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Safer and more-effective drugs are urgently needed to counter infections with the highly pathogenic
SARS-CoV-2, cause of the COVID-19 pandemic. Identification of efficient inhibitors to treat and prevent
SARS-CoV-2 infection is a predominant focus. Encouragingly, using X-ray crystal structures of therapeu-
tically relevant drug targets (PLpro, Mpro, RdRp, and S glycoprotein) offers a valuable direction for anti–
SARS-CoV-2 drug discovery and lead optimization through direct visualization of interactions.
Computational analyses based primarily on MMPBSA calculations have also been proposed for assessing
the binding stability of biomolecular structures involving the ligand and receptor. In this study, we
focused on state-of-the-art X-ray co-crystal structures of the abovementioned targets complexed with
newly identified small-molecule inhibitors (natural products, FDA-approved drugs, candidate drugs,
and their analogues) with the assistance of computational analyses to support the precision design
and screening of anti–SARS-CoV-2 drugs.
� 2021 The Author(s). Published by Elsevier B.V. on behalf of Research Network of Computational and
Structural Biotechnology. This is an open access article under the CC BY-NC-ND license (http://creative-

commons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

The unprecedented coronavirus disease 2019 (COVID-19) pan-
demic caused by severe acute respiratory syndrome coronavirus
2 (SARS-CoV-2) spread quickly across continents, with 4,180,161
deaths currently recorded on a global basis [1]. In view of the high
virulence and mortality rates, the World Health Organization
declared SARS-CoV-2 as the sixth public health emergency of inter-
national concern [2]. The pandemic is ongoing, and the effects of
this highly contagious virus are widespread. Efforts are continuing
to combat the SARS-CoV-2 outbreak with a variety of drugs, includ-
ing remdesivir [3], dalbavancin [4], clofazimine [5], mycophenolic
acid [6], plitidepsin [7], and Chinese herbal medicines such as Lian-
huaqingwen capsules [8] and Qingfei Paidu decoction [9]. How-
ever, despite considerable effort, no effective countermeasures
for controlling or eventually eradicating this dangerous virus have
emerged [10,11]. Rapid discovery and development of novel, effica-
cious, safe, and stable agents to treat COVID-19 is currently the
focus of intense worldwide research.

The ongoing challenge to develop new antiviral agents that are
highly specific and effective against SARS-CoV-2 has spurred the
medical community to explore multiple techniques and strategies,
including co-crystal structure-guided precision drug discovery
[12–15]. Since 2020, this strategy has gained traction in validating
bioactive constituents that could serve as COVID-19 agents [16,17].
The determination of X-ray crystal structures of therapeutically
relevant drug targets in pharmaceutical research represents a
potentially valuable direction for anti–SARS-CoV-2 drug discovery
and lead optimization. SARS-CoV-2 possesses a positive-sense RNA
genome, and its genome organization is depicted in Fig. 1. Several
promising targets among SARS-CoV-2 enzymes and proteins have
been identified and are of significant research interest (Fig. 1),
including papain-like protease (PLpro) [18,19], main protease (Mpro)
[20,21], RNA-dependent RNA polymerase (RdRp) [22,23], and the
Fig. 1. Organization of the SARS-CoV-2 genome and potential therapeutic targets. (A) Ge
(PDB) ID: 7BRO). (C) The structures of Mpro (PDB ID: 6Y2G). (D) The structures of RdRp
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spike (S) glycoprotein, which binds to the angiotensin-converting
enzyme 2 (ACE2)-binding domain [24,25].

In particular, PLpro plays an essential role in the cleavage and
maturation of RNA virus polyproteins, dysregulation of the host
inflammatory response, and disruption of host immune responses
[26,27]. Mpro, also called 3C-like protease (3CLpro), plays a crucial
role in the polyprotein maturation process and may serve as a
prime therapeutic target [28–30]. RdRp is another essential
enzyme that regulates viral replication by catalyzing the RNA tem-
plate–dependent development of phosphodiester bonds [31]. ACE2
is a host cell surface receptor necessary for SARS-CoV-2 infection
[32]. The S protein plays a critical role in mediating membrane
fusion and cell entry via interactions with the ACE2 cell surface
receptor [33]. The immense therapeutic potential of targeting PLpro,
Mpro, RdRp, and the S protein in the development of effective drugs
has been widely explored.

Innovative drug development constitutes an important research
direction, and results to date have been outstanding, with several
interesting articles already published from the perspectives of
potential drugs and drug targets [34–38], mechanisms of action
and inhibition [26,39,40], structure-based drug design [41–43].
Other articles were identified by virtual screening of the ZINC,
TCMSP, ChEMBL, Pubchem, NPASS, and Drug bank databases [44–
48]. However, to our knowledge, no systematic reviews of
inhibitor-target co-crystal complexes of SARS-CoV-2 have been
published. In the current review, we focused on medicinal chem-
istry efforts based on analyses of X-ray co-crystal structures of
the abovementioned targets in complex with newly identified
small-molecule inhibitors as a means of supporting the precision
design and screening of anti–COVID-19 agents through the charac-
terization of ligand-bound targets. COVID-19 inhibitors of signifi-
cance from the perspective of medicinal chemistry are prefaced
by a brief introduction summarizing the relevant pharmacology,
discovery process (drug design), preparation methods, and mecha-
nome organization of SARS-CoV-2. (B) The structures of PLpro (the Protein Data Bank
(PDB ID: 7BW4). (E) The structures of S glycoprotein (PDB ID: 6YYT).



Fig. 2. Natural products as SARS-CoV-2 inhibitors. (A) Chemical structures of baicalein and X-ray crystal structure of baicalein with SARS-CoV-2 Mpro (PDB ID: 6M2N) [68]. (B)
Chemical structures of myricetin and X-ray crystal structure of myricetin with SARS-CoV-2 Mpro (PDB ID: 7B3E) [68]. (C) Chemical structures of shikonin and X-ray crystal
structure of shikonin with SARS-CoV-2 Mpro (PDB ID: 7CA8) [74]. (D) Chemical structures of sinefungin and X-ray crystal structure of sinefungin with SARS-CoV-2 Nsp10-
Nsp16 (PDB ID: 6YZ1) [82]. (E) Chemical structures of linoleic acid and cryo-electron microscopy structure of linoleic acid with SARS-CoV-2 S protein (EMD ID: 11145) [84].
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nisms of action. The main objective of this report is to provide a
‘co-crystal structure-guided drug discovery protocol’ to facilitate
the development of safe and effective drugs to combat COVID-19.
2. Natural products and analogues as SARS-CoV-2 inhibitors

Natural products provide a rich and novel source for drug devel-
opment and play an integral role as starting points in the develop-
ment of therapeutic strategies for treating various complex
diseases due to their tremendous structural diversity and unique
chemical compositions [49]. In the current race to identify safe
and efficacious drugs for COVID-19, natural products with a range
of valuable bioactivities have attracted significant attention in
terms of evaluating and validating their therapeutic effects [45–
47]. As a result of continuing research, several natural products
have been highlighted thus far as promising drug leads to combat
COVID-19 [50–52]. As a result of continuing research, several nat-
ural products have been highlighted thus far as promising drug
leads to combat COVID-19 [53–58].

Scutellariae radix (Scutellaria baicalensis) is a well-known herbal
medicine used to treat lung injury [59] and inflammatory diseases
[60]. It is a widely used nutritional supplement with an impressive
safety profile. Liu and co-workers recently demonstrated that
crude scutellariae radix extract inhibits SARS-CoV-2 replication
(half-maximal effective concentration [EC50] of 0.74 lg/mL) with
almost no toxicity (selectivity index [SI] > 675.7) against Vero E6
cells [61]. Baicalein is the major component of scutellariae radix
and exhibits broad-spectrum antiviral effects (Fig. 2A) [62,63]. As
expected, baicalein was shown to be effective in inhibiting Mpro

activity (half-maximal inhibitory concentration [IC50] of 0.39 lM)
[61]. Du and co-workers reported that baicalein can be used to
treat acute lung injury, as it improves respiratory function, inhibits
inflammatory cell infiltration, and downregulates the release of
cytokines [64]. A docking model showed that the 6-OH group of
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baicalein plays a pivotal role in terminating RNA replication via
hydrogen bonding interactions with L141 [61]. To elucidate the
underlying molecular mechanisms of baicalein, active sites were
explored. Su and co-workers generated a crystal structure of
baicalein-Mpro at a resolution of 2.2 Å (PDB ID: 6M2N) [65]. Further
analysis revealed that the non-peptidomimetic inhibitor baicalein
was ensconced in the core of the substrate-binding pocket via mul-
tiple interactions. For example, hydroxyl groups of baicalein form
hydrogen bond interactions with Leu141/Gly143 and Ser144/
His163 of Mpro to stabilize the tetrahedral transition state of the
proteolytic reaction. The enone carbonyl group of baicalein forms
hydrogen bond interactions with Glu166, and the free aromatic
rings of baicalein form p-p interactions with Cys145 and His41
as well as hydrophobic interactions with Gln189, Arg188, Met49,
Cys44, and His41 to prevent substrate access to the active site,
rather than covalently blocking catalytic Cys145. These interac-
tions could underlie the observed potent activity (IC50 of
0.94 lM, EC50 of 2.94 lM, and SI > 212) of baicalein against
SARS-CoV-2 Mpro [65]. Shuanghuanglian oral liquids extracted
from three types of traditional Chinese medicines (including
Scutellaria baicalensis Georgi) effectively blocked the replication
of SARS-CoV-2 in Vero E6 cells (IC50 of 0.064 lM), highlighting
the significant contributory role of this active component in the
biological activity of Chinese herbal treatments [65]. Importantly,
the crystal structure of the Mpro-baicalein complex provided direct
data that could facilitate elucidation of the molecular mechanisms
underlying the beneficial effects of traditional medicines.

Myricetin, a flavonol monomer, is a natural product isolated
from the ‘‘medicine food homology” species Chinese bayberry
(Myrica rubra Sieb. et Zucc.) and exhibits a range of pharmacolog-
ical effects against acute lung injury [66], inflammatory diseases,
and infections with pathogenic microbes [67]. Kuzikov and co-
workers reported that myricetin inhibits the synthesis of SARS-
CoV-2 Mpro in vitro (IC50 of 0.22 lM) [68]. To optimize precision
drug design, Su and co-workers generated a crystal structure of
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the Mpro-myricetin complex at a resolution of 2.1 Å (PDB ID: 7DPP)
[68] (Fig. 2B), which unambiguously revealed that myricetin is
covalently bound to catalytic Cys145. Su et al. also showed
unprecedented inhibitor-target binding patterns, specifically, a
covalent bond between the Cys145 sulfur and the 20 position of
myricetin, which was distinct from baicalein and other reported
flavonoid structures [68]. In addition, Kuzikov and co-workers
reported another crystal structure of the Mpro-myricetin complex
with the same covalent binding mode, at 1.77-Å resolution (PDB
ID: 7B3E) [69]. Further analysis of the X-ray structure of the
myricetin-Mpro complex revealed that the binding pocket is only
partially occupied by myricetin, presenting an important signal
and ideal lead for structure-based drug design. Based on molecular
dynamics (MD) simulations and molecular mechanics Poisson-
Boltzmann surface area (MMPBSA) calculations, Sharma et al.
[70] revealed that baicalein forms a stable combination with
non-structural protein 15 (Nsp15) with low binding energy
(�65.663 kJ/mol).

The natural naphthoquinone shikonin, derived from Lithosper-
mum erythrorhizon Sieb. et Zucc (Fig. 2C), has numerous pharmaco-
logical properties that support its further development as a
therapeutic agent [71]. This agent has been shown to exert anti-
inflammatory, anti-fungal, and anti-HIV effects [72]. Yang et al.
revealed that shikonin inhibits the replication of SARS-CoV-2 Mpro

in vitro (EC50 of 15.75 lM) [73]. Li and co-workers [74] initially
solved the crystal structure of the shikonin-Mpro complex at
2.45 Å (Fig. 2C). Crystallography data showed that the His41-
Cys145 catalytic dyad undergoes large conformational changes
upon complex formation, leading to significant differences with
other reported structures [75]. Li and co-workers recently revealed
that two novel hydrogen-bonding interactions (one with Gln189
and Thr190, another with Met165, His164, and Cys145) and a p-
p stacking interaction with His41 play critical roles in the binding
of shikonin with Mpro [74]. These findings clearly indicate a distinct
binding pattern suggestive of binding site diversity. However, Ma
and co-workers recently reported that shikonin may not be a
target-specific Mpro inhibitor, as its activity declines markedly in
the presence of reducing reagents [76]. Further elucidation of the
different binding modes should provide a solid foundation for
effective COVID-19 drug design.

The genome of SARS-CoV-2 contains ~ 29 800 bases encoding 16
nonstructural proteins (Nsp1-Nsp16) essential for viral replication
[77]. For example, Nsp16 plays a critical role in immune evasion
during virus replication [78]. The natural nucleoside antibiotic
sinefungin is a structural analogue of S-adenosylmethionine
(SAM), which serves as a key methyl group donor to numerous bio-
Fig. 3. Leupeptin and its analogues as inhibitors of
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molecules [79]. SAM-dependent 20-O-RNA methyltransferase
(MTase) is a potential relevant drug target in COVID-19
chemotherapy [80]. The function of MTase is associated with
Nsp16, which requires Nsp10 as a cofactor for activity [80,81].
Mahalapbutr et al. [80] also reported that sinefungin exhibits very
high susceptibility to Nsp16 (especially through electrostatic inter-
actions with the 20-OH and N3 of the RNA’s adenosine moiety)
based on atomistic MD simulations and free-energy calculations.
To establish the mechanisms by which sinefungin inhibits the
Nsp16 MTase at a molecular level, Krafcikova and co-workers
[82] determined the crystal structure of SARS-CoV-2 Nsp10-
Nsp16 complexed with sinefungin at a resolution of 2.4 Å (PDB
ID: 6YZ1) (Fig. 2D). The co-crystallization structure showed that
sinefungin binds the SAM-binding pocket localized in a canyon
within Nsp16 and forms several interactions with specific residues
(nucleoside-binding pocket: Asp99, Asn101, and Asp114;
methionine-binding pocket: Asn43, Asp130, and Lys170). These
data provide an important starting point for structure-based inhi-
bitor discovery.

Linoleic acid, an essential free fatty acid, is an important modu-
lator of the inflammatory response [83]. Toelzer and co-workers
[84] recently demonstrated that a combination of linoleic acid
(50 lM) and the RdRp inhibitor remdesivir (20 to 200 nM) exert
a synergistic inhibitory effect in human Caco-2 ACE2 + cells
in vitro. To clarify the underlying inhibitory mechanism of action
of linoleic acid, the cryo-electron microscopic (cryo-EM) structure
of S protein complexed with linoleic acid was determined at 2.85-Å
resolution (Electron Microscopy Data [EMD] ID: 11145) (Fig. 2E)
[84]. Further analysis of the linoleic acid binding pocket within
the S protein revealed that the hydrocarbon tail of linoleic acid
binds to hydrophobic amino acids, whereas the acidic head group
interacts with a positively charged anchor (Arg408 and Gln409)
to irreversibly lock the S protein. The S protein hydrophobic pocket
with a tube-like shape fits well with linoleic acid, resulting in
reduced ACE2 interactions, thus setting the stage for an interven-
tion strategy based on linoleic acid binding to the S protein. Further
studies are warranted to establish whether linoleic acid exerts
anti–COVID-19 effects in vivo. Note that dynamic-nonequilibrium
MD studies showed that the linoleic acid site forms a stable com-
bination with the functional regions of the S protein, but variation
in the S protein could be exploited to tune a targeted allosteric
response [85].

Calpain inhibitor II, developed by the Cerro group [78], has
shown potential utility against SARS-CoV-2 infection [87]. Initial
research on the synthesis of calpain inhibitor II commenced with
structural modification of leupeptin (a naturally occurring and rel-
SARS-CoV-2 and the reaction mechanism [89].
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atively non-specific inhibitor of thiol proteases) by replacing the
guanidine group with a methyl group to create calpain inhibitor I
(Fig. 3), which exhibited more-potent and selective blockade of cal-
pain activity [86]. An even more important contributor to antiviral
drug design is the 40-S substituted calpain inhibitor II, which exhib-
ited more-potent blockade of calpain activity [86]. Calpain inhibi-
tor II, a broad-spectrum antiviral agent, can be used to treat
infections with multiple viruses, such as endemic human coron-
avirus 229E (HCoV-229E) (EC50 of 0.08 lM) and human coron-
avirus OC43 (EC50 of 1.82 lM) [87]. As for SARS-CoV-2, Wang
et al. [88] confirmed that calpain inhibitor II is highly effective
against Mpro (IC50 of 0.97 lM).

Wang and co-workers [89] also reported the crystal structure of
calpain inhibitor II–Mpro at 1.65-Å resolution (PDB ID: 6XA4). Fur-
ther analysis of the complex structure revealed that stabilized thio-
hemiketal with the (S) configuration occupies the oxyanion hole,
which is formed by Gly143, Cys145, and, in part, Ser144 (Fig. 3).
Additionally, the structure exhibited several other interactions
with active site residues, including multiple hydrogen bonds of
the amide group with His164, Met165, and Glu166 (Fig. 3). Inter-
estingly, a weak hydrogen bond between the sulfur group and
His163 was detected, which could explain the stronger activity of
calpain inhibitor II (IC50 = 0.97 lM) relative to calpain inhibitor I
(IC50 = 8.60 lM) [89].
Fig. 4. Design, mechanism of action, and synthesis o
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The introduction of X-ray crystallography technology has pro-
vided a highly successful strategy for exploration of natural prod-
ucts and their analogues, improving our understanding of drug
interactions at the molecular level based on structures of com-
plexes, to facilitate the design of effective COVID-19 therapies.
While natural products have demonstrated potential effectiveness,
clinical trial evidence of their utility as anti–COVID-19 agents is
currently lacking. Future research will therefore focus on obtaining
stronger evidence to support the clinical utility of natural products.
In this scenario, strategies for the large-scale manufacture of natu-
ral products and analogues, such as shikonin, sinefungin, and cal-
pain inhibitor II, are urgently required.
3. FDA-approved drugs as SARS-CoV-2 inhibitors

Remdesivir, an RdRp inhibitor, was the first and only drug
against COVID-19 approved by the U.S. Food and Drug Administra-
tion (FDA) in 2020 [90–93]. The highly potent 10-CN-substituted
GS-441524, inspired by the natural product tubercidin, is impor-
tant in the design of anti–SARS-CoV-2 agents [94]. Triphosphate
GS-443902 is established as the active form of GS-441524. How-
ever, monophosphate conversion of GS-441524 to GS-441524
monophosphate is extremely difficult [95], highlighting the neces-
sity of developing a prodrug that can overcome this delivery bot-
f the covalent RdRp inhibitor remdesivir [101].



Fig. 5. Bioconversion of the covalent RdRp inhibitor remdesivir.
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tleneck. To achieve better cellular uptake in vivo, monophosphory-
lated remdesivir was developed by Gilead Sciences (Fig. 4A) [96].
The GS-5734 10–CN group plays a pivotal role in terminating RNA
replication by disrupting the exoribonuclease proofreading activity
and inhibiting the RdRp polymerization activity [97].

To increase the efficiency of remdesivir, researchers at Gilead
Science initially developed strategies for preparation of the P-
stereogenic prodrug using a scalable process through chiral prepar-
ative high-performance liquid chromatography (HPLC) or chiral
resolution [96], which inevitably led to waste of resources. For fur-
ther improvement of efficiency, an elegant asymmetric strategy
(Fig. 4B) for producing remdesivir via chiral bicyclic imidazole-
catalyzed dynamic kinetic asymmetric transformation (DyKAT)
with excellent stereoselectivity (SP:RP = 22:1) was recently devel-
oped by Zhang and colleagues [98]. In the clinical context, develop-
ment of a large-scale synthesis method for remdesivir is urgently
needed. As remdesivir is a phosphoramidate prodrug, conversion
into the triphosphate GS-443902 is required. Similar to many pro-
drugs, the postulated activation pathway of remdesivir is divided
into four sequential steps (Fig. 5): cell entry (via increased
hydrophobicity with the aid of a phosphorylated group), removal
of the masking group (via enzymatic and chemical demasking),
phosphorylation (via NMP kinases), and incorporation into the
growing SARS-CoV-2 RNA strand. In cells, the triphosphate form,
GS-443902, can block SARS-CoV-2 replication by evading the
‘‘proofreading” of viral RNA sequences [99].

Wakchaure et al. [100] showed that remdesivir has high binding
energy (�29.7 kCal/mol) with respect to RdRp, and MD simulations
also revealed that remdesivir binds in the catalytic site via the for-
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mation of hydrogen bond interactions. Xu et al. [101] reported the
cryo-EM structure of RdRp-remdesivir (using its triphosphate
metabolite GS-443902) at 2.5-Å resolution (PDB ID: 7BV2). The
cryo-EM structure unambiguously demonstrated that remdesivir
monophosphate (IV), positioned at the center of the catalytic site
of the primer RNA, covalently binds to the 1 + position of the tem-
plate strand, thus terminating chain elongation (Fig. 4A). Three
strong H-bonds with active site residues (ribose –OH groups:
Asp623, Ser682, and Asn691; sugar 20–OH: Asn691) were identi-
fied (Fig. 4A). Notably, the implicit, cryptic, and allosteric binding
sites provide a versatile platform for designing high-potency inhi-
bitors with kinetic selectivity [102–104]. Based on thermodynamic
profiling, Srivastava et al. found that triphosphate GS-443902 inac-
tivates RdRp by not only interfering with binding in the initial cat-
alytic site but also by significantly blocking the nucleoside 50-
triphosphate entrance site [105]. Based on MMPBSA calculations,
Khan et al. [106] proposed that remdesivir inhibits SARS-CoV-2
via a multi-target mechanism, as it binds to Mpro (�7.8 kCal/mol),
membrane protein (�7.4 kCal/mol), and RDRP (�7.1 kCal/mol).

Remdesivir exhibits broad-spectrum activity against multiple
viruses in vitro, such as SARS-CoV, Middle East respiratory syn-
drome coronavirus (MERS-CoV), respiratory syncytial virus, Ebola
virus (EBOV), and HCoV-229E, with EC50 values of 0.069 lM,
0.090 lM, 0.021 lM, 0.012 lM, and 0.024 lM, respectively [107–
111]. Moreover, remdesivir reportedly protects rhesus monkeys
from MERS-CoV infection [112] and displays clinical safety and
efficacy against EBOV infection [113]. Although remdesivir does
not appear to be highly effective in patients with COVID-19
[114], it has the obvious advantage of rapid clinical translation to
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a rational prodrug strategy against SARS-CoV-2. In addition, multi-
ple lines of evidence suggest that combinations of remdesivir and
other agents (such as baricitinib [115] and dexamethasone [116])
exert synergistic therapeutic effects against COVID-19.

Drug repurposing, a time-saving process, is a viable strategy to
quickly, safely, and successful discover clinically approved drugs
for COVID-19 treatment [117–120]. Favipiravir, a promising repur-
posed prodrug, was identified by Toyama Chemical Co., Ltd., and
approved in Japan in 2014 for the treatment of influenza virus
infections [121]. To date, widespread research attention has
focused on the utility of favipiravir as a specific anti–COVID-19
agent [122]. Favipiravir is an orally bioavailable prodrug that exhi-
bits potent activity against COVID-19 (EC50 of 61.88 lM) with
moderate selectivity (therapeutic window > 6.46) [123]. Favipi-
ravir was recently shown to protect Syrian hamsters from SARS-
CoV-2 infection, with a strong dose effect [124]. Abdelnabi and
co-workers reported that a combination of favipiravir and mol-
nupiravir exerted a marked synergistic inhibitory effect in a
SARS-CoV2 hamster infection model [125]. Several clinical trials
have highlighted the efficacy of favipiravir against COVID-19
[126–129]. For example, Cai and co-workers reported that favipi-
ravir significantly improved recovery rate (91.43%) and shortened
viral clearance time (4 days), with fewer adverse events (11.4%)
in patients with mild to moderate COVID-19 (N = 80) [129].

To elucidate the mechanisms underlying SARS-CoV-2 poly-
merase activity, Naydenova and co-workers examined the struc-
ture of SARS-CoV-2 RdRp in complex with favipiravir (using its
triphosphate metabolite favipiravir–ribonucleoside triphosphate
[RTP]) at 2.5-Å resolution via cryo-EM (PDB ID: 7AAP; EMD-
11692) (Fig. 6) [130]. The cryo-EM structure unambiguously
showed that favipiravir-RTP pairs with the 1 + nucleotide of the
template strand via noncovalent interactions (side-chains and
two catalytic Mg2+ ions) to terminate chain extension (Fig. 6). Peng
and colleagues [131] reported an alternative structural snapshot
(PDB ID: 7CTT; EMD ID: 30469) distorted in one direction, suggest-
ing another productive conformation at the catalytic site. These
distinct cryo-EM states may account for the slow, weak, and inef-
ficient incorporation of the inhibitor into the RNA primer strand,
leading to the high EC50 (61.88 lM).

Similar to the prodrug remdesvir, favipiravir must be converted
into the active form, favipiravir-RTP. The activation mechanism of
favipiravir involves four sequential steps (Fig. 6): cell entry, phos-
Fig. 6. Bioconversion of the non-covale
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phoribosylation, phosphorylation, and non-covalent incorporation
into the growing SARS-CoV-2 RNA strand [132]. Notably,
favipiravir-RTP binds non-covalently to the polymerase in a man-
ner distinct from that of remdesivir-RTP. Furthermore, Celik et al.
[133] used MD simulations to highlight the binding site differences
of favipiravir and its active triphosphate metabolites (favipiravir-
RTP) with RdRp. Their results demonstrated that favipiravir-RTP
forms a more-stable complex than favipiravir. This finding indi-
cates an unusual binding mode, which provides an important basis
for non-covalent RdRp inhibitor discovery.

Free-energy perturbation (FEP) calculations based on molecular
simulations and statistical mechanics represents a promising
approach to guide structural modifications in drug discovery
research [134–136]. Based on this method, Jorgensen’s group
[137] recently showed that the non-covalent SARS-CoV-2 Mpro

inhibitor perampanel analogue 5 effectively treats SARS-CoV-2
infection by inhibiting Mpro activity (IC50 of 0.14 lM) and inducing
significant suppression of viral replication in Vero E6 cells (EC50 of
1.5 lM), with moderate cytotoxicity (SI = 14.7). Perampanel, a
poorly effective inhibitor of Mpro with an IC50 of 100–250 lM,
was an initial hit compound selected for redesign and further opti-
mization based on its relatively simple structure and FEP modeling
studies [138]. As shown in Fig. 7A, perampanel analogue 2 was
identified as a highly potent target via initial docking analyses
using FEP calculations [138,139].

As expected, the anti–SARS-CoV-2 activity of perampanel ana-
logue 2 was markedly improved, with an IC50 of 9.99 lM, which
was further enhanced by a factor of ~ 2 upon addition of a second
chlorine atom to perampanel analogue 2 to generate perampanel
analogue 4. Jorgensen et al. [137] determined the crystal structure
of a complex of SARS-CoV-2 Mpro and perampanel analogue 4 at a
resolution of 1.6 Å (PDB ID: 7L10), which unambiguously revealed
that the chlorophenyl edge packs well against the imidazole ring
of His41 and that the other meta-chlorine near Gln189 should be
replaced with an alkyl or alkoxy group. These data provided valu-
able guidance for the synthesis of propoxy perampanel analogue
5, leading to a notable improvement in the IC50 value from
4.02 lM to 0.14 lM for perampanel analogue 4. Examination of
the crystal structure of Mpro in complex with perampanel analogue
5 (1.8 Å resolution, PDB ID: 7L11) revealed that the terminal methyl
group extended into the hydrophobic region at the juncture of
Met165, Leu167, and Pro168. In addition, a combination of peram-
nt RdRp inhibitor favipiravir [130].



Fig. 7. Structure-based design and synthesis of perampanel analogues 2, 4, and 5 [137,139].
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panel analogue 5 and remdesivir exhibited a significant therapeutic
effect against COVID-19, with a synergy volume/antagonism vol-
ume ratio of 30.8/0 lM2 %. Jorgensen et al. [137] additionally
explored several structurally novel and non-peptidic inhibitors
with IC50 values in the 20 nM range identified from FEP calculations
and crystal structures.

To increase the efficiency of target perampanel analogues 2, 4,
and 5, Jorgensen et al. [137] further developed a general route
for synthesis, as shown in Fig. 7C. Briefly, Suzuki cross-coupling
of 5-bromo-2-methoxypyridine with (2-cyanophenyl) boronic acid
yielded S1, followed by deprotection to produce intermediate S2,
which was subjected to Chan-Lam coupling to yield intermediate
S3. Bromination of S3 yielded key intermediate S4, which was sub-
jected to Suzuki cross-coupling with aryl boronic acids to generate
target perampanel analogues 2, 4, and 5. Notably, upscaling of the
total synthesis strategy remains an urgent requirement.
4. Candidate drugs and analogues as SARS-CoV-2 inhibitors

A wide range of drug candidates may be effective against
COVID-19 via broad-spectrum effects, both in vitro and in vivo
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[140,141]. These candidate drugs provide a basis to further explore
and develop SARS-CoV-2 inhibitors, which could reduce the period
of treatment and minimize costs. The peptidomimetic a-
ketoamide inhibitor 11r, an antiviral agent, can be used to inhibit
multiple viruses, such as SARS-CoV (EC50 of 1.4 lM), enterovirus
A71 (EC50 of 0.8–0.9 lM), coxsackievirus B3 (EC50 of 0.45 lM),
and MERS-CoV (EC50 of 0.0004 lM) [142]. Hilgenfeld et al. showed
that 11r, a specific Mpro inhibitor, is effective against SARS-CoV-2
infection (EC50 of 0.18 lM), thus presenting a lead for further
development [20]. To improve its plasma half-life, lead 11r was
modified by hiding the P3-P2 amide bond within a pyridone ring.
As expected, the plasma half-life in mice increased from 18 min
to 1 h by preventing the cellular protease–mediated cleavage of
the amide bond. In addition, to enhance solubility and antiviral
activity, compound 13b (EC50 of 0.67 lM) was produced by replac-
ing the hydrophobic cinnamyl and cyclohexyl moieties with a low-
hydrophobic Boc group and smaller cyclopropyl group, respec-
tively. The researchers reported total synthesis of compound 13r
on the ~ 50-mg scale [20]. The key components of the strategy
were nucleophilic substitution (SN2) and nucleophilic addition of
isocyanides to aldehydes (Fig. 8).



Fig. 8. Structure-based design and synthesis of the peptidomimetic inhibitor 13b [20].

Z. Wang, L. Yang and Xian-En Zhao Computational and Structural Biotechnology Journal 19 (2021) 4684–4701
Notably, compound 13b exhibited significantly improved
plasma protein binding (reduced from the 99% of 11r to 90%) and
plasma half-life in mice (increased from the 18 min of 11r to
1.8 h). Compound 13b exhibited favorable pharmacokinetic prop-
erties in mice, including good tropism to the lungs after subcuta-
neous administration, suitability for direct administration via
inhalation, long-term efficacy, and good tolerability without
adverse reactions. The hydrophobic Boc group appeared to play
an essential role in crossing of the cell membrane and binding to
viral Mpro, without which the compound was almost inactive
[20]. The above studies offer a platform for research into more-
effective pyridone-containing anti-SARS-CoV-2 drugs to suppress
disease progression and support the importance of structure-
based approaches in the design and optimization of SARS-CoV-2
inhibitors. Rungrotmongkol et al. [143] reported that compound
13b was a suitable template for structural modifications at the
P10 and P4 sites to enhance interactions.

The Hilgenfeld group [20] determined the crystal structure of
13b-Mpro at 1.95-Å resolution (PDB ID: 6Y2F), which unambigu-
ously revealed the presence of a stabilized thiohemiketal gener-
ated via nucleophilic attack of Cys145 over the a-carbonyl of the
ketoamide warhead. Moreover, several interactions with active site
residues (such as the amide oxygen of 13b forming hydrogen bond
interactions with Gly143, Cys145, and partly Ser144 to form the
‘‘oxyanion hole”; the a-keto group of 13b forming a covalent bond
with catalytic Gly145 to yield the thiohemiketal group) were iden-
tified. Apparently, there is a large space (distance > 3.6 Å) between
Thr190, Gln189, and the pyridone ring of compound 13b, suggest-
ing that a group larger than the pyridone ring could be designed
based on the P3 moieties. In addition, a small model of the thiol
moiety (active center of Mpro) with inhibitor 13b was generated
(Fig. 9) [21]. In this model, the C-S bond can be formed directly
(without deprotonation of the thiol group), and water molecules
play an important role in the kinetics, as the energy barrier
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decreases by 9.0 kCal/mol for the intermediate when assisted with
an explicit water molecule, which was facilitated via a 6-
membered transition state instead of a constrained 4-membered
state. Furthermore, Kumari et al. [144] used MD simulations to
highlight the binding site differences of 13b with monomeric and
dimeric Mpro. Their results showed that dimeric Mpro exhibits
higher affinity for 13b via residue interactions between S1 and
F140, E166, and H172.

Chirality is one of the most crucial attributes for a vast majority
of pharmaceutical compounds in the natural world and chiral
bioactive substances play a key role in disease control [145]. Chiral
agents have attracted significant research attention due to enan-
tiomers often possessing differential binding affinities for SARS-
CoV-2 enzymes and proteins.

Kitamura and co-workers [146] recently demonstrated that the
non-covalent SARS-CoV-2 Mpro inhibitor 23R can be used to treat
the virus infection. The compound inhibited Mpro (IC50 of
0.31 lM) and exerted significant suppressive effects in Vero E6
cells (EC50 of 1.27 lM, SI > 78.7). Initial research on 23R began with
structural modification of the SARS-CoV Mpro agent ML188 (R),
which was separated using chiral stationary-phase supercritical
fluid chromatography from ML188 enantiomers (S/R). In 2013,
Jacobs and co-workers [147] demonstrated that the lead com-
pound ML188 (S/R) and its single stereoisomer ML188 (R) effec-
tively inhibited replication of SARS-CoV Mpro with IC50 values of
4.8 lM and 1.5 lM, respectively. However, the single stereoisomer
ML188 (S) was inactive and had no inhibitory effect on SARS-CoV
replication. The X-ray crystal structure of the Mpro-ML188 (R) com-
plex (PDB ID: 3V3M) revealed that an optimal shape complemen-
tary to SARS-CoV was formed through several key interactions
(Fig. 10A) [147]. Among these, the 3-pyridyl group occupied the
S1-subpocket via a critical hydrogen bond with the His163 side
chain. Knowledge of the structure of this non-covalent SARS-CoV
Mpro inhibitor could further guide effective inhibitor design.



Fig. 10. Structure-based design and synthesis of the non-covalent SARS-CoV-2 Mpro inhibitor 23R [146,147].

Fig. 9. Transition states of direct C-S bond formation between the inhibitor 13b and the thiol moiety.
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Based on the high-affinity binding (between the hydrogen bond
and His-163 side chain) strategy, 39 compounds (a mixture of
enantiomers or diastereomers) were prepared using the Ugi four-
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component reaction (Ugi-4CR), which provides an expeditious
strategy for lead optimization [146]. Among these compounds,
23 (S/R) significantly inhibited viral replication, with an IC50 of



Table 1
Other small-molecule SARS-CoV-2 inhibitors with known crystal structures.

No. Name Structure EC50 or IC50 (lM) Target PDB ID Refs

1 Boceprevir 4.13 Mpro 6XQU [150–152]

2 Calpain inhibitor XII 0.45 Mpro 6XFN [89,153,154]

3 Calpeptin 1.56 Mpro 7AKU [155]

4 Carmofur 1.82 Mpro 7BUY [156,157]

5 Ebselen 4.67 Mpro 7BAK [158,159]

6 GC-373 0.40 Mpro 6WTK [160]

7 GC-376 0.030 Mpro 6WTJ [89,160,161]

8 GRL0617 2.20 PLpro 7CMD [162–164,19]

9 GS-441524 0.70 RdRp 7BF6 [165,90]

10 Isofloxythepin 4.80 Mpro 7AY7 [155]

11 Masitinib 2.50 PLpro 7JU7 [166,167]

12 MI-23 0.0076 Mpro 7D3I [168]

13 ML188 2.5 Mpro 7L0D [146,169]

14 MPI1 0.100 Mpro 7JPZ [170]

15 MPI3 0.0085 Mpro 7JQ0 [170]
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Table 1 (continued)

No. Name Structure EC50 or IC50 (lM) Target PDB ID Refs

16 MPI4 0.015 Mpro 7JQ1 [170]

17 MPI5 0.033 Mpro 7JQ2 [170]

18 MPI6 0.060 Mpro 7JQ3 [170]

19 MPI7 0.047 Mpro 7JQ4 [170]

20 MPI8 0.105 Mpro 7JQ5 [170]

21 Narlaprevir 5.10 Mpro 6XQT [150,152]

22 N3 16.77 Mpro 6LU7 [73,171]

23 Pelitinib 1.25 Mpro 7AXM [155]

24 PF-00835231 0.13 Mpro 6XHM [172]

25 Suramin 0.26 RdRp 7D4F [173,174]

26 Telaprevir 18.0 Mpro 6XQS [150]

27 UAWJ246 0.045 Mpro 6XBG [89]

28 UAWJ247 0.042 Mpro 6XA4 [89]

29 UAWJ248 0.012 Mpro 6XBI [89]

(continued on next page)
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Table 1 (continued)

No. Name Structure EC50 or IC50 (lM) Target PDB ID Refs

30 VIR250 not reported PLpro 6WUU [27]

31 VIR251 not reported PLpro 6WX4 [27]

32 5 h 4.2 Mpro 7JKV [175]

33 11a 0.053 Mpro 6LZE [75,176]

34 11b 0.040 Mpro 6M0K [75]

35 15 l 0.019 Mpro 7MBI [177]

36 2 5.10 PLpro 7JIT [19]

37 3 6.40 PLpro 7JIV [19]

38 14 0.128 Mpro 7L12 [137]

39 21 0.018 Mpro 7L13 [137]

40 26 0.17 Mpro 7L14 [137]
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0.66 lM and low toxicity (SI > 303). This elegant process of 23 (S/R)
synthesis is depicted in Fig. 10B. After separation of the single
stereoisomers, 23R and 23S, via reverse-phase HPLC, IC50 values
were determined as 0.31 lM for the diastereomer 23R and
5.61 lM for the less-active 23S diastereomer [146]. To further elu-
cidate the binding forces, Kitamura and co-workers [146] gener-
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ated a crystal structure of 23R complexed with Mpro at 2.6 Å
resolution (PDB ID: 7KX5). The P1 pyridinyl ring occupied the S1
pocket, forming a close (2.9 Å) hydrogen bond with the His163 side
chain. Another point of particular interest is the location of the ter-
minal a-methylbenzyl group between the S2 and S4 sites, which
represents a previously unreported mechanism of binding pocket
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formation. The S4 pocket remained mainly unoccupied by 23R,
indicating the presence of sufficient space that could be explored
for further drug development. The COVID-19 pandemic has high-
lighted the urgent need for rapid structure-based drug discovery
and development, and this strategy achieved expedited design of
a non-covalent Mpro inhibitor through coupling of co-crystal struc-
tures, structure-based design, and Ugi-4CR methodologies.
5. Other active compounds as SARS-CoV-2 inhibitors

Numerous small-molecule inhibitors have shown promising
results as efficient therapeutic agents for SARS-CoV-2. Earlier, Hoff-
man and co-workers [148] at Pfizer Worldwide Research and
Development highlighted the efficacy of the novel Mpro inhibitor,
PF-00835231, in treatment of infections. Potent activity of this
compound against hCoV 229E (EC50 of 0.090 lM), SARS-CoV
(EC50 of 4.8 lM) and SARS-CoV-2 (EC50 of 0.13 lM) with no observ-
able cytotoxicity was reported. Examination of the X-ray crystal
structure of the Mpro-PF-00835231 complex (PDB ID: 6XHM)
revealed that the stabilized tetrahedral carbinol complex is gener-
ated via nucleophilic attack of Cys145 over the carbonyl carbon of
the hydroxymethylketone warhead [148]. Furthermore, compound
PF-00835231 exhibited synergistic activity against COVID-19 in
combination with remdesivir in HeLa-ACE2 cells. Preclinical exper-
iments confirmed that the absorption, distribution, metabolism,
and excretion profile as well as safety and activity profiles of PF-
00835231 were suitable to warrant further development as a
potent Mpro inhibitor. Clinical trials of PF-00835231 have been reg-
istered (NCT04627532 and NCT04535167) for in-depth studies of
the compound’s anti–SARS-CoV-2 activity. Additionally, the Ditt-
mann group [149] reported that statistically, PF-00835231 is a
more-potent inhibitor than remdesivir. In addition to the above-
mentioned active compounds, several other small-molecule inhibi-
tors with known crystal structures have been shown to exhibit
significant anti–SARS-CoV-2 activity (Table 1). Further research is
required to establish the clinical safety and efficacy of these inhibi-
tor candidates, however.
6. Conclusion and future perspectives

COVID-19 is an ongoing global health crisis, with a current esti-
mated 4,180,161 fatalities worldwide. Efficacious anti–SARS-CoV-2
drugs are not yet available, despite remdesivir having been granted
full authorization in October 2020 by the U.S. FDA [114]. Over the
past year, the scientific community has made remarkable inroads
into developing promising anti–COVID-19 agents by employing
multiple techniques and strategies. Among these approaches, the
generation of X-ray crystal structures of relevant drug targets has
provided effective guidance for anti–SARS-CoV-2 drug discovery
and lead optimization.

Theoretically, components associated with each stage of the
SARS-CoV-2 replication cycle could be comprehensively explored
as promising therapeutic targets. Current anti–SARS-CoV-2 drug
discovery and development strategies primarily focus on prevent-
ing viral replication via the targeting of Mpro, PLpro, or RdRp and
blocking binding of the S protein to ACE2 receptors. To improve
the precision design and screening of anti–SARS-CoV-2 drugs, we
focused on all available X-ray co-crystal structures of the above-
mentioned targets in complex with newly identified small-
molecule inhibitors, including natural products, FDA-approved
drugs, and candidate drugs. The determined co-crystal structures
offer a direct molecular-level perspective that could help elucidate
the underlying mechanisms of action and provide guidance for
future structure-based drug design. In the case of compound 13b,
for example, a larger group at the P3 moiety could be designed
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to further improve the anti–SARS-CoV-2 activity in view of the
space between Thr190, Gln189, and the pyridone ring of 13b. On
the other hand, examination of the structures revealed no strong
or durable effects for some non-covalent inhibitors (such as favipi-
ravir, 23R, and perampanel analogue 5), supporting the need for
further research focusing on covalent inhibitors to reduce ‘‘off-
target” risks. In addition, combinations of several small molecules
(such as linoleic acid and PF-00835231) with remdesivir have
shown significant additive/synergistic anti–SARS-CoV-2 activities
in vitro, presenting candidate drug combinations that may be effec-
tive in treating COVID-19 patients. Furthermore, the high mutation
rate of SARS-CoV-2, resulting in the generation of novel variants,
has led to increased pathogenicity [178,179]. This may be one of
the reasons for the failure of inhibitors against SARS-CoV-2. In this
case, we suggest that collaborating groups should pay close atten-
tion to conserved binding sites available near the binding pocket
during structure-based drug development, as this highly conserved
region has promising druggable value but often goes unnoticed
[180–182]. Despite substantiation of in vitro effectiveness and
extensive clarification of associated mechanisms and interactions,
direct clinical evidence of therapeutic efficacy for many of these
agents is lacking at present. Nevertheless, we suggest that small-
molecule inhibitors (including drug combinations) represent use-
ful agents to prevent and control the COVID-19 pandemic.
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