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The human gut microbiota composition plays an important role in human health.

Long-term diet intervention may shape human gut microbiome. Therefore, many studies

focus on discovering links between long-term diets and gut microbiota composition.

This study aimed to incorporate the phylogenetic relationships between the operational

taxonomic units (OTUs) into the diet-microbe association analysis, using a Bayesian

hierarchical negative binomial (NB) model. We regularized the dispersion parameter of the

negative binomial distribution by assuming a mean-dispersion association. A simulation

study showed that, if over-dispersion is present in the microbiome data, our approach

performed better in terms of mean squared error (MSE) of the slope-estimates compared

to the standard NB regression model or a Bayesian hierarchical NB model without

including the phylogenetic relationships. Data of the Healthy Life in an Urban Setting

(HELIUS) study showed that for some phylogenetic families the (posterior) variances

of the slope-estimates were decreasing when including the phylogenetic relationships

into the analyses. In contrast, when OTUs of the same family were not similarly affected

by the food item, some bias was introduced, leading to larger (posterior) variances of

the slope-estimates. Overall, the Bayesian hierarchical NB model, with a dependency

between the mean and dispersion parameters, proved to be a robust method for

analyzing diet-microbe associations.

Keywords: associations, Bayesian, diet, hierarchical model, microbiome data

1. INTRODUCTION

Human gut microbiota composition plays an important role in human health and has been
linked to diabetes, cardiovascular, and mental health diseases (Wu et al., 2011; Morgan et al.,
2012; Lynch and Pedersen, 2016; Singh et al., 2017). Targeting gut microbiota composition is,
therefore, considered a promising treatment for several diseases (Smits et al., 2013). For example,
fecal microbiota transplantation (FMT) has been used to treat patients with insulin resistance and
metabolic syndrome (Vrieze et al., 2012). In contrast to FMT, long-term diet intervention is a much
less invasive intervention that can shape human gut microbiota and influence human health (Wu
et al., 2016; Singh et al., 2017). Therefore, many studies focus on discovering links between long-
term diets and gut microbiota composition, and examples of recently published studies are Wu
et al. (2019), Han and Xiao (2020), Tomova et al. (2020), and Molino et al. (2021).

One way to study the relationship between diet and gut microbiota is through evaluating
diet-microbe associations. This type of study is often based on a cohort or population in which both
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dietary intake and gut microbiome are measured extensively.
For example, a substudy of the Health Life in an Urban
Setting (HELIUS) study collected both dietary intake and gut
microbiome data in over 1,000 subjects (Stronks et al., 2013). In
a previous study, the effect of ethnicity and dietary habits on the
gut microbiome was investigated (Deschasaux et al., 2018).

In a previous study, we showed that it is challenging
to perform statistical evaluation of diet-microbe associations
(Zhang et al., 2019). Microbiome data are often generated by
targeted sequencing of the 16S ribosomal RNA (rRNA) gene.
The sequencing reads are clustered into operational taxonomic
units (OTUs) based on the sequence similarities. A simplified
interpretation is that an OTU represents a microbe. The
microbiome data are often represented as a frequency matrix, in
which every entry is the number of times an OTU is observed in a
sample. In general, microbiome data have the following features:
(i) Library sizes, the total count in a sample, can vary by orders
of magnitude across samples (McMurdie and Holmes, 2014). (ii)
Counts of a single OTU are often over-dispersed. Microbiome
data often have excess zero counts, meaning that a single OTU
is only present in a small number of fecal samples (Kaul
et al., 2017). These zero counts can be due to either biological
absence of a microbe or insufficient sequencing. (iii) There
is a hierarchical structure between the OTUs (represented by
phylogenetic relationships).

The phylogenetic relationships between OTUs are based on
OTU sequence similarities. Every OTU can be assigned to
a series of taxonomic identities at levels, such as kingdom,
phylum, class, order, family, and genus. These relationships
reflect the evolutionary relationships between the OTUs. Closely
related OTUs usually have a similar biological function and are
likely to be affected similarly by food consumption (Washburne
et al., 2018). Hence, the phylogenetic relationships provide prior
knowledge about how the OTUs are related.

Not every level within the taxonomic identities is as
informative. For the higher levels, kingdom, phylum, and class,
the assumption about similar biological functions is not likely
valid. At the lower levels, the number of OTUs per genus,
for example, is small. Although they might share a similar
biological function and are likely to be affected similarly by
food consumption, having a low number of OTUs can lead to
convergence issues. Furthermore, not every OTU has the entire
taxonomy identified. For example, only 51% of the OTU has a
fully identified hierarchy in the HELIUS data.

When performing per-feature analysis, a high number of
false positives can be expected. Adjustments to control the false
discovery rate (FDR) are then needed. A way to control the
FDR is by using shrinkage of the estimated effects toward zero.
However, there is always a trade-off, as this shrinkage toward
zero will increase the false-negative rate. Therefore, we propose to
use a slightly more informative shrinkage toward a phylogenetic
family average.

In this study, we aimed to incorporate the phylogenetic
relationships between the OTUs into diet-microbe association
analysis. A direct way to incorporate the relationships between
OTUs is by using hierarchical models. We constructed our
hierarchical model with a fully Bayesian approach. As a result,

we developed a Bayesian hierarchical negative binomial model
(BHM) for microbiome data analysis. Following others, we use
a regularization of the dispersion parameter of the negative
binomial (NB) distribution by assuming a linearmean-dispersion
association (Love et al., 2014).

2. MATERIALS AND METHODS

Microbiome count data consist of observations of 1 . . . i . . .Nsubj

subjects on 1 . . . j . . .Notu OTUs. The frequency matrix of the
OTU counts Y, each row represents a subject, and every column
represents an OTU, where Yij represents how many times OTU
j is observed in the subject i. The total counts (or sequencing

depth) in subject i is represented by zi =
∑Notu

j Yij. The
phylogenetic family of all OTUs is assumed to be known.

The food frequency questionnaire (FFQ) data are represented
as a matrix X with Nsubj rows and Ndiet columns, where Xik

represents the frequency of dietary variable k in subject i. For
notation simplification, as we only use univariate analyses, a
single column of X is referred to as x, where x is a vector with
length Nsubj. The data structure are illustrated in Table 1.

Our model consists of three levels. In the first level, the OTU
counts are modeled. We choose to model the counts Yij (OTU j
subject i) using a NB distribution. The NB distribution has two
parameters, the mean µ and a dispersion parameter φ:

Yij ∼ NB(µij,φj)

Using a logarithmic link function, the mean µij is specified as:

log(µij) = αj + xiβj + log(zi)

Here, αj is the intercept of the model for OTU j, xi is the
standardized FFQ score of a single food item of subject i, and βj

is the slope of the regression model for OTU j. The offset is the
log of the total count of subject i (zi), to account for the uneven
sequencing depth between subjects.

In the second level, we take the phylogenetic family into
account and shrink the posterior estimate parameters of the slope
and intercept toward the phylogenetic family average. Let OTUj

be a microbe of the phylogenetic family f . We then assume
that the intercepts and slopes of OTUs in family f follow a
bivariate normal distribution withmeanµαf ,µβf , and covariance
matrix 6f .

(

αj

βj

)

∼ N(µf ,6f ), with

µf =

(

µαf

µβf

)

and

6f =

(

σ 2
αf

ωσαf σβf

ωσαf σβf σ 2
βf

)

.

The covariance matrix 6f consists of family-specific variances

(σ 2
αf
, σ 2

βf
) and correlation parameter ω. This correlation

parameter describes the relationship between slope β and
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TABLE 1 | The data structure of the microbiome data.

OTU1 · · · OTUj · · · OTUNotu
Total counts Food item score

Phylogenetic family 1 · · · f · · · Nfamily

Subject1 y11 · · · Y1j · · · Y1Notu z1 x1

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

Subjecti Yi1 · · · Yij · · · YiNotu zi xi

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

SubjectNsubj yNsubj1 · · · yNsubjj · · · yNsubjNotu zNsubj xNsubj

intercept α. The correlation parameter is independent of family
f , as some families may only have a small number of members.

In the third level, we specify prior distributions. For each µα f

and µβ f , we use a normal distribution as prior distribution with:

µαf ∼ N(µα , σ
2
α )

µβf ∼ N(µβ , σ
2
β )

For the hyperparameters µα , µβ , σ 2
α , and σ 2

β , we specify as much
as possible non-informative priors:

(µα ,µβ ) ∼ N(0, 1)

(σα , σβ ) ∼ exponential(1)

In addition, we assume a mean-dispersion relationship between
the average of the NB distributionmean of OTU j over all subjects
and the dispersion φj of OTU j. Following the specification used
by Love et al. (2014), the dispersion φj is drawn from a lognormal
distribution with mean µφj and variance σ 2

φ .

φj ∼ lognormal(µφj , σ
2
φ )

where µφj is specified as µφj =
a1

(
∑

Nsubj
i µij)/Nsubj

+ a0.

The expected range of values for the parameters a1 and a0
is unknown. Large φ values and values close to zero are what
we try to prevent by using this regularization. Therefore, for the
parameters a1, a0 we assume the following priors (and for σ 2

φ a
non-informative prior):

(a1a0) ∼ N(0, 1)

σφ ∼ exponential(1)

We implemented our model in the Stan probabilistic
programming language, which estimates the posterior
distributions for the parameters of interest by using Hamiltonian
Markov Chain Monte Carlo (HMC) (Carpenter et al., 2017).
Stan was used with the default settings: 4 chains with
1,000 warm-up iterations and 1,000 samples of the posterior
distributions per chain to calculate summarizing statistics.
No alterations on the default values of the maximum allowed
tree-depth or adapt delta parameter were needed for our analyses
as they all reached convergence with these settings. A thinning of
two was used for memory reasons.

2.1. Simulation Study Design
A simulation study was conducted to assess the performance
of the proposed method and to compare the performance with
other methods. Our simulation study consisted of a total of
18 scenarios. The 18 scenarios included different numbers of
OTUs and subjects. We simulated 10, 100, or 200 OTUs from
2 families and Nsubj = 50, 250, or 500 subjects. In total, there
are nine combinations of OTUs and subjects, giving a total of
nine scenarios. On top of the nine scenarios, we added either
over-dispersion or under-dispersion to the simulated count data.
As zeros are common within microbiome data, we simulated
datasets including zeros as well. In the end, our simulation
study contained 18 scenarios. In each scenario, we generated 100
datasets, resulting in a total of 1,800 datasets.

We generated data in all scenarios according to the
following procedure (simulation framework can be found in the
Supplementary Material):

(i) For all OTUs, one of two families was randomly selected.
The intercept and slope of family 1 were drawn from a
normal distribution with means µα = 2, µβ = 0, and SD
σα = σβ = 0.1. For the intercept and slope of family 2,
a normal distribution with means µα = 2, µβ = +1 or −1
and SD σα = σβ = 0.1.

(ii) The simulated food item scores x for all subjects were drawn
from a normal distribution, with a mean of 0, +1, or −1
(µx), randomly chosen. The food items scores (x) can be
skewed distributed, and, therefore, in each scenario in 50
datasets, food item scores for all subjects were squared to
simulate a skewed distribution.

(iii) The OTU-specific intercepts and slopes were drawn from a
bivariate normal with the means of the appropriate families,
a SD of 0.1 (both intercept and slope) and a negative Pearson
correlation of−0.7.

(iv) The OTU count data (y) were simulated based on x and
the simulated intercept and slope. We simulated count data
with over-dispersion and with under-dispersion. For the
counts with over-dispersion, we used a NB distribution to
generate counts, with a log mean equal to the intercept plus
slope times x. A dispersion was drawn from a lognormal
distribution with a mean of 0.1/intercept and a SD of 0.1.

To create under-dispersed data, we used a Poisson distribution,
with log mean equal to the intercept plus slope times x. To create
under-dispersion and inflation of zero counts, the top 20% of the
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FIGURE 1 | The comparison between the true slope and the estimated slope of the simulation study; the mean squared error (MSE) (A,C) and bias between the

slopes (B,D). PR, phylogenetic relationships.

FIGURE 2 | Effect of regularization of the dispersion parameter in the simulation study. Every black-red bot represents a combination of the estimated dispersion

parameter of the GLM.NB method (black) and the posterior mean of the BHM (red) method for a single OTU. The blue line is the dispersion trend as estimated by the

BHM method.
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FIGURE 3 | Manhattan plot of various food items [(A) butter to vegetarian products, (B) alcoholic beverages to water natural, and (C) sugar honey jam to vegetables]

and associations per OTU. The dotted lines represent a statistical significance threshold (z-score). Because we had six batches, we used the Bonferroni method as a

correction factor for multiple testing. Within the batches, we did not correct for multiple testing because the Bayesian hierarchical model already provides

shrunken estimates.
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FIGURE 4 | Volcano plots of the diet-microbe associations between the FFQ scores of (A) chicken, (B) eggs, (C) olive oil, (D) rice noodles, (E) coffee, and (F) savory

tomato sauces.

counts were set to the average OTU count or to zero (A summary
of the data characteristics of the simulated datasets can be found
in Supplementary Material).

We compare results of our BHM with results of an existing
implementation of the NB model (GLM.NB) in the MASS

packages of R (Venables and Ripley, 2002) and with a BHM
without using the phylogenetic hierarchy. For the BHM without
using the phylogenetic hierarchy, we assumed that all slopes and
intercepts were drawn from a single bivariate normal distribution
(for the full specification, see Supplementary Material).
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FIGURE 5 | Comparison between the standard NB regression model (GLM.NB), EdgeR, and the Bayesian hierarchical model (BHM) with and without phylogenetic

based shrinkage for the HELIUS study data. The top row are the slope estimates from the (A) GLM.NB and (B) EdgeR methods compared to estimates of our BHM.

The bottom row gives a comparison between the BHM with and without the phylogenetic based shrinkage: (C) the posterior slope estimates, and (D) the variances of

these posterior slopes. The black line in all four figures is the diagonal x = y.

As for performance measurements of the methods, we
calculated (i) the mean squared error (MSE) between the true
slopes and the estimated slopes by the various methods, (ii) the
bias between the true slopes and the estimated slopes, (iii) the
coverage of the 95% CIs defined as the number of times the true
slope was within the 95% CI of the estimated slope, and (iv) the
false discovery rate (FDR), defined as the number of times the
true slope was zero divided by the number of false positives as
given by a p-value below 0.05.

2.2. Healthy Life in an Urban Setting Data
Of the HELIUS data, we only included subjects with a full set
of food item scores and OTUs with positive abundance in at

least 20% of the subjects from the HELIUS study. We also only
selected OTUs that are part of an identified phylogenetic family
with at least four other OTUs. The set of OTUs was split into six
batches, ordered by the average abundance of the phylogenetic
families. There were a total of 52 food items; food items scores
were standardized. A more detailed description of the data is
available in Dekker et al. (2011).

We compared our BHM with NB regression implemented
in the R package edgeR (Robinson et al., 2010), with GLM.NB
and with a BHM without using the phylogenetic hierarchy for
the HELIUS data. With edgeR, OTU counts were modeled
by NB distribution as well. We first estimated an OTU-
specific dispersion, by running the estimate Disp function, as

Frontiers in Microbiology | www.frontiersin.org 7 October 2021 | Volume 12 | Article 711861

https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/microbiology#articles


Revers et al. Gut Microbiome–Diet Associations

implemented in the edgeR package in R. Next, the associations
between the food items and the OTU counts were quantified by
the glmFit function, of the edgeR package too. The offset was for
all methods defined as the log(total counts).

3. RESULTS

In this section, we first present the simulation study results, in
which we compared our Bayesian model with other methods.
In the second subsection, we present the results of the HELIUS
study diet-microbiome data.

3.1. Simulation Results
Figure 1 displays MSE and bias of the estimated slopes for both
our BHM, with and without the phylogenetic structure, and of
the NB regression model. The FDR results and the bias and
MSE for the zero-inflated standard NB regression model and
Poisson model can be found in Supplementary Material. As
expected, if over-dispersion was present in the data, for both
the BHMs and the standard NB regression model (referred to
as GLM.NB) bias of the slope-estimates was close to zero and
decreased with increasing sample size and with an increasing
number of OTUs. MSE of the slope-estimates decreased with
increasing sample size; MSE of the BHM with phylogenetic
structure was smaller compared to the GLM.NB and the BHM
without the phylogenetic structure when over-dispersion was
present in the count data. This smaller MSE for the BHM
method was not found when under-dispersion was present
in the count data; then, the MSE of the slope-estimates was
comparable between methods. Coverage of the 95% CI with
the count data with over-dispersion was around 95% when
the sample size was 100 or larger, but it was slightly higher
with samples of only 10 subjects. With count data with
under-dispersion, coverage of the 95% CI was lower for the
BHMmethod.

In Figure 2, the effect of the mean-dispersion regularization
is shown for datasets with over-dispersion and under-dispersion,
both for a scenario with 100 OTUs and 250 subjects. By imposing
the mean-dispersion relationship, the estimates of φj of the
standard NB model were clearly shrunken or inflated in the
BHM to the mean depending on average OTU count. If under-
dispersion was present, φj tended to become very large without
this regularization. With a very large φj, the NB distribution
approximates the Poisson distribution.

3.2. Healthy Life in an Urban Setting
Diet—Gut Microbiome Data
After the selection criteria, the HELIUS dataset included 1,201
OTUs, of 25 phylogenetic families, 1,036 subjects, and 52 food
items. There were no missing data. The set of OTUs was split
into six batches, ordered by the average abundance of the
phylogenetic families. Of the 25 families, only the OTUs of
families f__Lachnospiraceae and f__Ruminococcaceae were split
into multiple batches. The OTUs of all other included families
were in the same batch.

For most food items, the estimated slopes were close to zero,
and therefore, OTU counts showed no association with food item

scores. Figure 3 shows the estimated standardized slopes of OTU
counts with food item scores (divided by the estimated SD).

In particular, we found large slopes of OTUs in the
f__Christensenellaceae family. This family was negatively
associated with the chicken, rice noodles, natural fruit
juices, and savory fish snacks food item scores. OTUs in
the f__Bacteroidaceae family were negatively associated with the
eggs, olive oil, high fiber bread and breakfast products, savory
tomato sauces, and olive food item scores. Coffee was mostly
positively associated with OTU counts, most prominently with
the f__Ruminococcaceae family.

The estimated slopes of chicken food scores with the
abundances of the OTUs varied between −0.5 and 0.35
(Figure 4). With a unit SD increase of chicken food score,
the average f__Christensenellaceae abundance decreased
by about 20%. Apart from the f__Christensenellaceae,
single OTUs were also “significantly” associated with
an increase in chicken food scores, most clearly the
g_Streptococcus_unclassified OTU.

The distribution of the estimated of diet-microbe
associations of egg food scores showed some outliners of
the f__Lactobacillaceae; they had, however, large credibility
intervals. Coffee consumption had a large positive association
with f__Coriobacteriaceae.

We looked at the associations of OTU counts with red
meat food scores in more detail and compared parameter
estimates of our BHM with those of the standard NB
regression model and estimates of EdgeR. Estimated slopes
of the standard NB regression model showed much variation
with some extreme values, ranging between −2.5 and 2.
There were also 12 diet-microbe associations where no
unique solution was found with this method. EdgeR slope
estimates using the dispersion constraint were smaller on
average with lesser variation but still with some extremely
large values, ranging between −1 and 1.7. Estimates of our
BHM showed lesser variation with much fewer extreme
values and slope estimates between −0.3 and 0.8 (see
Figure 5).

We also compared slope estimates our BHM model with
estimates of a Bayesian NB regression analysis without using
the phylogenetic hierarchy. With this model, all parameters
are shrunken to a single mean. These results are illustrated in
Figure 5. Estimated slopes of most OTUs were comparable,
but estimates of OTUs in the f__Bacteroidaceae (light purple),
f__Bifidobacteriaceae (light green), and f__Prevotellaceae
(dark blue) families showed much less variance according
to our BHM model than according to the model without
phylogenetic hierarchy. In contrast, estimates of OTUs
in the f__Lachnospiraceae (green) and f__S24-7 (orange)
families showed larger variance according to our BHM
model. Especially with the f__Lachnospiraceae (green) family,
it can be clearly seen that slopes for OTUs in this family
are heteroscedastic with some OTUs having large positive
values and some OTUs having large negative values that
might indicate that the assumption is not valid that red meat
consumption affects the abundances of OTUs in this family in
the same way.
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4. DISCUSSIONS AND CONCLUSIONS

The Bayesian hierarchical NBmodel, with a dependency between
the mean and dispersion parameters, proved to be a robust
method for analyzing diet-microbe associations.With our model,
we analyzed sparse and over-dispersed microbiome data. With
the inclusion of the phylogenetic relationships, robust results
were possible even with only a three-level structure.

An important limitation of our method is that the method
is currently limited by the number of OTUs. We could analyze
about 200OTUs simultaneously on a standardMacBook personal
computer. This limitation is the reason that the HELIUS dataset
was split into six batches and the use of a higher threshold
for selection of OTUs in the HELIUS data (>20% abundance)
instead of the more common threshold of 10% abundance. By
using six batches, two families of OTUs were split into multiple
batches. This limits the advantage of the hierarchical structure.
The diet-microbe associations found in our case study are not
validated in this study.

Several authors have used the NB distribution for modeling
OTU counts (Zhang et al., 2016, 2017; Lee and Sison-Mangus,
2018). Inclusion of the dependency between the mean and
dispersion parameter of the NB model has, to our knowledge,
not been considered for gut microbiome data. However, it is
common for the genomics field (Love et al., 2014). The estimation
of the dispersion parameter with a small number of non-zero
counts, as with the gut microbiome data, tends to be unstable.
The estimate of the dispersion parameter often becomes either
very large or close to zero. A solution to this unstable dispersion
estimate is to share information across OTUs, by assuming a
dependency between the mean and dispersion parameter. This
dependency with the mean results mainly in information sharing
between OTUs with a similar average abundance, and, thus we
assume that OTUs with a similar average abundance will also
have a similar variance and, therefore, dispersion. The simulation
study showed this mean-dispersion regularization does lead to
a slightly worse fit, in terms of coverage of the 95% CI, when
under-dispersion is present in the data, compared to a method
without this regularization. However, with the microbiome data
over-dispersion is very often observed.

The proposed model relies on the assumptions that OTUs of
the same phylogenetic family are affected similarly by a food item.
This assumption leads to a decrease in the estimated variances
of the estimated slopes. Assuming phylogenetic relationships
between OTUs are informative is not new. Other methods
have been developed using this assumption as well (Zhao
et al., 2015; Koh et al., 2017; Xiao et al., 2018). Those
methods are, however, not suitable for the problem at hand
as they treat the microbiome as an independent variable. In
our case, we hypothesized that food intake influences the gut
microbiota composition.

In contrast, when a phylogenetic classification is not correct,
bias in the estimated slopes may be introduced. This is
supported by the increase in some posterior slopes variance
when using the phylogenetic-based shrinkage, compared to a
BHM without phylogenetic-based shrinkage with the HELIUS
data. We, however, only took one method of estimating the

phylogenetic tree into account for the HELIUS data. Other tree
construction methods might yield different results.

With our model, the phylogenetic relationships are not fully
incorporated, because they are only used to group OTUs per
family. We did not include genus, order, class, phylum, kingdom,
and domain in any way, neither the uncertainty about the
phylogenetic relationships themselves. We choose to incorporate
the family level, as a lower genus level only has a small
number of members per genus, letting OTUs, therefore, share
information with a small number of other OTUs. A solution
would be to adjust the BHM by adding an extra level. However,
in the higher levels, members are more likely to have more
variation, making the assumption of similar effect by food
consumption more unlikely. We used the family classification,
as with the HELIUS data many OTUs were not fully classified.
However, using the genus classification can be possible as
well with this proposed model. An example of diet-microbe
association classification with the genus layer can be found in
Supplementary Material.

An alternative to using phylogenetic classification was
proposed by Bichat et al. (2020). They used a correlation
tree, instead of a phylogenetic tree. This could be translated
into classification by using a cut off value. However, the
correlations between OTU counts are strongly impacted by
the number of subjects with a non-zero OTU count. This
makes it likely that most correlations between OTUs are
small and noisy. A comparison of the correlation-based
grouping and the phylogenetic-based grouping can be found in
Supplementary Material.

We currently only used univariate analyses to quantify the
association between OTU counts and food item scores, because,
at present, we were interested in specific food items and not
in food patterns. We did also not adjust for ethnicity or
other variables affecting the gut-microbiome composition. It is
straightforward, however, to extend our model to a multiple
regression model.
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