of the neuronal network output, quantifying the effect
of signal degradation of the axons in the corpus callosum on the
network dynamics, is summarized in Figure 8. Spectral analysis
of the model local field potential, calculated by averaging over
membrane potentials of model neurons (63, 64) (sampled from
the stimulated areas of the model network), shows that the theta-
to-alpha ratio (quantifying the relative “slowing down” of net-
work rhythms) increased with increasing average callosal injury
(parameterized by NIM), consistent with results of clinical quan-
titative electroencephalography (qEEG) analysis of mTBI patients
(65, 66).

E2E Model Analysis
Concussion Risk
Logistic regression analysis was used to develop a predictive rela-
tionship between two risk correlates (peak linear acceleration

(PLA) of the head and NIM) and the probability of concus-
sion. Concussion outcome is variable over a population but is a
binary outcome for an individual. Therefore, each data point in
the three concussion datasets examined was marked as “1” for
a concussed individual and “0” for a non-concussed individual,
and a dose–response curve to predict the probability of a general
concussion outcome given NIM was developed using logistic
regression. It is standard practice to construct a statistical logistic
regression from binary data using a logit function:

ln
(

p
1 − p

)
= β0 + β1x (9)

where p is the probability of concussion and β0 and β1 are the
model’s coefficients (67). A relationship between the risk correlate
(i.e., PLA or NIM) and concussion probability was developed
using the logit method, where x= ln(PLA) or x = ln

(
NIM

1−NIM

)
.

The ln(PLA) was used rather than PLA to ensure that p= 0 when
PLA= 0. Similarly, ln

(
NIM

1−NIM

)
was used rather than NIM to

ensure p= 0 when PLA= 0 and p= 1 when NIM= 1. The coeffi-
cients were estimated using the maximal likelihood estimation.

Logistic regression analysis based on purely kinematic variables
(e.g., PLA) showed that the curves developed from the three
impact datasets diverge significantly depending on the exposure
type and/or species used to build them. Note that the NHP PLA
data are scaled to equivalent human injury exposures using the
scaling rules, which relied upon physical dimensions, force-time
profiles, and mechanical brain response, developed by Stalnaker
et al. (68, 69).

The logistic regressions developed using the sports-type expo-
sure data, combat-type exposure data, and NHP exposure data all
overlapped but displayed a great deal of variability. However, the
logistic regressions obtained using NIM as the independent vari-
able converged without any treatment of the NIM (Figure 9). For
visualization purposes, an average injury probability was plotted
by binning the concussion outcomes over equally spaced intervals
along the x axis.

A receiver operating characteristic (ROC) statistical analysis of
the logistic regression models shows that NIM provides a better
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FIGURE 9 | Logistic regressions developed from (A) peak linear head acceleration and (B) NIM show that NIM, an internal injury measure, produces a tighter
probabilistic risk correlate compared with correlates developed from external measures like peak linear head acceleration.

sensitivity (fraction of true positives) and specificity (fraction of
true negatives) compared with PLA (Figure 10). For example,
using NIM, the fraction of true positives is 90% while the fraction
of false positives (e.g., 1− specificity) is 30%. This is a significant
improvement over the PLA correlate, in which the fraction of true
positives of 90% is associatedwith a 61% fraction of false positives.
This type of analysis shows that the logistic regression can be used
to determine the trade-offs for setting a threshold.

The area under the ROC (AUROC) was also calculated for
both logistic regression models. An AUROC of 1 implies that the
model is accurate 100%of the timewhile anAUROCof 0.5 implies
that the probability of accuracy is 50% (or a random guess). The
AUROC for the NIM regression is 0.85 whereas the AUC for PLA
is 0.76.

To assess how well logistic regression fits the data, the
Hosmer–Lemeshow test statistic was applied:

H =
G∑

g=1

(O1g − E1g)2

Ngπg(1 − πg)
(10)

where O1g corresponds to the number of the observed “1” events,
E1g corresponds to the number of the expected “1” events, Ng is
the overall number of observations, πg is the predicted risk for
the n-th risk decile group, and G is the number of groups (G= 10
in this study). The statistic was approximated by the chi-square
distribution with G-2 DOF, and a p-value was calculated. The fits
to the data were nearly the same for PLA and NIM, withH of 7.92
and 7.96, respectively. The p-value was 0.44 for PLA and NIM.

Neurobehavioral Outcome
Brain rhythms in the alpha (8–12Hz) and beta (13–30Hz) fre-
quency bands have been linked to performance on cognitive tasks
and memory (70). In addition, beta rhythm has been associated
with top-down attention (71) and long-range inter-areal interac-
tion between different cortical areas, with longer associated axonal
conduction delays (72, 73). The intact model neuronal network
exhibited low neuronal spiking rates, with alpha band (8–12Hz)
collective rhythm in the resting state and beta rhythm dominance
during the network stimulation (56).

Altered cortical dynamics owing to the corpus callosum injury
(quantified by NIM) were comparable to the existing qEEG data
(Figure 8). In the clinical setting, a relative increase in the theta
power and a relative reduction in the alpha power (termed “slow-
ing down of rhythms”) indicate cognitive and neuropsychological
deficits (74), such as attention deficit, which are often related to
an increased reaction time observed in neurobehavioral testing
of mTBI subjects. In model networks with injured callosal axons,
themaximal response to attention-like stimuli developed at a later
time compared with the intact model network (Figure 8). The
population response time, defined as the time from the stimula-
tion to development of maximal response, was used as a proxy of
reaction time that is often measured in neurobehavioral attention
tests. The increase in the population response timewith increasing
the injury severity (measured by NIM) (Figure 8) is consistent
with clinical reports of longer reaction time in mTBI patients,
compared with healthy controls (75–78). A more comprehensive
analysis revealed that the population response time depended on
the injury-induced reduction in axonal spike amplitude, rather
than on injury-induced changes in axonal conduction time (56).

DISCUSSION

A quantitative E2E model that integrates the fundamental
mechanical, physiological, and neurological processes associated
with traumatic brain injury has been developed, and is the first
comprehensive model of its kind. The designed model aims
to distill the major processes involved in producing concussive
outcomes, from traumatic head motion to neurological injury,
by incorporating the most prominent injury mechanisms, from
macroscopic tissue mechanics to cellular scale processes. Such a
multi-scale approach toward a more biofidelic concussion model
has been identified as a necessary step toward more accurately
identifying those individuals who may have been injured, guiding
the development of personal protective equipment, and guiding
the development of current and future monitoring technologies
(33, 79).

A mechanistic model can also better utilize animal data. For
obvious ethical reasons, a majority of concussion research is
conducted on animals rather than on humans. While animal
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FIGURE 10 | Receiver Operating Characteristic (ROC) analysis of the probabilistic concussion models developed based on NIM, compared with those developed
based on peak linear head acceleration. The rate of true positives (black) and the rate of false positives (red) can be used to determine the rate for a particular injury
threshold using (A) the peak linear acceleration correlate and (B) the NIM correlate. (C) The ROC curve shows that 90% of true positives (sensitivity) correspond to
30% of false positives (specificity) for NIM, while 90% of true positives correspond to 60% of false positives for peak linear head acceleration.

models have provided insight into a range of injury mechanisms,
from head loading to axonal injury, kinematic measures such
as PLA require scaling from animal to humans. Often, such a
scaling involves non-dimensional analysis of several parameters
(e.g., head acceleration, duration of the head acceleration, impact
velocity, average skull thickness, average bone thickness) and is
an imprecise technique. Because the E2E model is a mechanism-
driven model, it does not suffer from the inherent limitations
that external-based correlates or species-derived correlates face.
The value of this modeling approach is demonstrated through its
ability to unify concussion datasets gathered from a range of con-
ditions, including a sports environment, a combat environment,
and data gathered from animals (e.g., NHPs), without the need
for scaling.

The framework driving this modeling concept starts from the
observation that concussion can be correlated to disruption of

neurological tissues in areas of the brain affected by injury. White
matter tracts, and in particular the corpus callosum, have been
identified in DTI studies as having reduced fractional anisotropy,
implying reduced structural integrity of these regions following
injury (collectively characterized as diffuse axonal injury) (80).
Deformation of brain tissue following traumatic head motion
is driven by the internal biomechanics. The extent of axonal
injury depends on the magnitude, rate, and direction of defor-
mation. In the present work, we focused on the axons of the
corpus callosum for injury quantification because: (1) imaging
studies suggest reduced integrity of corpus callosum axons fol-
lowing injury (21, 81); (2) FEM simulations predict that head
kinematics associated with concussive outcomes yield the highest
strain concentration in the corpus callosum (10–13); and (3)
the corpus callosum plays an important role in interhemispheric
communications.
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Fundamental Processes Associated
with Concussion Injury
The E2E model starts with head kinematics as input into the head
FEMs, which capture anatomical details, such as the boundary
conditions between the skull and brain as well as the segmentation
of structures that comprise the brain; these features are necessary
for accurate modeling of the internal brain biomechanics. Owing
to the frictionless sliding between the dura and brain components
and the low shear modulus of the brain tissue, significant initial
motion and twisting of the corpus callosum in the direction
opposite to that of the applied head motion is observed. While the
attachment of the outer edges of the falx cerebri and tentorium
cerebelli to the dura impedes the brain motion to some extent,
there is still significant motion of the corpus callosum relative
to its original location in the brain, even for the non-concussed
cases. Our model is consistent with other FEMs analyzing NFL
head impact data, and suggests that largest strains are observed
after the primary head acceleration, with large strains observed in
the corpus callosum (10, 12). Additionally, the inclusion of axial
DTI direction in the analysis of axonal response to impacts more
accurately portrays deformation associated with injury outcomes
and becomes increasingly important in analyzing impact direction
sensitivity in relationship to injury severity and location (16, 60).
The quantification of strain along the axons is a key element in
the E2E model; strains that are normal to the axonal axial direc-
tion will have a minimal effect, while strains in the axonal axial
direction will produce a maximal stretch. Future extensions of
this model will expand axonal injury quantification to other white
matter areas aswell as exploration of injury from compression (82)
and shearing forces (3, 83).

The literature suggests that the nodes of Ranvier are susceptible
to stretch injury (22). The high cholesterol content of myelin
makes its viscoelastic response very different (relatively stiffer
especially at high strain rates) from that of the bare axonal bilayer
(35), likely resulting in regions (e.g., node of Ranvier) of strain
concentration at high strain rates. The micromechanics model
was built to incorporate the physics of the axonal structure.
Physical elongation of nodes of Ranvier in response to axonal
stretching has been confirmed in histological studies (22). As
shown in Figure 5, the micromechanics model suggests that the
nodal strain strongly depends on the axonal strain rate. Animal
models (in vitro and in vivo) of nerve stretch injury confirm
that strain and strain rate significantly determine injury-induced
nerve function alterations (36, 37). The micromechanics model
quantifies the effects of these parameters on the strain localized
along the axon, particularly at the nodes of Ranvier. The model
demonstrates a stronger correlation between the nerve function
and the strain at the nodes of Ranvier, compared with the global
axonal strain (Figure 7), thus confirming experimental observa-
tions that a high strain applied at a low rate yields functional
decrements that are similar to those obtained after applying a
low strain at a high rate (36). This highlights the importance
of considering both strain and strain rate when making injury
predictions.

The biophysical signaling model quantitatively explains the
mechanism by which mechanical strain of the node of Ranvier
leads to impaired signal transmission along the axon. In vitro

experiments have shown that stretch injury of tetrodotoxin-
sensitive Na+ channels, known to be concentrated at nodes of
Ranvier (84), manifests itself as a CLS of the channel activation
and inactivation voltages (23), thus altering the channel kinetics
and likely profoundly affecting the ability of the nodal membrane
to support action potentials. Yuen et al. (85) further demonstrated
upregulation of Na+ channel protein expression following stretch
injury, thus further suggesting that Na+ channels might be injured
during stretch.

The E2E model quantifies physical tissue and cellular defor-
mation and injury at the node of Ranvier resulting from head
kinematics. However, brain injury can be mediated by a num-
ber of pathways. Studies have demonstrated that injurious pres-
sure gradients can result from linear acceleration (86). For blast-
induced mTBI, additional mechanisms resulting from primary
blast exposure have been hypothesized, including transmission
of the pressure wave through the skull (87, 88), cavitation (89),
skull flexure (90), pressure-driven headmotion (91, 92), and blood
surge from the body to the head as a result of torso compression
from blast to the thorax (93). The primary injury mechanism
is likely dependent on the specific exposure characteristics. This
model demonstrates a mechanism of injury from violent head
motion arising from an impact to the head in which resulting
strain and strain rates are injurious to the nodes of Ranvier of
myelinated axons in the corpus callosum.

The present model assumes the nodes of Ranvier in myelinated
white matter axons as the primary locus of injury. Although this
assumption is backed by some imaging studies, as well as in vitro
and mechanistic models of axonal injury, it is clear that, in reality,
injury is not limited to nodes of Ranvier. On the microscopic level
of axonal response to stretch, we have identified partial demyeli-
nation of paranodal and juxtaparanodal compartments (flanking
the nodes of Ranvier and housing a high density of voltage-
gated K+ channels) as an additional mode of injury (41, 42).
Consistent with the findings of in vitro models (22) such injury-
induced demyelination persistently altered axonal excitability,
which could potentially induce pathological outcomes. Damage to
white matter axons can also be inflicted following limited energy
supply and metabolic injury (94), introducing the possibility of
mechanistically inducedmicro-vascular injury (e.g.,manifested as
micro-bleeds), which has not been accounted for by our present
model. In addition, axonal excitability can be altered directly
by stretch-induced mechanoporation and increased membrane
leakiness (95). This pathway was not addressed in the present
model but can be introduced as shown recently (96).

In vitro models show that neurons and glial cells (in particu-
lar astrocytes) also respond to mechanical stimuli (97–100), and
imaging studies often show that injury extends to gray matter
(101–103), suggesting that the later is also affected in mTBI. How-
ever, it remains unclear whether mTBI-induced micromechanical
strains on gray matter neurons and astrocytes are comparable to
the strains used in the published in vitro models. The geometry
of gray matter is relatively isotropic, compared with the relatively
anisotropic axonal geometry. In addition, assessment of injury
sequelae (usually not performed immediately after injury) may
capture secondary processes (e.g., injury-induced homeostatic
regulation in neurons and reactive gliosis in astrocytes), which
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precludes the precise assessment of primary effects (associated
with the mechanistic injury per se). Although our present model
only focuses on white matter axonal injury at the nodes of Ran-
vier, the E2E modeling approach can be used to extend the
model to couple injury-related head kinematics to microscopic
strains in gray matter. If successful, this approach will enable
to more clearly delineate the different brain structures affected
in mTBI.

Neurologic Injury Measure as the Internal
Injury Correlate
The outcome of concussion depends on many individual physi-
ological factors that are not captured by the head motion alone.
Consequently, a distribution of outcomes is observed for the
same head motion, thus necessitating a probabilistic risk assess-
ment. The E2E model, quantifying the average injury-induced
signal degradation in myelinated axons of the corpus callosum,
correlates NIM with two different types of outcomes. Because
axons are a basic functional unit of the brain for all species,
it follows that axonal dysfunction, quantified in our model in
terms of the reduction in the action potential propagation over
a region, is a primary candidate for an internal injury correlate.
The first correlation derived from the E2E model is tied to a
general concussion risk outcome. The second correlation goes
beyond this and links a localized brain injury to observed concus-
sive symptoms, which may have more practical implications for
understanding the return-to-play criteria, the impact of concus-
sion on day-to-day functionality, and the temporal evolution of
symptoms.

For the first correlation, the logistic regressions that were devel-
oped based on PLA and NIM were characterized in terms of: (1)
the goodness of fit and (2) the model’s predictive ability. Good-
ness of fit was analyzed using the Hosmer–Lemeshow tests. Both
PLA- and NIM-based logistic regressions performed equally well,
yielding similar chi-squared and p-values. The logistic regressions
fit each of the datasets well. Yet, goodness of fit is not indicative
of the accuracy of model predictions. To assess this accuracy for
a continuously varying threshold, a ROC curve was plotted to
demonstrate the relationship between the rate of true positives and
the rate of false positives (Figure 10), and the AUROC confirmed
that the NIM has greater predictive ability compared with the
PLA. For most of the spectrum, NIM exhibited a higher ratio
of true positives to false positives compared with PLA, implying
that the NIM can better predict the risk of concussion. Figure 10
shows the trade-offs for selecting varying thresholds of concussion
risk. These statistics reveal the power of modeling the mechanism
of injury and quantifying an internal correlate, which implic-
itly accounts for a wide range of external factors and is species
independent.

The need for modeling an internal injury correlate becomes
clearer when examining concussion data from different types of
exposures. PLA has been the quantity of choice for concussion
correlates owing to the ease of measurement, but, as shown in
Figure 11, the injury thresholds may only hold for the conditions
under which the data are collected. Peak rotational acceleration
has also been explored as a correlate, but it suffers from the same

FIGURE 11 | Military impacts are shorter and more violent (higher peak head
acceleration) than sports impacts. The Combat data was provided by Joint
Trauma Analysis and Prevention of Injury in Combat (JTAPIC). The National
Football League (NFL) data was extracted from Pellman et al. (2). Concussion
thresholds drawn to combat impacts would not be applicable to thresholds
drawn to sports impacts.

limitations as PLA (104). A number of computationalmodels have
been developed to provide insights into the response of internal
tissue biomechanics, with the assumption thatmechanical damage
leads to functional disruption (32, 33). The E2E model completes
the pathway, connecting mechanical perturbations to signaling
alterations on the axonal level.

The second correlation builds upon the quantification of cal-
losal axon disruption and its link to specific neurobehavioral
symptoms via the neuronal network model component of the
E2E model. The corpus callosum is a highly organized body of
axons, the majority of which are myelinated, connecting the left
and right hemispheres. Thus, this structure plays a primary role
in integrating motor, sensory, and cognitive processing in the
two hemispheres (105–108), and likely significantly shapes some
well-known neurobehavioral sequelae of mTBI, such as altered
top-down attention (75–78), reaction time (75–78), and working
memory (109).

The model neuronal network dynamics were affected by cor-
pus callosum injury. These injury-induced changes included:
(1) “slowing down” of the network rhythms, manifested as an
increased resting-state theta-to-alpha power ratio (Figure 8), (2)
reduced response to attention-like stimulation, manifested as a
reduced spectral power of collective activity (data not shown),
and (3) increased population response time in response to stim-
ulation (Figure 8). Importantly, these changes were not only
consistent with clinical data (65, 66, 110–112) but were also
positively correlated with corpus callosum injury severity. Clin-
ical data suggest that working memory (the ability of corti-
cal circuitry to transiently “remember” the stimulation after its
cessation) is impaired after mTBI (111, 113). Our preliminary
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results on network modeling of injury-induced working memory
dysfunction verify this; working memory (parameterized as the
duration of post-stimulus persistent activity) is affected by the
corpus callosum injury, in a manner that depends on the injury
severity (114).

Reaction time has been used as one of the few neurobehav-
ioral indices for quantifying mTBI sequelae (75, 76, 78, 109) and
has been proposed as prognostic utility for acute mTBI (115,
116). In our neuronal network model, reaction time was approxi-
mated by the population response time, which was defined as the
time at which the model network exhibited maximal response to
attention-like stimulation. Our present result of increased pop-
ulation response time (Figure 8) is in a qualitative agreement
with previously published clinical results of increased reaction
time for mTBI patients engaged in cognitive and behavioral tasks
(75, 78, 117–119). Most importantly, the dose-dependence of
the population response time on callosal injury severity in our
model is consistent with clinical observations of longer reaction
time for mTBI patients with injured corpus callosum (112), thus
supporting the proposal of using reaction time as an objective
biomarker for mTBI (115, 116).

Application of the E2E Model
The application of the E2Emodel, based on the implementation of
fundamental physiological and neurological processes associated
with concussion, significantly improves upon the commonly used
PLA correlative for the prediction of concussion fromviolent head
motion and, thus, has an immediate application in the growing
field of head-worn sensors that screen for possible mTBI. Using
the model insights, concussed individuals can be more objectively
identified in near real time, by integrating a simplified version
of the E2E algorithm into the sensor microprocessor or in post-
exposure data analysis after data download. Early identification
of those injured is critical, because rapid treatment can mitigate
chronic mTBI outcomes and reduce lifetime medical costs (120).
Furthermore, the E2E model can be applied to add a mechanistic
interpretation of the injury outcome to the copious amount of data
being collected by a number of ongoing studies that are focused
on characterizing medical outcomes associated with head impact
intensity, impact frequency, and impact distribution measured
from head-worn sensors in various sports (104, 121, 122) andmil-
itary environments (123). In addition, understanding the connec-
tion between head acceleration details and physiological outcomes
will allow equipment designers to maximize the protective nature
of gear and exposures. Last, our model suggests that the outcome
of concussion, based upon external correlates, varies consider-
ably with the impact characteristics, thus making it difficult to
establish a universal set of safety standards and methodology for
evaluating operational trade-offs; whereas theNIM is able to unify
data from a range of exposure conditions. By understanding the
mechanism of injury, the E2E model can also be used to improve
protection designs, set safety exposure standards, and guide future
monitoring technology through sensor placement, interpretation,
requirements, and evaluation.

The E2E model represents the first comprehensive
mechanistic-based approach that quantitatively links gross head
motion to neurological outcomes. However, several limitations

should be recognized. First, the component models are based
upon published data, which are limited in certain aspects; thus,
additional validation datasets would be helpful for improving the
models. For example, the validation of the FEMs would benefit
from more rigorous evaluation. Additionally, anatomic features,
such as the spinal cord and CSF, are not explicitly modeled in the
FEMs, but rather accounted for with boundary conditions and
contact treatments that aim to reproduce the physical response
of such features. These simplifications reduce the accuracy of
the response at these locations in the model (e.g., outer regions
of the cortex) and likely have minimal influence on the corpus
callosum response. Cellular-level aspects, such as localized strains
calculated by the micromechanics model and implemented
processes of axonal signaling models, need to be addressed with
care and are continuously explored as new experimental data
become available. Second, the component models are relatively
simple by design so that they are able to capture the relevant
injury mechanisms without overly complicated detail. With the
E2E framework in place, it is reasonable to augment the detail and
complexity of components models by including more anatomical,
physiological, and neurological details. Third, the logistic
regressions were built using outcomes that were categorized as
concussed or non-concussed. The two human datasets provided
the diagnosis of concussion as determined by the data source.
Concussion was based on clinical assessment of a state of altered
consciousness or loss of consciousness. A similar criterion was
used for the NHP dataset for determining the occurrence of
concussion. As the definition of concussion is refined, the logistic
regressions will also be refined. Last, a larger concussion dataset
would improve the accuracy (i.e., sensitivity and specificity) of
the logistic regressions. Despite these limitations, the E2E model
has been demonstrated to be a significant improvement to the
current external-based correlative concussion models.

The framework of the E2E model has been established and
validated, providing a strong foundation that can be extended
to several areas, beyond the prediction of acute concussion risk
and the neurobehavioral consequence of increased reaction time.
First, injury of white matter tracts outside of the corpus callosum,
focal injury, and gray matter injury can be readily incorporated.
Tissue injury from compression and shearing forces should also be
studied. On the cellular level, consideration of metabolic injury,
stretch-induced mechanoporation, and glial response should be
incorporated. Second, the model can be extended to assessment
of a range of neurobehavioral consequences, which offers prac-
tical insight into the effects of concussion on day-to-day tasks.
Third, the model can be extended to better understand the effects
and outcome from accumulation of sub-concussive head injuries,
which is an area of growing concern, particularly for the sports
andmilitary training arenas (124). Recovery is another aspect that
needs to be incorporated into the model to more accurately track
cumulative injuries; in addition, this aspect is critical for under-
standing the return-to-play criteria in the sports field. Fourth, the
effect ofmore violent head impacts can be explored by incorporat-
ing primary demyelination and secondary pathological outcomes
(41). Last, the model can be expanded to explore the compound-
ing effects of operational stressors (e.g., hypoxia, physical exertion,
and sleep deficit).
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CONCLUSION

The E2E model is the first to establish a quantitative framework
linking headmotion to neurological outcomes by linking the gross
mechanics of motion to key pathophysiological processes that
result in injury. In this model, tissue response from headmotion is
translated into strain of myelinated axons of the corpus callosum.
The model demonstrates that the node of Ranvier is particularly
susceptible to high strain rates, thus providing insight into why
violent head motions, which produce both high strains and strain
rates, are injurious. Physical straining of the nodal voltage-gated
Na+ channels results in a CLS shift, thus producing functional
alterations in axon signaling. The NIM, or the average reduction
in the axonal signaling amplitude, is calculated and used as the
internal injury correlate. By using neurologically based quantities
rather than external kinematics, the E2E model is able to unify
concussion data across a range of exposure conditions and species
with greater sensitivity and specificity compared with correlates
developed from external-based measures. This mechanism-based
model is a significant and necessary advancement over current
empirically derived correlates, which are valid for a narrow range
of conditions and do not offer a pathway for understanding more
complex injury patterns. The E2E model extends beyond being a
robust predictor of the risk of concussion to provide models of the
neuronal network and injury of brain structures that can be linked
to mTBI sequelae, offering insight into how brain injury can be
related to clinically observed outcomes. The E2E model provides
a strong foundation for extending the analysis to assessment of
a range of neurobehavioral consequences, accumulation of sub-
concussive head injuries, and inclusion of compounding effects of
operational factors on clinically observed symptoms.
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