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Abstract: The paper describes a convenient and efficient method for regioselective 

synthesis of phosphorylated α-hydroxyallenes using an atom economical [2,3]-sigmatropic 

rearrangement of intermediate propargyl phosphites or phosphinites. These can be readily 

prepared via reaction of protected alkynols with dimethyl chlorophosphite or chlorodiphenyl 

phosphine respectively in the presence of a base. 

Keywords: synthesis; hydroxy group protection; [2,3]-sigmatropic rearrangement; 

phosphorylated α-hydroxyallenes 

 

1. Introduction 

The synthesis and application of allene derivatives has had a great influence in preparative organic 

chemistry during the last three decades. The crucial structural characteristic of allenes is the presence 

of two π electron clouds separated by a single sp-hybridized carbon atom. Due to that very unique 

structural and electronic arrangement allenic compounds have an extraordinary reactivity profiles [1–8]. 

Moreover, functionalized allenes have also attracted growing attention due to their versatility as key 

building blocks for organic synthesis. The synthetic potential of functionalized allenes has been 
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thoroughly explored in recent years. The research in that area has led to the development of novel 

methods for the construction of a variety of functionalized heterocyclic and carbocyclic systems [9–13]. 

There are variety of methods for the construction of hydroxyallenes that include prototropic 

rearrangement of propargylic alcohols [14–16], metal-catalyzed nucleophilic addition of propargylic 

derivatives to aldehydes [17–24], Cu(I)-catalyzed reaction of propargylic chlorides with Grignard 

reagents [25–27], metal-catalyzed reaction of propargylic oxiranes with organometallic compounds [28–35] 

and ketones [36,37], reduction of alcohols, ethers, oxiranes etc. with aluminium reagents [38–40], 

Pd(0)-catalyzed reaction of cyclic carbonates with acetylenic compounds [41,42], SN2’ [43,44] and  

AN [45–47] reactions of metalled alkoxy-allenes with oxiranes and ketones [5], and other routes [48,49]. 

In addition there are methods [50–53] for the synthesis of phosphorus-containing allenes 

(phosphonates [54–59], phosphinates [60,61], and phosphine oxides [62–69]) including reactions of  

α-alkynols with chloride-containing derivatives of phosphorus acids followed by [2,3]-sigmatropic 

rearrangement. Several diethylphosphono-substituted α-allenic alcohols were prepared by Brel [70,71] 

directly from alcohols by Horner-Mark rearrangement of unstable propargylic phosphites. 

Since the reversible interconversion of propargylic phosphites, phosphonites and phosphinites to 

allenyl phosphonates, phosphinates and phosphine oxides was discovered five decades ago [60,61],  

it has become one of the most thoroughly investigated and synthetically applied [2,3]-sigmatropic 

rearrangements. Numerous synthetic applications of the rearrangement have been reported, such as its 

use in the synthesis of allenic steroids for substrate-induced inactivation of aromatase [72], in the 

efficient synthesis of (2R)-2-amino-5-phosphonopentanoic acid (AP5) as a powerful and selective  

N-methyl-D-aspartate (NMDA) antagonist [73], in the preparation of the phosphonate analogues of 

phosphatidyl derivatives [74,75], and, in the synthesis of new acyclic analogues of nucleotides 

containing a purine or pyrimidine moiety and an allenic skeleton [76,77]. 

Our research program on the chemistry of the bifunctionalized allenes requires a convenient method 

to introduce a phosphorus-containing group such as phosphonate or phosphine oxide group as well as a 

hydroxyalkyl group in the first position to the allenic system of double bonds. The above-mentioned 

groups attract more and more researchers’ attention as useful functionalities in organic synthesis. The 

emphasis is particularly on the applications of these groups as temporary transformers of chemical 

reactivity of the allenic system in the synthesis of eventually heterocyclic compounds. 

Our scientific interest on the synthesis [78] and electrophilic cyclization reactions [79] of 

bifunctionalized allenes reported in our previous articles let to the discovery of a convenient and efficient 

method for regioselective synthesis of phosphorylated α-hydroxyallenes by an atom economical  

[2,3]-sigmatropic rearrangement of the mediated 4-(tetrahydro-2H-pyran-2-yloxy)-propargyl phosphites 

or phosphinites. 

2. Results and Discussion 

We based our strategy for the synthesis of the phosphorylated α-hydroxyallenes on our  

experience in preparation of the 4-heteroatom-functionalized allenecarboxylates [78] and relied on the 

well-precedented [2,3]-sigmatropic shift of propargylic phosphites to allenephosphonates [54–59] and 

propargylic phosphinites to allenyl phosphine oxides [62–69]. We were aware of the fact that a 

precedent exists for such an approach to the synthesis of the diethylphosphono-substituted α-allenic 
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alcohols [70,71], but as far as we know, a general useful method for regioselective synthesis of 

phosphorylated (phosphonates and phosphine oxides) α-hydroxyallenes (primary, secondary or tertiary 

alcohols) with protected or unprotected hygroxy group has not been reported yet. 

2.1. Synthesis of Phosphorylated α-Hydroxyallenes with Protected Hydroxy Group 

The main target in our research, and namely 1,1-bifunctionalized allenes, was achieved as a range 

of the phosphorylated α-hydroxyallenes 7, 9, 10, and 11 were prepared by applying the following  

four-step procedure: (i) protection of hydroxy group in the propagylic alcohols 1; (ii) subsequent 

reaction with Grignard reagent to give the protected alkynols 5; (iii) interaction with dimethyl 

chlorophosphite or chlorodiphenyl phosphine in the presence of a base; and finally (iv) [2,3]-sigmatropic 

rearrangement of the protected propargyl phosphites or phosphinites. 

2.1.1. Synthesis of (Tetrahydro-2H-pyran-2-yloxy)-alkynols 

The first step in our investigation was to examine the hydroxy group protection in the propargylic 

alcohols 1 with 3,4-dihydro-2H-pyran (DHP) in the presence of pyridinium p-toluenesulfonate  

(PPTS) [80–83] (Scheme 1 and Table 1). Thus, the formed alkynyloxy-tetrahydro-2H-pyrans 2  

were isolated by distillation in essentially quantitative yields (95%–99%). Reaction of the  

protected propargylic compounds 2 with ethyl-magnesium bromide and subsequent dropwise  

addition of propargyl magnesium bromide 3 generated in situ to ketones 4 and reflux for 24 h  

gave the (tetrahydro-2H-pyran-2-yloxy)-alkynols 5 which were stable and were isolated by column 

chromatography in 53%–61% yields. 

Scheme 1. Synthesis of the (tetrahydro-2H-pyran-2-yloxy)-alkynols 5. 
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Reagents and Conditions: (i) DHP (3,4-dihydro-2H-pyran) (1.5 eq), PPTS (0.1 eq), CH2Cl2, rt, 4 h, 

distillation; (ii) EtMgBr (1 eq), THF, reflux, 2 h; (iii) dropwise addition of 3 to R2R3C=O 4 (2 eq) (R2 = Me, 

R3 = Et; R2 = Me, R3 = Bu; R2 + R3 = -(CH2)5-), reflux, 24 h, column chromatography. 

Table 1. Synthesis of the (tetrahydro-2H-pyran-2-yloxy)-alkynols 5. 

Entry Alcohol R R1 R2 R3 Yield a, % 

1 5a H H Me Et 61 
2 5b H H Me Bu 59 
3 5c H H -(CH2)5- 58 
4 5d H Me Me Et 57 
5 5e H Me Me Bu 56 
6 5f H Me -(CH2)5- 56 
7 5g Me Me Me Et 54 
8 5h Me Me Me Bu 53 

a Isolated yields by chromatographic purification. 
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2.1.2. Synthesis of Dimethyl 1-(Tetrahydro-2H-pyran-2-yloxy)-1,2-dienephosphonates 

Once we had the required propargyl alcohols 5 with protected hydroxyl groups, we were able to 

investigate the proposed reactions with the corresponding chloro-containing phosphorus reagents such 

as dimethyl chlorophosphite and chlorodiphenyl phosphine in the presence of a base and subsequent 

[2,3]-sigmatropic rearrangement of the intermediate 4-(tetrahydro-2H-pyran-2-yloxy)-propargyl 

phosphites or phosphinites 6 and 8. Let us start with the dimethyl 1-(tetrahydro-2H-pyran-2-yloxy)-

1,2-dienephosphonates 7a–h that can be easily prepared via an atom economical 2,3-sigmatropic 

rearrangement of the 4-(tetrahydro-2H-pyran-2-yloxy)-propargyl phosphites 6a–h, intermediates 

formed by reaction of the (tetrahydro-2H-pyran-2-yloxy)-alkynols 5a–h with dimethyl chloro-phosphite, 

prepared in situ from phosphorus trichloride and 2 equiv. of methanol in the presence of triethylamine, 

and 2 equiv. of pyridine, according to Scheme 2 and Table 2. 

Scheme 2. Synthesis of the dimethyl 1-(tetrahydro-2H-pyran-2-yloxy)-1,2-dienephosphonates 7. 
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Reagents and Conditions: (iv) PCl3 (1 eq), Et3N (1.1 eq), Et2O, −70 °C, 30 min stirring, pyridine (2.2 eq), 

MeOH (2 eq), Et2O, [2,3-σ]-rearrangement, −70 °C, 1 h, rt, 10 h, column chromatography. 

Table 2. Synthesis of the dimethyl 1-(tetrahydro-2H-pyran-2-yloxy)-1,2-dienephosphonates 7. 

Entry Allene R R1 R2 R3 Yield a, % 

1 7a H H Me Et 78 
2 7b H H Me Bu 75 
3 7c H H -(CH2)5- 73 
4 7d H Me Me Et 74 
5 7e H Me Me Bu 72 
6 7f H Me -(CH2)5- 75 
7 7g Me Me Me Et 71 
8 7h Me Me Me Bu 70 

a Isolated yields by chromatographic purification. 

2.1.3. Synthesis of 2-[2-(Diphenylphosphinoyl-2,3-dienyloxy)]-tetrahydro-2H-pyrans 

Next, the reaction of the (tetrahydro-2H-pyran-2-yloxy)-alkynols 5a–h with chlorodiphenyl 

phosphine in the presence of triethylamine at −70 °C gave the expected 2-(2-diphenylphosphinoyl-2,3-

dienyloxy)-tetrahydro-2H-pyrans 9a–h in very good yields (Table 3) as a result of [2,3]-sigmatropic 

rearrangement of the 4-(tetrahydro-2H-pyran-2-yloxy)-propargyl phosphinites 8a–h for 8 h at room 

temperature, according to the reaction sequence outlined in Scheme 3. 
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Table 3. Synthesis of the 2-(2-diphenylphosphinoyl-2,3-dienyloxy)-tetrahydro-2H-pyrans 9. 

Entry Allene R R1 R2 R3 Yield a, % 

1 9a H H Me Et 86 
2 9b H H Me Bu 84 
3 9c H H -(CH2)5- 81 
4 9d H Me Me Et 83 
5 9e H Me Me Bu 82 
6 9f H Me -(CH2)5- 80 
7 9g Me Me Me Et 80 
8 9h Me Me Me Bu 78 

a Isolated yields by chromatographic purification. 

Scheme 3. Synthesis of the 2-(2-diphenylphosphinoyl-2,3-dienyloxy)-tetrahydro-2H-pyrans 9. 
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Reagents and Conditions: (vi) Ph2PCl (1 eq), Et3N (1.1 eq), Et2O, −70 °C; (vii) [2,3-σ]-rearrangement,  

−70 °C, 1 h, rt, 8 h, column chromatography. 

A new family of phosphorylated α-hydroxyallenes with protected hydroxyl group 7 and 9 were 

synthesized via an atom economical and regioselective [2,3]-sigmatropic rearrangement of the 

intermediate formed propargyl phosphites or phosphinites in the reaction of protected alkynols 5 with 

dimethylchloro phosphite or chlorodiphenyl phosphine in the presence of triethylamine.  

2.2. Synthesis of Phosphorylated α-Hydroxyallenes with Unprotected Hydroxy Group 

Compounds 7 and 9 were stable enough to be handled at ambient temperature. The hydroxy group 

was deprotected by stirring the ethanol solution of the protected hydroxylalkyl-allenephosphonates 7 

and hydroxylalkyl-allenyl phosphine oxides 9 in the presence of 0.1 equiv. PPTS at room temperature 

for 6 h, according to Scheme 4 and Table 4. 

Scheme 4. Synthesis of the 1-hydroxyalkyl-1,2-dienephosphonates 10, the  

3-diphenylphosphinoyl-2,3-dien-1-ols 11a–c and the 3-diphenylphosphinoyl-3,4-dien-2-ols 

11d–h. 
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Reagents and Conditions: (viii) PPTS (0.1 eq), EtOH, rt, 6 h, stirring. 
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Table 4. Synthesis of the 1-hydroxyalkyl-1,2-dienephosphonates 10, the  

3-diphenylphosphinoyl-2,3-dien-2-ols 11a–c and the 3-diphenylphosphinoyl-3,4-dien-2-ols 

11d–h. 

Entry Allene R R1 R2 R3 Yield a, % 

1 10a H H Me Et 80 
2 10b H H Me Bu 78 
3 10c H H -(CH2)5- 77 
4 10d H Me Me Et 80 
5 10e H Me Me Bu 79 
6 10f H Me -(CH2)5- 81 
7 10g Me Me Me Et 79 
8 10h Me Me Me Bu 78 
9 11a H H Me Et 86 
10 11b H H Me Bu 83 
11 11c H H -(CH2)5- 81 
12 11d H Me Me Et 87 
13 11e H Me Me Bu 85 
14 11f H Me -(CH2)5- 88 
15 11g Me Me Me Et 84 
16 11h Me Me Me Bu 83 

a Isolated yields by chromatographic purification. 

After a conventional work-up, all allenic products 7, 9, 10, and 11 were isolated as stable yellow or 

orange oils by column chromatography and identified by 1H-, 13C-, and 31P-NMR and IR spectra as 

well as by elemental analysis. 

3. Experimental Section 

3.1. General Information 

All new synthesized compounds were purified by column chromatography and characterized on the 

basis of NMR, IR, and microanalytical data. NMR spectra were recorded on DRX Bruker Avance-250 

(1H at 250.1 MHz, 13C at 62.9 MHz, 31P at 101.2 MHz) and Bruker Avance II + 600 (Bruker 

BioSpinGmbH, Karlsruhe, Germany) (1H at 600.1 MHz, 13C at 150.9 MHz, 31P at 242.9 MHz) 

spectrometers for solutions in CDCl3. All 1H-and 13C-NMR experiments were measured referring to  

the signal of internal TMS and 31P-NMR experiments were measured referring to the signal of  

external 85% H3PO4. J values are given in hertz. IR spectra were recorded with an FT-IRAfinity-1 

Shimadzu spectrophotometer (Shimadzu, Tokyo, Japan). Elemental analyses were carried out by the 

Microanalytical Service Laboratory of Faculty of Chemistry and Pharmacy, University of Sofia, 

Bulgaria, using Vario EL3 CHNS(O) (Elementar Analysensysteme, Hanau, Germany). Column 

chromatography was performed on Kieselgel F254 60 (70–230 mesh ASTM, 0.063–0.200 nm, Merck, 

Darmstadt, Germany). Et2O and THF were distilled from Na wire/benzophenone, CH2Cl2 was distilled 

over CaH2, other commercially available chemicals were used without additional purification unless 

otherwise noted. Reactions were carried out in oven dried glassware under an argon atmosphere and 

exclusion of moisture. All compounds were checked for purity on TLC plates Kieselgel F254 60 (Merck). 
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3.2. General Procedure [80–83] for Synthesis of the Alkynyloxy-tetrahydro-2H-pyrans 2 

A solution of alkynols 1 (60.0 mmol) and DHP (7.6 g, 90.0 mmol) [0.152 g/mL] in dry methylene 

chloride (50 mL) containing PPTS (1.5 g, 6.0 mmol) [0.03 g/mL] is stirred for 4 h at room temperature. 

Then the reaction was quenched with saturated NaHCO3 end extracted with methylene chloride. The 

organic layer was dried over anhydrous sodium sulfate. After evaporation of the solvent, distillation 

gives an essentially quantitative yield of the alkynyloxy-tetrahydro-2H-pyrans 2 (95%–99%) which are 

described in the literature [80–83]. 

3.3. General Procedure for Synthesis of (Tetrahydro-2H-pyran-2-yloxy)-alkynols 5 

Ethylmagnesium bromide [prepared from magnesium (1.2 g, 50.0 mmol) [0.024 g/mL] and ethyl 

bromide (5.5 g, 50.0 mmol) [0.11 g/mL] in dry THF (50 mL)] is added dropwise under stirring to 

substituted alkynyloxy-tetrahydro-2H-pyrans 2 (50.0 mmol) and then the mixture is refluxed for 2 h. 

The solution of the prepared alkynyl magnesium bromides 3 is added dropwise under stirring to the 

ketones 4 (100.0 mmol). The mixture is refluxed for 24 h and after cooling is hydrolyzed with a 

saturated aqueous solution of ammonium chloride. The organic layer is separated, washed with water, 

and dried over over anhydrous sodium sulfate. Solvent and the excess of ketone are removed by 

distillation. Purification of the residue is achieved by column chromatography (silica gel, Kieselgel 

Merck 60 F254) with ethyl acetate-hexane (5:1). The pure products 5 had the following properties: 

3-Methyl-6-(tetrahydro-2H-pyran-2-yloxy)-hex-4-yn-3-ol (5a). Colourless oil, yield: 61%. Rf 0.53; IR 

(neat, cm−1): 1121 (C-O-C), 3439 (OH). 1H-NMR (600.1 MHz): δ 1.37 (t, J = 7.2 Hz, 3H, Me-CH2), 

1.40 (s, 3H, Me-C-OH), 1.48, 1.67, 1.71, 3.59, 4.62 (overlapping multiplets, 9H, OTHP), 1.79 (m, 2H, 

Me-CH2), 3.54 (s, 1H, OH), 4.29 (m, 2H, CH2O). 13C-NMR (150.9 MHz) δ = 9.9, 19.0, 26.1, 28.4, 

30.7, 37.5, 55.0, 62.3, 66.2, 81.5, 89.4, 97.7. Anal. Calcd for C12H20O3 (212.29): C 67.89, H 9.50. 

Found: C 67.81, H 9.44. 

4-Methyl-1-(tetrahydro-2H-pyran-2-yloxy)-oct-2-yn-4-ol (5b). Colourless oil, yield: 59%. Rf 0.49; IR 

(neat, cm−1): 1121 (C-O-C), 3420 (OH). 1H-NMR (250.1 MHz): δ 0.87 (t, J = 6.5 Hz, 3H, Me-(CH2)3), 

1.39 (s, 3H, Me-C-OH), 1.34–1.39, 1.48–1.80, 3.61, 4.72 (overlapping multiplets, 15H, OTHP + 

(CH2)3-Me), 2.70 (s, 1H, OH), 4.24 (m, 2H, CH2O). 13C-NMR (62.9 MHz) δ = 14.7, 19.2, 23.9, 24.7, 

25.6, 29.4, 30.8, 45.5, 55.3, 60.9, 64.2, 80.1, 89.0, 97.1. Anal. Calcd for C14H24O3 (240.34): C 69.96,  

H 10.07. Found: C 70.03, H 10.12. 

1-[3-(Tetrahydro-2H-pyran-2-yloxy)-prop-1-ynyl]-cyclohexanol (5c). Colourless oil, yield: 58%. Rf 

0.48; IR (neat, cm−1): 1120 (C-O-C), 3412 (OH). 1H-NMR (250.1 MHz): δ 1.30–1.77, 1.96–2.01, 

2.10–2.16, 3.54–3.72, 4.70–4.74 (overlapping multiplets, 19H, OTHP + (CH2)5), 3.51 (s, 1H, OH), 

4.27 (m, 2H, CH2O). 13C-NMR (62.9 MHz) δ = 19.2, 23.2, 25.7, 26.1, 30.4, 40.0, 53.8, 62.5, 69.2, 

81.0, 88.9, 96.8. Anal. Calcd for C14H22O3 (238.32): C 70.56, H 9.30. Found: C 70.65, H 9.36. 

3-Methyl-6-(tetrahydro-2H-pyran-2-yloxy)-hept-4-yn-3-ol (5d). Colourless oil, yield: 57%. Rf 0.54; IR 

(neat, cm−1): 1122 (C-O-C), 3398 (OH). 1H-NMR (600.1 MHz): δ 1.36 (t, J = 7.4 Hz, 3H, Me-CH2), 

1.38 (s, 3H, Me-C-OH), 1.46, 1.62, 1.71, 3.62, 4.71 (overlapping multiplets, 9H, OTHP), 1.49 (d,  

J = 7.0 Hz, 3H, Me-CH), 1.67 (m, 2H, Me-CH2), 3.24 (s, 1H, OH), 4.78 (m, 1H, CH-Me). 13C-NMR 
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(150.9 MHz) δ = 9.4, 20.5, 22.8, 26.2, 28.7, 30.9, 36.4, 61.7, 63.0, 66.9, 84.5, 88.7, 99.1. Anal. Calcd 

for C13H22O3 (226.31): C 68.99, H 9.80. Found: C 69.06, H 9.75. 

5-Methyl-2-(tetrahydro-2H-pyran-2-yloxy)-non-3-yn-5-ol (5e). Colourless oil, yield: 56%. Rf 0.51; IR 

(neat, cm−1): 1123 (C-O-C), 3432 (OH). 1H-NMR (600.1 MHz): δ 0.88 (t, J = 6.3 Hz, 3H, Me-(CH2)3), 

1.36 (s, 3H, Me-C-OH), 1.33–1.40, 1.46–1.79, 3.76, 4.78 (overlapping multiplets, 15H, OTHP + 

(CH2)3-Me), 1.52 (d, J = 6.9 Hz, 3H, Me-CH), 2.54 (s, 1H, OH), 4.66 (m, 1H, CH-Me). 13C-NMR 

(150.9 MHz) δ = 14.4, 20.2, 22.4, 24.2, 24.9, 26.1, 30.2, 31.0, 45.4, 62.7, 63.0, 64.4, 84.2, 88.1, 99.4. 

Anal. Calcd for C15H26O3 (254.37): C 70.83, H 10.30. Found: C 70.87, H 10.23. 

1-[3-(Tetrahydro-2H-pyran-2-yloxy)-but-1-ynyl]-cyclohexanol (5f). Colourless oil, yield: 56%. Rf 

0.48; IR (neat, cm−1): 1119 (C-O-C), 3429 (OH). 1H-NMR (250.1 MHz): δ 1.29–1.52, 1.67–1.84, 

1.95–2.12, 3.50–3.87, 4.79–4.82 (overlapping multiplets, 19H, OTHP + (CH2)5), 1.49 (d, J = 7.0 Hz, 

3H, Me-CH), 3.32 (s, 1H, OH), 4.71 (m, 1H, CH-Me). 13C-NMR (62.9 MHz) δ = 20.1, 22.5, 23.0, 

24.7, 26.0, 32.4, 40.6, 61.9, 62.4, 68.9, 83.2, 90.2, 98.9. Anal. Calcd for C15H24O3 (252.35): C 71.39, H 

9.59. Found: C 71.30, H 9.66. 

3,6-Dimethyl-6-(tetrahydro-2H-pyran-2-yloxy)-hept-4-yn-3-ol (5g). Colourless oil, yield: 54%. Rf 

0.49; IR (neat, cm−1): 1120 (C-O-C), 3416 (OH). 1H-NMR (600.1 MHz): δ 1.34 (t, J = 7.4 Hz, 3H, 

Me-CH2), 1.38 (s, 3H, Me-C-OH), 1.43, 1.66, 1.70, 3.69, 4.91 (overlapping multiplets, 9H, OTHP), 

1.51 (s, 6H, 2Me), 1.68 (m, 2H, Me-CH2), 3.22 (s, 1H, OH). 13C-NMR (150.9 MHz) δ = 9.3, 21.1, 

25.4, 28.6, 30.0, 32.4, 35.7, 64.1, 66.3, 71.0, 82.3, 86.5, 96.4. Anal. Calcd for C14H24O3 (240.34): C 

69.96, H 10.07. Found: C 69.89, H 10.15. 

2,5-Dimethyl-2-(tetrahydro-2H-pyran-2-yloxy)-non-3-yn-5-ol (5h). Colourless oil, yield: 53%. Rf 0.45; 

IR (neat, cm−1): 1119 (C-O-C), 3421 (OH). 1H-NMR (600.1 MHz): δ 0.87 (t, J = 6.4 Hz, 3H,  

Me-(CH2)3), 1.34 (s, 3H, Me-C-OH), 1.36–1.42, 1.47–1.72, 3.59, 4.89 (overlapping multiplets, 15H, 

OTHP + (CH2)3-Me), 1.50 (s, 6H, 2Me), 2.542 (s, 1H, OH). 13C-NMR (150.9 MHz) δ = 14.7, 21.1, 

24.3, 24.7, 25.7, 28.4, 30.0, 31.7, 44.2, 64.7, 64.9, 71.3, 82.4, 86.1, 96.7. Anal. Calcd for C16H28O3 

(268.39): C 71.60, H 10.52. Found: C 71.52, H 10.58. 

3.4. General Procedure for Synthesis of the Dimethyl 1-(Tetrahydro-2H-pyran-2-yloxy)-1,2-

dienephosphonates 7 

To a solution of phosphorus trichloride (2.8 g, 20.0 mmol) [0.047 g/mL] and triethylamine (2.2 g, 

22.0 mmol) [0.037 g/mL] in dry diethyl ether (60 mL) at –70 °C was added dropwise with stirring  

a solution of the (tetrahydro-2H-pyran-2-yloxy)-alkynols 5 (20.0 mmol) in the same solvent (20 mL). 

After 30 min stirring at the same temperature a solution of pyridine (3.1 g, 44.0 mmol) [0.062 g/mL] 

and of methanol (1.3 g, 40.0 mmol) [0.026 g/mL] in dry diethyl ether (50 mL) were added. The 

reaction mixture was stirred for an hour at the same temperature and for 10 h at room temperature.  

The mixture was then washed with water, 2 N HCl, extracted with ether, washed with saturated NaCl, 

and dried over anhydrous sodium sulfate. After evaporation of the solvent, the residue was 
chromatographed on a column (silica gel, Kieselgel Merck 60 F254) with a mixture of ethyl acetate and 

hexane (10:1) as eluent to give the pure products 7 as oils, which had the following properties: 
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Dimethyl 3-methyl-1-(tetrahydro-2H-pyran-2-yloxymethyl)-penta-1,2-dienephosphonate (7a). Yellow 

oil, yield: 78%. Rf 0.58; IR (neat, cm−1): 1119 (C-O-C), 1250 (P=O), 1958 (C=C=C). 1H-NMR  

(600.1 MHz): δ 1.07 (t, J = 7.4 Hz, 3H, Me-CH2), 1.53, 1.60, 1.71, 3.53, 4.32 (overlapping multiplets, 

9H, OTHP), 1.80 (d, J = 6.7 Hz, 3H, Me-C=), 2.07 (m, 2H, Me-CH2), 3.76 (d, J = 11.2 Hz, 3H, MeO), 

4.14 (m, 2H, CH2O). 13C-NMR (150.9 MHz) δ = 12.0 (J = 7.6 Hz), 18.1 (J = 6.6 Hz), 19.2, 25.5, 26.5 

(J = 4.2 Hz), 30.4, 52.8 (J = 6.2 Hz), 61.9, 64.9 (J = 10.1 Hz), 90.7 (J = 191.2 Hz), 97.2, 104.6  

(J = 15.6 Hz), 208.6 (J = 5.5 Hz). 31P-NMR (242.9 MHz): δ 20.3. Anal. Calcd for C14H25O5P 

(304.32): C 55.25; H 8.28. Found: C 55.33; H 8.19. 

Dimethyl 3-methyl-1-(tetrahydro-2H-pyran-2-yloxymethyl)-hepta-1,2-dienephosphonate (7b). Yellow 

oil, yield: 75%. Rf 0.59; IR (neat, cm−1): 1121 (C-O-C), 1251 (P=O), 1956 (C=C=C). 1H-NMR  

(600.1 MHz): δ 0.90 (t, J = 7.2 Hz, 3H, Me-(CH2)3), 1.44, 1.53, 1.60, 3.53, 4.36 (overlapping 

multiplets, 9H, OTHP), 1.78 (d, J = 6.5 Hz, 3H, Me-C=), 1.36, 1.82, 2.05 (overlapping multiplets, 6H, 

Me-(CH2)3), 3.75 (d, J = 11.2 Hz, 3H, MeO), 4.09 (m, 2H, CH2O). 13C-NMR (150.9 MHz) δ = 13.9, 

18.0 (J = 6.7 Hz), 19.2, 22.2, 25.5, 29.4, 30.3, 32.9, 52.7 (J = 6.3 Hz), 61.8, 64.9 (J = 10.1 Hz), 90.3 

(J = 191.7 Hz), 97.3, 102.8 (J = 16.2 Hz), 208.8 (J = 5.4 Hz). 31P-NMR (242.9 MHz): δ 20.4. Anal. 

Calcd for C16H29O5P (332.37): C 57.82, H 8.79. Found: C 57.90, H 8.72.  

Dimethyl 2-cyclohexylidene-1-(tetrahydro-2H-pyran-2-yloxymethyl)-ethenephosphonate (7c). Yellow 

oil, yield: 73%. Rf 0.57; IR (neat, cm−1): 1118 (C-O-C), 1252 (P=O), 1953 (C=C=C). 1H-NMR  

(600.1 MHz): δ 1.25–2.23, 3.55, 3.86, 4.31 (overlapping multiplets, 19H, (CH2)5 + OTHP), 3.74 (d,  

J = 11.1 Hz, 3H, MeO), 4.15 (m, 2H, CH2O). 13C-NMR (150.9 MHz) δ = 19.1, 25.5, 25.7, 26.5, 30.3 

(J = 5.9 Hz), 30.4, 52.9 (J = 6.2 Hz), 62.0, 64.7 (J = 10.8 Hz), 88.6 (J = 190.7 Hz), 97.2, 105.1  

(J = 15.6 Hz), 205.6 (J = 5.1 Hz). 31P-NMR (242.9 MHz): δ 21.2. Anal. Calcd for C16H27O5P 

(330.36): C 58.17, H 8.24. Found: C 58.24, H 8.18. 

Dimethyl 3-methyl-1-[1-(tetrahydro-2H-pyran-2-yloxy)-ethyl]-penta-1,2-dienephosphonate (7d). Orange 

oil, yield: 74%. Rf 0.44; IR (neat, cm−1): 1122 (C-O-C), 1259 (P=O), 1951 (C=C=C). 1H-NMR  

(600.1 MHz): δ 0.95 (t, J = 7.3 Hz, 3H, Me-CH2), 1.41 (dd, J = 6.4 Hz, J = 10.2 Hz, 3H, Me-CHO), 

1.51, 1.58, 1.68, 3.63, 4.38 (overlapping multiplets, 9H, OTHP), 1.74 (d, J = 6.6 Hz, 3H, Me-C=), 2.04 

(m, 2H, Me-CH2), 3.77 (d, J = 11.2 Hz, 3H, MeO), 4.67 (m, 1H, CHO). 13C-NMR (150.9 MHz)  

δ = 12.3 (J = 7.5 Hz), 18.5 (J = 6.3 Hz), 19.4, 23.4 (J = 7.6 Hz), 25.5, 27.7 (J = 4.6 Hz), 30.5, 52.5  

(J = 6.3 Hz), 62.4, 67.4 (J = 10.3 Hz), 95.8, 96.4 (J = 192.0 Hz), 104.4 (J = 15.9 Hz), 209.2  

(J = 5.1 Hz). 31P-NMR (242.9 MHz): δ 20.4. Anal. Calcd for C15H27O5P (318.35): C 56.59, H 8.55. 

Found: C 56.64, H 8.63. 

Dimethyl 3-methyl-1-[1-(tetrahydro-2H-pyran-2-yloxy)-ethyl]-hepta-1,2-dienephosphonate (7e). Orange 

oil, yield: 72%. Rf 0.43; IR (neat, cm−1): 1120 (C-O-C), 1254 (P=O), 1956 (C=C=C). 1H-NMR  

(600.1 MHz): δ 0.93 (t, J = 7.1 Hz, 3H, Me-(CH2)3), 1.43 (dd, J = 6.3 Hz, J = 10.0 Hz, 3H, Me-CHO), 

1.48, 1.55, 1.64, 3.62, 4.38 (overlapping multiplets, 9H, OTHP), 1.77 (d, J = 6.6 Hz, 3H, Me-C=), 

1.41, 1.74, 2.11 (overlapping multiplets, 6H, Me-(CH2)3), 3.76 (d, J = 11.2 Hz, 3H, MeO), 4.64  

(m, 1H, CHO). 13C-NMR (150.9 MHz) δ = 13.8, 18.8 (J = 6.5 Hz), 19.5, 22.7, 23.5 (J = 7.5 Hz),  

25.7, 29.6, 30.4, 32.8, 52.3 (J = 6.2 Hz), 62.3, 68.6 (J = 10.2 Hz), 91.4 (J = 191.7 Hz), 95.6, 103.4  

(J = 16.2 Hz), 209.0 (J = 5.3 Hz). 31P-NMR (242.9 MHz): δ 20.5. Anal. Calcd for C17H31O5P 

(346.40): C 58.94, H 9.02. Found: C 59.01, H 8.96. 
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Dimethyl 1-cyclohexylidenemethylene-2-(tetrahydro-2H-pyran-2-yloxy)-propanephosphonate (7f). Dark 

orange oil, yield: 75%. Rf 0.42; IR (neat, cm−1): 1122 (C-O-C), 1258 (P=O), 1953 (C=C=C). 1H-NMR 

(600.1 MHz): δ 1.31–2.27, 3.57, 3.71, 4.34 (overlapping multiplets, 19H, (CH2)5 + OTHP), 1.42 (d,  

J = 6.2 Hz, 3H, Me-CHO), 3.74 (d, J = 11.1 Hz, 3H, MeO), 4.51 (m, 1H, CHO). 13C-NMR  

(150.9 MHz) δ = 19.6, 23.5 (J = 7.6 Hz), 25.6, 24.7, 25.8, 29.4 (J = 5.7 Hz), 30.6, 52.8 (J = 6.3 Hz), 

62.6, 65.8 (J = 10.6 Hz), 93.8 (J = 189.6 Hz), 94.7, 106.0 (J = 15.5 Hz), 204.3 (J = 5.0 Hz). 31P-NMR 

(242.9 MHz): δ 20.2. Anal. Calcd for C17H29O5P (344.38): C 59.29, H 8.49. Found: C 59.36, H 8.43. 

Dimethyl 3-methyl-1-[1-methyl-1-(tetrahydro-2H-pyran-2-yloxy)-ethyl]-penta-1,2-dienephosphonate (7g). 

Orange oil, yield: 71%. Rf 0.44; IR (neat, cm−1): 1117 (C-O-C), 1252 (P=O), 1949 (C=C=C). 1H-NMR 

(600.1 MHz): δ 1.05 (t, J = 7.4 Hz, 3H, Me-CH2), 1.45 (d, J = 10.3 Hz, 6H, Me2CO), 1.47, 1.60, 1.64, 

3.68, 4.35 (overlapping multiplets, 9H, OTHP), 1.79 (d, J = 6.6 Hz, 3H, Me-C=), 2.06 (m, 2H,  

Me-CH2), 3.76 (d, J = 11.3 Hz, 3H, MeO). 13C-NMR (150.9 MHz) δ = 12.4 (J = 7.6 Hz), 18.4  

(J = 6.4 Hz), 20.4, 25.3, 31.1 (J = 8.1 Hz), 27.7 (J = 4.8 Hz), 31.3, 51.9 (J = 6.6 Hz), 63.2, 68.4  

(J = 10.0 Hz), 92.4, 99.4 (J = 194.0 Hz), 103.8 (J = 15.3 Hz), 208.5 (J = 5.0 Hz). 31P-NMR  

(242.9 MHz): δ 21.4. Anal. Calcd for C16H29O5P (332.37): C 57.82, H 8.79. Found: C 57.76, H 8.87. 

Dimethyl 3-methyl-1-[1-methyl-1-(tetrahydro-2H-pyran-2-yloxy)-ethyl]-hepta-1,2-dienephosphonate (7h). 

Orange oil, yield: 70%. Rf 0.42; IR (neat, cm−1): 1121 (C-O-C), 1254 (P=O), 1950 (C=C=C). 1H-NMR 

(600.1 MHz): δ 0.91 (t, J = 7.2 Hz, 3H, Me-(CH2)5), 1.49 (d, J = 10.4 Hz, 6H, Me2CO), 1.42, 1.73, 

2.06 (overlapping multiplets, 6H, Me-(CH2)3), 1.46, 1.57, 1.62, 3.64, 4.37 (overlapping multiplets, 9H, 

OTHP), 1.78 (d, J = 6.6 Hz, 3H, Me-C=), 3.75 (d, J = 11.2 Hz, 3H, MeO). 13C-NMR (150.9 MHz)  

δ = 13.9, 19.1 (J = 6.6 Hz), 20.6, 22.5, 25.4, 30.0, 30.4 (J = 8.2 Hz), 31.4, 32.9, 53.1 (J = 6.7 Hz), 

63.3, 66.4 (J = 10.3 Hz), 92.7, 98.5 (J = 190.4 Hz), 104.2 (J = 15.3 Hz), 207.4 (J = 5.1 Hz). 31P-NMR 

(242.9 MHz): δ 22.2. Anal. Calcd for C18H33O5P (360.43): C 59.98, H 9.23. Found: C 60.05, H 9.29. 

3.5. General Procedure for Synthesis of the 2-(2-Diphenylphosphinoyl-2,3-dienyloxy)-tetrahydro-2H-

pyrans 9 

To a solution of the (tetrahydro-2H-pyran-2-yloxy)-alkynols 5 (20.0 mmol) and triethylamine  

(2.2 g, 22.0 mmol) [0.037 g/mL] in dry diethyl ether (60 mL) at −70 °C a solution of freshly distilled 

diphenylchlorophosphine (4.4 g, 20.0 mmol) [0.22 g/mL] in the same solvent (20 mL) was added 

dropwise with stirring. The reaction mixture was stirred for an hour at the same temperature and for 8 h 

at room temperature and then washed with water, 2 N HCl, extracted with diethyl ether, and the extract 

was washed with saturated NaCl, and dried over anhydrous sodium sulfate. The solvent was removed 

using a rotatory evaporator and the residue was purified by column chromatography on a silica gel 
(Kieselgel Merck 60 F254) with ethyl acetate-hexane (10:1) to give the pure products 9 as oils, which 

had the following properties: 

2-(2-Diphenylphosphinoyl-4-methyl-hexa-2,3-dienyloxy)-tetrahydro-2H-pyran (9a). Yellow oil, yield: 

86%. Rf 0.58; IR (neat, cm−1): 1119 (C-O-C), 1157 (P=O), 1437, 1483 (Ph), 1949 (C=C=C). 1H-NMR 

(600.1 MHz): δ 0.75 (t, J = 7.4 Hz, 3H, Me-CH2), 1.27–1.82, 3.71–3.77, 4.59–4.62 (overlapping 

multiplets, 9H, OTHP), 1.52 (d, J = 6.2 Hz, 3H, Me-C=), 2.05 (m, 2H, Me-CH2), 4.26–4.53 (m, 2H, 

CH2O), 7.41–7.78 (m, 10H, 2Ph). 13C-NMR (150.9 MHz) δ = 11.8, 17.6 (J = 5.6 Hz), 18.9, 25.4, 26.3, 
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30.1, 61.6, 64.2 (J = 9.5 Hz), 95.9 (J = 104.4 Hz), 97.6, 104.6 (J = 13.9 Hz), 131.7–133.8 (2Ph), 208.2 

(J = 6.5 Hz). 31P-NMR (242.9 MHz): δ 29.5. Anal. Calcd for C24H29O3P (396.46): C 72.71, H 7.37. 

Found: C 72.63, H 7.42. 

2-(2-Diphenylphosphinoyl-4-methyl-octa-2,3-dienyloxy)-tetrahydro-2H-pyran (9b). Yellow oil, yield: 

84%. Rf 0.57; IR (neat, cm−1): 1120 (C-O-C), 1155 (P=O), 1438, 1482 (Ph), 1954 (C=C=C). 1H-NMR 

(600.1 MHz): δ 0.81 (t, J = 7.3 Hz, 3H, Me-CH2), 1.07–1.18, 3.41–3.45 (mm, 6H, (CH2)3-Me),  

1.34–1.74, 3.71–3.77, 4.58–4.61 (overlapping multiplets, 9H, OTHP), 1.51 (d, J = 6.6 Hz, 3H, Me-C=), 

4.25–4.52 (m, 2H, CH2O), 7.30–7.82 (m, 10H, 2Ph). 13C-NMR (150.9 MHz) δ = 13.9, 17.7 (J = 5.6 Hz), 

18.9, 22.2, 25.4, 30.1, 29.2, 32.8, 61.7, 64.3 (J = 9.6 Hz), 95.2 (J = 104.5 Hz), 97.8, 103.0 (J = 13.3 Hz), 

131.5–133.4 (2Ph), 208.5 (J = 6.4 Hz). 31P-NMR (242.9 MHz): δ 29.8. Anal. Calcd for C26H33O3P 

(424.51): C 73.56, H 7.84. Found: C 73.64, H 7.91.  

2-(3-Cyclohexylidene-2-diphenylphosphinoyl-allyloxy)-tetrahydro-2H-pyran (9c). Yellow oil, yield: 

81%. Rf 0.56; IR (neat, cm−1): 1123 (C-O-C), 1169 (P=O), 1436, 1490 (Ph), 1954 (C=C=C). 1H-NMR 

(600.1 MHz): δ 0.97–1.06, 1.86–2.02, 3.40–3.44 (overlapping multiplets, 10H, (CH2)5), 1.27–1.57, 

3.72–3.77, 4.58–4.60 (overlapping multiplets, 9H, OTHP), 4.29–4.51 (m, 2H, CH2O), 7.26–7.78 (m, 

10H, 2Ph). 13C-NMR (150.9 MHz) δ = 18.9, 21.1, 25.4, 26.3 (J = 3.8 Hz), 29.9 (J = 5.2 Hz), 30.1, 

61.8, 64.1 (J = 9.6 Hz), 94.0 (J = 105.2 Hz), 97.5, 104.9 (J = 13.4 Hz), 128.1–133.0 (2Ph), 205.4  

(J = 6.8 Hz). 31P-NMR (242.9 MHz): δ 31.1. Anal. Calcd for C26H31O3P (422.50: C 73.91, H 7.40. 

Found: C 73.83, H 7.31. 

2-(2-Diphenylphosphinoyl-1,4-dimethyl-hexa-2,3-dienyloxy)-tetrahydro-2H-pyran (9d). Orange oil, 

yield: 83%. Rf 0.46; IR (neat, cm−1): 1119 (C-O-C), 1158 (P=O), 1440, 1489 (Ph), 1950 (C=C=C).  
1H-NMR (600.1 MHz): δ 0.84 (t, J = 7.3 Hz, 3H, Me-CH2), 1.30–1.71, 3.61–3.65, 4.56–4.59 

(overlapping multiplets, 9H, OTHP), 1.43 (dd, J = 6.3 Hz, J = 9.8 Hz, 3H, Me-CHO), 1.53 (d,  

J = 6.4 Hz, 3H, Me-C=), 2.02 (m, 2H, Me-CH2), 4.61–4.67 (m, 1H, CHO), 7.29–7.82 (m, 10H, 2Ph). 
13C-NMR (150.9 MHz) δ = 12.7, 18.6 (J = 5.5 Hz), 19.5, 22.5 (J = 7.7 Hz), 22.6, 27.5 (J = 5.4 Hz), 

30.6, 62.4, 64.9 (J = 9.4 Hz), 97.6 (J = 104.1 Hz), 96.7, 104.7 (J = 13.7 Hz), 129.2–134.5 (2Ph), 204.7 

(J = 6.6 Hz). 31P-NMR (242.9 MHz): δ 30.4. Anal. Calcd for C25H31O3P (410.49): C 73.15, H 7.61. 

Found: C 73.08, H 7.69. 

2-(2-Diphenylphosphinoyl-1,4-dimethyl-octa-2,3-dienyloxy)-tetrahydro-2H-pyran (9e). Orange oil, 

yield: 82%. Rf 0.45; IR (neat, cm−1): 1123 (C-O-C), 1165 (P=O), 1437, 1492 (Ph), 1954 (C=C=C).  
1H-NMR (600.1 MHz): δ 0.81 (t, J = 7.5 Hz, 3H, Me-CH2), 1.10–1.21, 3.50–3.55 (mm, 6H, (CH2)3-Me), 

1.37–1.71, 3.62–3.67, 4.57–4.63 (overlapping multiplets, 9H, OTHP), 1.42 (dd, J = 6.4 Hz, J = 9.7 Hz, 

3H, Me-CHO), 1.55 (d, J = 6.3 Hz, 3H, Me-C=), 4.52-4.57 (m, 1H, CHO), 7.28-7.84 (m, 10H, 2Ph). 
13C-NMR (150.9 MHz) δ = 13.8, 18.4 (J = 5.6 Hz), 19.6, 21.3, 22.2 (J = 7.5 Hz), 25.5, 30.5, 29.5, 

32.9, 62.7, 65.2 (J = 9.7 Hz), 97.4, 97.9 (J = 105.0 Hz), 104.7 (J = 13.7 Hz), 129.7–134.6 (2Ph), 207.7  

(J = 6.6 Hz). 31P-NMR (242.9 MHz): δ 29.7. Anal. Calcd for C27H35O3P (438.54): C 73.95, H 8.04. 

Found: C 74.03, H 7.99. 

2-(3-Cyclohexylidene-2-diphenylphosphinoyl-1-methyl-allyloxy)-tetrahydro-2H-pyran (9f). Yellow oil, 

yield: 80%. Rf 0.45; IR (neat, cm−1): 1118 (C-O-C), 1160 (P=O), 1439, 1488 (Ph), 1949 (C=C=C).  
1H-NMR (600.1 MHz): δ 1.03–1.11, 1.91–1.97, 3.33–3.45 (overlapping multiplets, 10H, (CH2)5), 
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1.31–1.62, 3.68–3.79, 4.56–4.70 (overlapping multiplets, 9H, OTHP), 1.44 (d, J = 6.5 Hz, 3H,  

Me-CHO), 4.51–4.57 (m, 1H, CHO), 7.31–7.87 (m, 10H, 2Ph). 13C-NMR (150.9 MHz) δ = 20.0, 20.7, 

21.7 (J = 7.4 Hz), 26.1, 26.7 (J = 3.6 Hz), 30.2, 30.4 (J = 5.3 Hz), 62.8, 67.8 (J = 9.6 Hz), 97.7, 99.8 

(J = 105.0 Hz), 106.3 (J = 13.8 Hz), 127.7–134.2 (2Ph), 203.6 (J = 7.2 Hz). 31P-NMR (242.9 MHz): δ 

31.2. Anal. Calcd for C27H33O3P (436.52): C 74.29, H 7.62. Found: C 74.33, H 7.69. 

2-(2-Diphenylphosphinoyl-1,1,4-trimethyl-hexa-2,3-dienyloxy)-tetrahydro-2H-pyran (9g). Dark orange 

oil, yield: 80%. Rf 0.44; IR (neat, cm−1): 1119 (C-O-C), 1154 (P=O), 1436, 1487 (Ph), 1956 (C=C=C). 
1H-NMR (600.1 MHz): δ 1.03 (t, J = 7.5 Hz, 3H, Me-CH2), 1.38–1.69, 3.53–3.73, 4.61–4.77 

(overlapping multiplets, 9H, OTHP), 1.47 (d, J = 10.6 Hz, 6H, Me2CO), 1.53 (d, J = 6.5 Hz, 3H,  

Me-C=), 2.02 (m, 2H, Me-CH2), 7.41–7.85 (m, 10H, 2Ph). 13C-NMR (150.9 MHz) δ = 12.1, 18.5  

(J = 5.7 Hz), 19.4, 26.2, 28.4 (J = 5.5 Hz), 31.1, 31.2 (J = 8.0 Hz), 63.0, 68.4 (J = 9.7 Hz), 96.9, 97.8 

(J = 104.7 Hz), 105.1 (J = 13.4 Hz), 127.4–133.9 (2Ph), 204.5 (J = 7.0 Hz). 31P-NMR (242.9 MHz):  

δ 31.7. Anal. Calcd for C26H33O3P (424.51): C 73.56, H 7.84. Found: C 73.63, H 7.92. 

2-(2-Diphenylphosphinoyl-1,1,4-trimethyl-octa-2,3-dienyloxy)-tetrahydro-2H-pyran (9h). Yellow oil, 

yield: 78%. Rf 0.45; IR (neat, cm−1): 1119 (C-O-C), 1162 (P=O), 1440, 1486 (Ph), 1953 (C=C=C).  
1H-NMR (600.1 MHz): δ 1.06 (t, J = 7.6 Hz, 3H, Me-CH2), 1.09–1.22, 3.43–3.46 (mm, 6H,  

(CH2)3-Me), 1.29–1.64, 3.57–3.74, 4.59–4.74 (overlapping multiplets, 9H, OTHP), 1.50 (d,  

J = 10.5 Hz, 3H, Me2CO), 1.55 (d, J = 6.6 Hz, 3H, Me-C=), 7.37–7.84 (m, 10H, 2Ph). 13C-NMR 

(150.9 MHz) δ = 13.8, 18.1 (J = 5.7 Hz), 18.7, 21.7, 25.8, 30.0, 30.4, 30.7 (J = 8.2 Hz), 33.1,  

62.0, 67.9 (J = 9.5 Hz), 97.3, 98.4 (J = 105.3 Hz), 104.8 (J = 13.5 Hz), 128.0–134.4 (2Ph), 205.4  

(J = 7.2 Hz). 31P-NMR (242.9 MHz): δ 30.6. Anal. Calcd for C28H37O3P (452.57): C 74.31, H 8.24. 

Found: C 74.24, H 8.17. 

3.6. General Procedure for Synthesis of the 1-Hydroxyalkyl-1,2-dienephosphonates 10,  

the 3-Diphenylphosphinoyl-2,3-dien-1-ols 11a–c and the 3-Diphenylphosphinoyl-3,4-dien-2-ols 11d–h 

A solution of the dimethyl 1-(tetrahydro-2H-pyran-2-yloxy)-1,2-dienephosphonates 7 or the  

2-(2-diphenylphosphinoyl-2,3-dienyloxy)-tetrahydro-2H-pyrans 9 (5.0 mmol) and PPTS (1.13 g,  

0.5 mmol) [0.113 g/mL] in ethanol (10 mL) was stirred at room temperature for 6 h. The mixture was 

then washed with water, extracted with methylene chloride and dried over anhydrous sodium sulfate. 

After evaporation of the solvent, the residue was chromatographied on a column (silica gel, Kieselgel 

Merck 60 F254) with a mixture of ethyl acetate and hexane (10:1) as a eluent to give the pure products 

10 or 11 as oils, which had the following properties: 

Dimethyl 1-hydroxymethyl-3-methylpenta-1,2-dienephosphonate (10a). Pale yellow oil, yield: 80%. Rf 

0.45; IR (neat, cm−1): 1248 (P=O), 1956 (C=C=C), 3404 (OH). 1H-NMR (250.1 MHz): δ 1.06 (t,  

J = 7.4 Hz, 3H, Me-CH2), 1.80 (d, J = 6.7 Hz, 3H, Me-C=), 2.04–2.12 (m, 2H, Me-CH2), 2.64 (s, 1H, 

OH), 3.75 (d, J = 11.8 Hz, 3H, MeO), 4.30–4.36 (m, 2H, CH2O). 13C-NMR (62.9 MHz) δ = 12.0  

(J = 7.7 Hz), 18.1 (J = 6.5 Hz), 26.5 (J = 9.3 Hz), 52.8 (J = 6.3 Hz), 64.9 (J = 10.1 Hz), 90.8  

(J = 191.3 Hz), 104.7 (J = 15.7 Hz), 208.7 (J = 5.6 Hz). 31P-NMR (101.2 MHz): δ 21.6. Anal. Calcd 

for C9H17O4P (220.20): C 49.09, H 7.78. Found: C 49.17, H 7.71. 
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Dimethyl 1-hydroxymethyl-3-methylhepta-1,2-dienephosphonate (10b). Pale yellow oil, yield: 78%. Rf 

0.43; IR (neat, cm−1): 1249 (P=O), 1958 (C=C=C), 3401 (OH). 1H-NMR (600.1 MHz): δ 0.99 (t,  

J = 7.3 Hz, 3H, Me-CH2), 1.32–1.46, 1.51–1.63, 2.03–2.09 (overlapping multiplets, 10H, Me-(CH2)3), 

1.79 (d, J = 6.5 Hz, 3H, Me-C=), 2.64 (s, 1H, OH), 3.76 (d, J = 11.2 Hz, 3H, MeO), 4.33–4.38 (m, 2H, 

CH2O). 13C-NMR (150.9 MHz) δ = 13.9, 18.1 (J = 6.6 Hz), 22.2, 30.3, 32.9, 52.8 (J = 6.2 Hz), 64.9  

(J = 10.1 Hz), 90.4 (J = 191.5 Hz), 103.7 (J = 15.6 Hz), 208.8 (J = 5.5 Hz). 31P-NMR (242.9 MHz):  

δ 21.0. Anal. Calcd for C11H21O4P (248.26): C 53.22, H 8.53. Found: C 53.30, H 8.62. 

Dimethyl 2-cyclohexylidene-1-hydroxymethyl-ethenephosphonate (10c). Colourless oil, yield: 77%. Rf 

0.44; IR (neat, cm−1): 1259 (P=O), 1952 (C=C=C), 3412 (OH). 1H-NMR (250.1 MHz): δ 1.22–1.37, 

1.80–1.96, 3.49–3.57 (overlapping multiplets, 10H, (CH2)5), 2.67 (s, 1H, OH), 3.75 (d, J = 11.3 Hz, 

3H, MeO), 4.23–4.29 (m, 2H, CH2O). 13C-NMR (62.9 MHz) δ = 25.6, 27.1, 30.4 (J = 5.8 Hz), 52.8  

(J = 6.0 Hz), 64.7 (J = 10.7 Hz), 88.8 (J = 190.3 Hz), 105.1 (J = 15.3 Hz), 205.6 (J = 5.4 Hz).  
31P-NMR (101.2 MHz): δ 20.8. Anal. Calcd for C11H19O4P (246.24): C 53.65, H 7.78. Found: C 53.72, 

H 7.73. 

Dimethyl 1-(1-hydroxyethyl)-3-methylpenta-1,2-dienephosphonate (10d). Yellow oil, yield: 80%. Rf 

0.58; IR (neat, cm−1): 1254 (P=O), 1956 (C=C=C), 3372 (OH). 1H-NMR (600.1 MHz): δ 0.98 (t,  

J = 7.5 Hz, 3H, Me-CH2), 1.42 (dd, J = 6.1 Hz, J = 10.2 Hz, 3H, Me-CHO), 1.78 (d, J = 6.6 Hz, 3H, 

Me-C=), 2.02–2.10 (m, 2H, Me-CH2), 2.70 (s, 1H, OH), 3.78 (d, J = 11.6 Hz, 3H, MeO), 4.67–4.72 

(m, 1H, Me-CHO). 13C-NMR (150.9 MHz) δ = 12.2 (J = 7.6 Hz), 18.4 (J = 6.4 Hz), 23.2 (J = 7.5 Hz), 

27.4 (J = 9.2 Hz), 52.6 (J = 6.2 Hz), 66.9 (J = 10.3 Hz), 96.3 (J = 192.3 Hz), 104.4 (J = 15.9 Hz), 

208.9 (J = 5.4 Hz). 31P-NMR (242.9 MHz): δ 21.1. Anal. Calcd for C10H19O4P (234.23): C 51.28, H 

8.18. Found: C 51.21, H 8.13. 

Dimethyl 1-(1-hydroxyethyl)-3-methylhepta-1,2-dienephosphonate (10e). Yellow oil, yield: 79%. Rf 

0.57; IR (neat, cm−1): 1248 (P=O), 1958 (C=C=C), 3437 (OH). 1H-NMR (600.1 MHz): δ 1.09 (t,  

J = 7.4 Hz, 3H, Me-CH2), 1.39–1.44, 1.50–1.55, 2.11–2.15 (overlapping multiplets, 10H, Me-(CH2)3), 

1.40 (dd, J = 6.3 Hz, J = 10.3 Hz, 3H, Me-CHO), 1.77 (d, J = 6.9 Hz, 3H, Me-C=), 2.68 (s, 1H, OH), 

3.77 (d, J = 11.5 Hz, 3H, MeO), 4.50–4.55 (m, 1H, Me-CHO). 13C-NMR (150.9 MHz) δ = 13.7,  

18.7 (J = 6.4 Hz), 23.0, 23.5 (J = 7.5 Hz), 30.0, 33.0, 52.3 (J = 6.2 Hz), 68.7 (J = 10.0 Hz), 91.5  

(J = 191.5 Hz), 103.2 (J = 16.1 Hz), 208.7 (J = 5.4 Hz). 31P-NMR (242.9 MHz): δ 21.2. Anal. Calcd 

for C12H23O4P (262.28): C 54.95, H 8.84. Found: C 55.02, H 8.78. 

Dimethyl 1-cyclohexylidenemethylene-2-hydroxypropanephosphonate (10f). Orange oil, yield: 81%. Rf 

0.59; IR (neat, cm−1): 1253 (P=O), 1951 (C=C=C), 3422 (OH). 1H-NMR (600.1 MHz): δ 1.33–1.48, 

1.87–2.00, 3.12–3.20 (overlapping multiplets, 10H, (CH2)5), 1.38 (dd, J = 6.4 Hz, J = 9.7 Hz, 3H,  

Me-CHO), 2.84 (s, 1H, OH), 3.78 (d, J = 11.6 Hz, 3H, MeO), 4.64–4.69 (m, 1H, Me-CHO). 13C-NMR 

(150.9 MHz) δ = 23.3 (J = 7.3 Hz), 25.7, 27.0, 30.3 (J = 6.2 Hz), 53.1 (J = 6.1 Hz), 65.9 (J = 10.0 Hz), 

94.7 (J = 186.1 Hz), 106.8 (J = 15.5 Hz), 202.3 (J = 5.1 Hz). 31P-NMR (242.9 MHz): δ 20.9. Anal. 

Calcd for C12H21O4P (260.27): C 55.38, H 8.31. Found: C 55.45, H 8.26. 

Dimethyl 1-(1-hydroxy-1-methylethyl)-3-methylpenta-1,2-dienephosphonate (10g). Yellow oil, yield: 

79%. Rf 0.60; IR (neat, cm−1): 1250 (P=O), 1953 (C=C=C), 3398 (OH). 1H-NMR (600.1 MHz): δ 1.11 

(t, J = 7.6 Hz, 3H, Me-CH2), 1.54 (d, J = 10.7 Hz, 3H, Me2CO), 1.75 (d, J = 6.7 Hz, 3H, Me-C=), 
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2.04–2.13 (m, 2H, Me-CH2), 2.93 (s, 1H, OH), 3.79 (d, J = 11.5 Hz, 3H, MeO). 13C-NMR (150.9 

MHz) δ = 12.3, 18.2 (J = 6.5 Hz), 27.4 (J = 9.2 Hz), 31.0 (J = 8.2 Hz), 53.0 (J = 6.6 Hz), 68.2  

(J = 10.2 Hz), 99.5 (J = 190.2 Hz), 104.3 (J = 15.4 Hz), 207.4 (J = 5.2 Hz). 31P-NMR (242.9 MHz):  

δ 22.4. Anal. Calcd for C11H21O4P (248.26): C 53.22, H 8.53. Found: C 53.15, H 8.44. 

Dimethyl 1-(1-hydroxy-1-methylethyl)-3-methylhepta-1,2-dienephosphonate (10h). Orange oil, yield: 

78%. Rf 0.57; IR (neat, cm−1): 1255 (P=O), 1954 (C=C=C), 3416 (OH). 1H-NMR (600.1 MHz): δ 0.92 

(t, J = 7.3 Hz, 3H, Me-CH2), 1.28–1.40, 1.53–1.66, 2.05–2.13 (overlapping multiplets, 10H,  

Me-(CH2)3), 1.55 (d, J = 10.8 Hz, 3H, Me2CO), 1.75 (d, J = 6.7 Hz, 3H, Me-C=), 2.95 (s, 1H, OH), 

3.75 (d, J = 11.4 Hz, 3H, MeO). 13C-NMR (150.9 MHz) δ = 14.0, 19.0 (J = 6.7 Hz), 22.7, 29.8, 31.3 

(J = 8.2 Hz), 33.1, 53.0 (J = 6.7 Hz), 66.6 (J = 10.3 Hz), 99.7 (J = 182.2 Hz), 104.1 (J = 15.7 Hz), 

207.3 (J = 5.1 Hz). 31P-NMR (242.9 MHz): δ 22.8. Anal. Calcd for C13H25O4P (276.31): C 56.51, H 

9.12. Found: C 56.59, H 9.06. 

2-Diphenylphosphinoyl-4-methylhexa-2,3-dien-1-ol (11a). Colourless oil, yield: 86%. Rf 0.42; IR 

(neat, cm−1): 1175 (P=O), 1440, 1489 (Ph), 1955 (C=C=C), 3378 (OH). 1H-NMR (600.1 MHz): δ 0.72 

(t, J = 7.4 Hz, 3H, Me-CH2), 1.54 (d, J = 6.0 Hz, 3H, Me-C=), 1.66–1.88 (m, 2H, Me-CH2), 2.66  

(s, 1H, OH), 4.41–4.47 (m, 2H, CH2O), 7.28–7.82 (m, 10H, 2Ph). 13C-NMR (150.9 MHz) δ = 11.7, 

17.6 (J = 5.6 Hz), 26.4, 64.2 (J = 7.5 Hz), 97.5 (J = 103.8 Hz), 105.3 (J = 13.6 Hz), 128.2–132.5 

(2Ph), 206.3 (J = 7.2 Hz). 31P-NMR (242.9 MHz): δ 33.5. Anal. Calcd for C19H21O2P (312.34):  

C 73.06, H 6.78. Found: C 73.14, H 6.71. 

2-Diphenylphosphinoyl-4-methylocta-2,3-dien-1-ol (11b). Yellow oil, yield: 83%. Rf 0.41; IR (neat, cm−1): 

1177 (P=O), 1436, 1492 (Ph), 1950 (C=C=C), 3374 (OH). 1H-NMR (600.1 MHz): δ 0.81 (t, J = 7.2 Hz, 

3H, Me-CH2), 1.04–1.17, 1.34–1.50, 1.67–1.84 (overlapping multiplets, 10H, Me-(CH2)3), 1.53 (d,  

J = 6.2 Hz, 3H, Me-C=), 2.65 (s, 1H, OH), 4.39–4.46 (m, 2H, CH2O), 7.30–7.80 (m, 10H, 2Ph).  
13C-NMR (150.9 MHz) δ = 13.8, 17.6 (J = 5.4 Hz), 18.8, 29.2, 32.9, 64.3 (J = 7.6 Hz), 96.7 (J = 103.9 Hz), 

103.6 (J = 13.5 Hz), 128.7–132.5 (2Ph), 206.5 (J = 7.2 Hz). 31P-NMR (242.9 MHz): δ 32.9. Anal. 

Calcd for C21H25O2P (340.40): C 74.10, H 7.40. Found: C 74.17, H 7.32. 

3-Cyclohexylidene-2-diphenylphosphinoylprop-2-en-1-ol (11c). Pale yellow oil, yield: 81%. Rf 0.41; 

IR (neat, cm−1): 1170 (P=O), 1439, 1488 (Ph), 1947 (C=C=C), 3387 (OH). 1H-NMR (250.1 MHz):  

δ 0.97–1.04, 1.89–2.04, 3.38–3.54 (overlapping multiplets, 10H, (CH2)5), 2.64 (s, 1H, OH), 4.38–4.43 

(m, 2H, CH2O), 7.28–7.79 (m, 10H, 2Ph). 13C-NMR (62.9 MHz) δ = 25.4, 26.4, 30.0, 62.1 (J = 7.6 Hz), 

95.6 (J = 104.1 Hz), 105.4 (J = 13.3 Hz), 128.8–132.5 (2Ph), 203.6 (J = 7.3 Hz). 31P-NMR (101.2 MHz): 

δ 33.3. Anal. Calcd for C21H23O2P (338.38): C 74.54, H 6.85. Found: C 74.62, H 6.79. 

3-Diphenylphosphinoyl-5-methtlhepta-3,4-dien-2-ol (11d). Light orange oil, yield: 87%. Rf 0.59; IR 

(neat, cm−1): 1174 (P=O), 1441, 1490 (Ph), 1951 (C=C=C), 3369 (OH). 1H-NMR (600.1 MHz): δ 0.86 

(t, J = 7.4 Hz, 3H, Me-CH2), 1.35 (dd, J = 6.2 Hz, J = 9.4 Hz, 3H, Me-CHO), 1.58 (d, J = 6.3 Hz, 3H, 

Me-C=), 1.78–1.90 (m, 2H, Me-CH2), 2.70 (s, 1H, OH), 4.59–4.63 (m, 1H, Me-CHO), 7.35–7.90  

(m, 10H, 2Ph). 13C-NMR (150.9 MHz) δ = 12.4, 18.5 (J = 5.4 Hz), 22.4 (J = 7.6 Hz), 26.7, 64.2  

(J = 7.4 Hz), 96.5 (J = 104.2 Hz), 105.1 (J = 13.4 Hz), 129.1–132.4 (2Ph), 204.1 (J = 7.1 Hz). 31P-NMR 

(242.9 MHz): δ 34.2. Anal. Calcd for C20H23O2P (326.37): C 73.60, H 7.10. Found: C 73.67, H 7.05. 
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3-Diphenylphosphinoyl-5-methylnona-3,4-dien-2-ol (11e). Yellow oil, yield: 85%. Rf 0.61; IR (neat, 

cm−1): 1168 (P=O), 1438, 1487 (Ph), 1952 (C=C=C), 3379 (OH). 1H-NMR (600.1 MHz): δ 0.92 (t,  

J = 7.3 Hz, 3H, Me-CH2), 1.11–1.23, 1.29–1.47, 1.69–1.96 (overlapping multiplets, 10H, Me-(CH2)3), 

1.37 (dd, J = 6.3 Hz, J = 9.6 Hz, 3H, Me-CHO), 1.56 (d, J = 6.4 Hz, 3H, Me-C=), 2.72 (s, 1H, OH), 

4.61–4.67 (m, 1H, Me-CHO), 7.39–7.89 (m, 10H, 2Ph). 13C-NMR (150.9 MHz) δ = 13.7, 18.3  

(J = 5.5 Hz), 18.9, 22.3 (J = 7.7 Hz), 29.5, 33.2, 65.4 (J = 7.6 Hz), 100.7 (J = 103.8 Hz), 104.8  

(J = 13.5 Hz), 128.4–132.5 (2Ph), 205.3 (J = 7.3 Hz). 31P-NMR (242.9 MHz): δ 34.5. Anal. Calcd for 

C22H27O2P (354.42): C 74.55, H 7.68. Found: C 74.61, H 7.60. 

4-Cyclohexylidene-3-diphenylphosphinoylbut-3-en-2-ol (11f). Yellow oil, yield: 88%. Rf 0.58; IR 

(neat, cm−1): 1168 (P=O), 1436, 1493 (Ph), 1948 (C=C=C), 3395 (OH). 1H-NMR (600.1 MHz):  

δ 0.99–1.07, 1.84–2.01, 3.37–3.57 (overlapping multiplets, 10H, (CH2)5), 1.34 (dd, J = 6.2 Hz, J = 9.4 Hz, 

3H, Me-CHO), 2.73 (s, 1H, OH), 4.64–4.69 (m, 1H, Me-CHO), 7.32–7.84 (m, 10H, 2Ph). 13C-NMR 

(150.9 MHz) δ = 22.2 (J = 7.5 Hz), 25.5, 26.5, 30.0, 66.2 (J = 7.3 Hz), 100.2 (J = 105.0 Hz), 106.6  

(J = 13.6 Hz), 128.1–132.5 (2Ph), 202.6 (J = 7.4 Hz). 31P-NMR (242.9 MHz): δ 33.9. Anal. Calcd for 

C22H25O2P (352.41): C 74.98, H 7.15. Found: C 75.05, H 7.09. 

3-Diphenylphosphinoyl-2,5-dimethylhepta-3,4-dien-2-ol (11g). Orange oil, yield: 84%. Rf 0.60; IR 

(neat, cm−1): 1171 (P=O), 1437, 1488 (Ph), 1954 (C=C=C), 3373 (OH). 1H-NMR (600.1 MHz): δ 1.09 

(t, J = 7.3 Hz, 3H, Me-CH2), 1.49 (d, J = 10.1 Hz, 3H, Me2CO), 1.53 (d, J = 6.4 Hz, 3H, Me-C=), 

1.81–1.86 (m, 2H, Me-CH2), 2.74 (s, 1H, OH), 7.28–7.88 (m, 10H, 2Ph). 13C-NMR (150.9 MHz)  

δ = 12.3, 18.4 (J = 5.6 Hz), 27.2, 31.4 (J = 8.1 Hz), 67.0 (J = 7.4 Hz), 98.3 (J = 104.8 Hz), 105.3  

(J = 13.5 Hz), 128.3–132.4 (2Ph), 204.7 (J = 7.2 Hz). 31P-NMR (242.9 MHz): δ 33.8. Anal. Calcd for 

C21H25O2P (340.40): C 74.10, H 7.40. Found: C 74.01, H 7.45. 

3-Diphenylphosphinoyl-2,5-dimethylnona-3,4-dien-2-ol (11h). Dark orange oil, yield: 83%. Rf 0.56; IR 

(neat, cm−1): 1165 (P=O), 1439, 1486 (Ph), 1955 (C=C=C), 3394 (OH). 1H-NMR (600.1 MHz): δ 1.07 

(t, J = 7.3 Hz, 3H, Me-CH2), 1.12–1.25, 1.32–1.45, 1.73–1.89 (overlapping multiplets, 10H,  

Me-(CH2)3), 1.50 (d, J = 10.0 Hz, 3H, Me2CO), 1.55 (d, J = 6.3 Hz, 3H, Me-C=), 2.73 (s, 1H, OH), 

7.29–7.90 (m, 10H, 2Ph). 13C-NMR (150.9 MHz) δ = 13.9, 18.2 (J = 5.7 Hz), 19.0, 30.1, 31.6  

(J = 8.2 Hz), 33.2, 68.1 (J = 7.5 Hz), 98.7 (J = 105.0 Hz), 105.0 (J = 13.4 Hz), 128.4–132.6 (2Ph), 

205.1 (J = 7.3 Hz). 31P-NMR (242.9 MHz): δ 34.1. Anal. Calcd for C23H29O2P (368.45): C 74.98, H 

7.93. Found: C 74.92, H 8.01. 

4. Conclusions  

In conclusion, a convenient and efficient method for regioselective synthesis of a new family of  

1,1-bifunctionalized allenes has been explored. Phosphorylated α-hydroxyallenes prepared were 

derived from [2,3]-sigmatropic rearrangement of the intermediate propargyl phosphites or phosphinites 

formed in the reaction of protected alkynols with dimethylchloro phosphite or chlorodiphenyl 

phosphine in the presence of a base. Further investigations on this potentially important synthetic 

methodology are currently in progress. At the same time, the synthetic application of the prepared 

phosphorylated α-hydroxyallenes with protected or unprotected hydroxy group for synthesis of 

different heterocyclic compounds is now under investigation in our laboratory as a part of our general 
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synthetic strategy for investigation of the scope and limitations of the electrophilic cyclization and 

cycloisomerization reactions of bifunctionalized allenes. Results of these investigations will be 

reported in due course. 
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