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Abstract

Motivation: Common small-effect genetic variants that contribute to human complex traits and

disease are typically identified using traditional fixed-effect (FE) meta-analysis methods. However,

the power to detect genetic associations under FE models deteriorates with increasing heterogeneity,

so that some small-effect heterogeneous loci might go undetected. A modified random-effects meta-

analysis approach (RE2) was previously developed that is more powerful than traditional fixed and

random-effects methods at detecting small-effect heterogeneous genetic associations, the method

was updated (RE2C) to identify small-effect heterogeneous variants overlooked by traditional fixed-ef-

fect meta-analysis. Here, we re-appraise a large-scale meta-analysis of coronary disease with RE2C to

search for small-effect genetic signals potentially masked by heterogeneity in a FE meta-analysis.

Results: Our application of RE2C suggests a high sensitivity but low specificity of this approach for

discovering small-effect heterogeneous genetic associations. We recommend that reports of

small-effect heterogeneous loci discovered with RE2C are accompanied by forest plots and stand-

ardized predicted random-effects statistics to reveal the distribution of genetic effect estimates

across component studies of meta-analyses, highlighting overly influential outlier studies with the

potential to inflate genetic signals.

Availability and implementation: Scripts to calculate standardized predicted random-effects statis-

tics and generate forest plots are available in the getspres R package entitled from https://mago

sil86.github.io/getspres/.

Contact: martin.farrall@cardiov.ox.ac.uk

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

The conservative nature of the traditional random-effects model

(RE), which assumes the presence of heterogeneity under the null,

has contributed to the dominance of fixed-effect (FE) meta-analysis

methods in the discovery of small-effect variants (per-allele disease

odds ratios <1.2 or trait variance <0.2%) (Bush and Moore, 2012;
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Yang et al., 2011) even at heterogeneous loci. A modification of the

traditional random-effects method, RE2, was designed to detect gen-

etic associations both in the presence and absence of heterogeneity,

to provide an opportunity to identify small-effect heterogeneous

variants that might go unnoticed in a FE meta-analysis (Han and

Eskin, 2011). Most users of the RE2 random-effects method

employed it to refine associations at significant and suggestive genet-

ic signals identified in FE meta-analyses (Sapkota et al., 2015, 2017;

Wyss et al., 2018); in its latest iteration, RE2C (Lee et al., 2017) it

reports a subset of variants detected by RE2 where PRE2 � PFE:

The RE2C update is intended to have a broad application beyond

the augmentation of summary association P-values of variants iden-

tified in FE meta-analysis to the discovery of additional and poten-

tially novel loci. The RE2 and by extension RE2C random-effects

method’s power advantage over traditional fixed and random-

effects meta-analysis models is partly attributable to a relaxed null

hypothesis, which assumes homogeneity of genetic effects under

the null and thereby provides a greater contrast between the null

and alternative hypotheses H0 : l ¼ 0 and s2 ¼ 0
�

versus H1 :

l 6¼ 0 or s2 > 0; asymptoticallyÞ.
Heterogeneity of genetic effects might arise from biologically

relevant differences among contributing studies in a meta-analysis,

such as diverse: ancestries, linkage disequilibrium patterns, sub-

phenotypes, ages-of disease onset, family-history of disease or gen-

der. Alternatively, differences in the direction and/or size of genetic

effect-estimates among participating studies in a meta-analysis could

reflect genotyping error or population structure (i.e. local admix-

ture), where, for example, the average genetic effect estimate at

a variant of interest is inflated by a few outlier studies showing

outsized effects while the majority of study effects are marginal.

Heterogeneity at individual variants can be explored through forest

plots and the calculation of standardized predicted random-effects

(SPREs), while heterogeneity patterns across multiple variants can

be conveniently inspected through the calculation of M statistics

(Magosi et al., 2017). Notably, SPREs are precision weighted resid-

uals that indicate the direction and extent with which individual

studies in a meta-analysis deviate from the average genetic effect

(Harbord and Higgins, 2008; Magosi et al., 2017), and can be a use-

ful quantitative indicator of whether the average genetic effect at a

variant of interest might be unduly influenced by outlier studies

showing extreme effects.

In this report, we revisit the CARDIoGRAMplusC4D meta-

analysis (60 801 cases and 123 504 controls) of coronary artery

disease (CAD) with the RE2C random-effects method, to search

for additional CAD loci potentially masked by heterogeneity in the

primary FE meta-analysis.

2 Materials and methods

2.1 GWAS datasets
2.1.1 CARDIoGRAMplusC4D

Summary data (i.e. logistic regression coefficients and their corre-

sponding standard errors) were collated from 48 genome-wide asso-

ciation studies of coronary disease risk that comprised individuals

from 6 different ancestry groups including: African (n¼1) and

Hispanic American (n¼1), East (China and Korea, n¼3) and South

(India and Pakistan, n¼4) Asian, Middle Eastern (Lebanese, n¼1)

and European (n¼38); meta-analysis was conducted for a set of

� 9 million variants with minor allele frequencies >0.005

(CARDIoGRAMplusC4D Consortium, 2015). Design details of

each participating CARDIoGRAMplusC4D study are summarized

in Supplementary Table S1; the coronary disease phenotype

included patients with an inclusive CAD diagnosis (e.g. myocardial

infarction, acute coronary syndrome, chronic stable angina or cor-

onary stenosis >50%). Study-level genomic correction (Devlin and

Roeder, 1999) was applied to each study to minimize false positives

induced by inflated association test statistics. Variant effect-size

estimates (b coefficients scaled as loge(odds ratios) from an additive-

effects-only association model) in each study were aligned such

that the same risk allele was compared across the studies assembled

in the meta-analysis. The studies contributing to the

CARDIoGRAMplusC4D study obtained ethical approval from the

ethics committees of the respective medical faculties, and informed

consent was obtained from all participants, summary genetic

association data were anonymously meta-analysed and reported

here. Membership of the CARDIoGRAMplusC4D Consortium is

provided in the Supplementary Text S1. Requests for access to the

summary statistics are coordinated by the CARDIoGRAMplusC4D

Steering Committee (www.cardiogramplusc4d.org).

2.1.2 UK Biobank

The UK Biobank study (UKBB) is a large-scale prospective study of

over half a million participants commissioned to assemble compre-

hensive data on genotypic, socio-demographic, lifestyle and environ-

mental factors with the aim of developing better strategies for the

prevention, diagnosis and treatment of common diseases (Sudlow

et al., 2015) such as cardiovascular disease (Littlejohns et al., 2019).

Data from an interim release of GWAS genotypes for 296 525

participants were previously merged and analysed with clinical

phenotype data that identified 34 541 cases of coronary heart dis-

ease and 261 984 controls from England, Scotland and Wales aged

45–69 years (van der Harst and Verweij, 2018). Coronary disease

case status was assigned to prevalent and incident cases of myocar-

dial infarction, acute coronary syndromes and associated therapeut-

ic interventions (e.g. revascularization). Association summary

statistics (b coefficients scaled as loge(odds ratios) and associated

standard errors from an additive-effects-only logistic regression

association model) from this analysis were downloaded from the

www.cardiomics.net server. Design details of the UK Biobank

participants to compare with the CARDIoGRAMplusC4D cohorts

are included in Supplementary Table S1.

2.2 RE2 and RE2C meta-analysis
Genetic association meta-analyses are typically performed under

a RE when the objective is both to estimate a summary effect (i.e.

average genetic effect) across studies in a meta-analysis and measure

the amount of heterogeneity. Consider a meta-analysis comprising S

studies ðs ¼ 1; 2; 3; . . . ; SÞ where the genetic effect-size estimate

and corresponding standard error of a variant of interest were

obtained via regression modelling in each study, and the average

genetic effect estimate, l̂ calculated as the inverse-variance weighted

mean of the individual study effects:

l̂ ¼
PS

s¼1 wsysPS
s¼1 ws

(1)

where ys represents the study effect-size estimate in the sth study,

and ws denotes the weight assigned to the sth study, which can be

calculated as ws ¼ 1

r2
sþ ŝ2ð Þ : Notably, r2

s and ŝ2 represent sampling

variance and heterogeneity, respectively.
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2.2.1 Traditional RE

The traditional RE tests the null hypothesis that the average genetic

effect, l is zero that is, H0 : l ¼ 0 versus H1 : l 6¼ 0, and its sum-

mary association test statistic under the null is given by, Z2
RE ¼

l̂
SEðl̂Þ

� �2
� v2

1 (asymptotically) (Neupane et al., 2012).

2.2.2 Contemporary random-effects model (RE2)

In contrast to the traditional RE which assumes the presence of het-

erogeneity under the null the RE2 model tests the null hypothesis

that the average genetic effect is zero and there is no heterogeneity;

that is, H0 : l ¼ 0 and s2 ¼ 0 versus H1 : l 6¼ 0 or s2 > 0 (asymp-

totically) (Han and Eskin, 2011; Neupane et al., 2012). The sum-

mary association test statistic (or likelihood ratio test statistic) for

the RE2 model under the null is denoted by:

SRE2 ¼ Z2
RE ðnewÞ ¼ � 2logðkÞ

¼ � 2log
L0ð0;0Þ
L1ðl̂; ŝ2Þ

� �
;

(2)

and approximates a 50:50 mixture of v2
1 and v2

2 asymptotically in

meta-analyses with larger numbers of studies. For meta-analyses

with fewer studies (2–50), Han and Eskin provide tabulated RE2 P-

values corrected for small sample-size based on the assumption that

the studies are equally weighted (i.e. same sample-size). The asymp-

totic RE2 summary association P-value is denoted by:

P�RE2 ¼ 0:5 � P v2
1ð Þ � SRE2

� �
þ 0:5 � P v2

2ð Þ � SRE2

� �
;

after a correction for small samples, the RE2 summary association

P-value is given by:

PRE2 ¼ k N; SRE2ð Þ � P�RE2;

where k N; SRE2ð Þ is the small-sample correction factor (Lee et al.,

2017).

2.2.3 Updated RE2 model (RE2C)

The RE2C approach is an adaptation of the RE2 model designed to:

(i) facilitate discovery of small-effect heterogeneous variants and (ii)

minimize redundancy between genetic variants identified by the FE

and RE2 models; as it is commonplace to perform an FE analysis

prior to a random-effects analysis when conducting genetic associ-

ation meta-analyses. To reduce redundancies between RE2 and FE

analyses the RE2C approach partitions summary association P-val-

ues produced by the RE2 model into two groups assigning variants

with RE2 P-value � FE P-value the RE2 summary association statis-

tic, SRE2 and zero otherwise (Lee et al., 2017):

SRE2C ¼
SRE2 if PRE2 � PFE

0 if PRE2 > PFE
:

�
(3)

In contrast to the RE2 summary association statistic the RE2C

statistic, SRE2C does not approximate a ‘well-known’ asymptotic dis-

tribution; to calculate RE2C P-values the RE2 summary association

statistic is decomposed into two component statistics, the first, SFE is

equal to the square of the FE summary association statistic, Z2
FE and

asymptotically approximates v2
1 under the null. The second, SHet

tests for the presence of heterogeneity akin to the Q-test of hetero-

geneity and asymptotically approximates a 50:50 mixture of 0 and

v2
1 when the number of studies in a meta-analysis is large, for smaller

meta-analyses, Lee et al. (2017) provide tabulated empirical distri-

butions of SHet. For each SFE, the RE2C approach searches for SHet

such that PRE2 � PFE and the resulting lower boundary of SHet is

referred to as, SHet:lowðSFE; NÞ where N is the number of studies.

Then for an observed RE2C statistic, dSRE2C the range of SFE is div-

ided into K small bins ðxi ¼ 1; 2; 3; . . . ; KÞ (e.g. 1000 bins in

[0, 50]) and the RE2C summary association P-value is approxi-

mated by:

PRE2C �
Xk

i¼1
P SHet > max dSRE2C � xi; SHet:low xi; Nð Þ

� �� �
� v2

1 xið Þ � Dx;

such that, PRE2C < PRE2 while PRE2 � PFE and where Dx

denotes the width of the bins (Lee et al., 2017).

2.3 Evaluation of heterogeneity for individual variants

and M statistics
2.3.1 Calculation of SPRE statistics

Standardized predicted random-effect statistics are precision-

weighted residuals that capture the direction and extent with which

individual genetic effects of studies in a meta-analysis deviate

from the average genetic effect at a variant of interest. Consider a

genetic association meta-analysis (P), comprising S GWAS ðs ¼
1; 2; 3; . . . ; SÞ and V independently associated lead variants ðv ¼
1; 2; 3; . . . ; VÞ: At each lead variant, study effect-size estimates

(and the corresponding standard errors) are analysed with a RE to

estimate the average genetic effect and separate the variability

observed among study effects into random sampling variation and

between-study heterogeneity. A SPRE is then computed for each

lead variant such that the SPRE for the vth lead variant in the sth

study is:

SPREsv ¼
ysv � hvffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r2
sv þ ŝ2

v � s2
psv

q (4)

This yields an array of SPREs,

PS;V ¼

SPRE1; 1 SPRE1;2 � � � SPRE1; v

SPRE2; 1 SPRE2;2 � � � SPRE2; v

..

. ..
. . .

. ..
.

SPREs;1 SPREs;2 � � � SPREs; v

2
66664

3
77775 (5)

that can be exploited to reveal systematic genetic differences among

studies in the meta-analysis. Specifically, SPREs can be aggregated

by study to expose outlier studies showing either consistently stron-

ger or weaker than average genetic effects.

2.3.2 Calculation of M statistics—aggregation of SPREs

SPRE statistics can be aggregated in a variety of ways, a simple

approach that both identifies systematic outliers and reveals their

direction of effect is to calculate the ‘mean’ aggregate heterogeneity

statistic, M. M statistics are computed by calculating the arithmetic

mean of SPREs within each study in a meta-analysis so that each

study has a single M statistic value and the M statistic value for the

sth study is represented by:

Ms ¼
1

V

XV

v¼1

SPREsv : (6)

Assuming the SPREs of lead variants in each study are mutually

independent standard normal random variables, that is

SPRE � U 0; 1ð Þ;

with mean: E SPREð Þ ¼ 0 and variance: Var SPREð Þ ¼ 1 then M is

normally distributed,
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Ms � U 0;
1

V

� �
;

with mean: E Msð Þ ¼ V 	 1
V

� �
	 l ¼ 0 and variance: Var Msð Þ

¼ V 	 1
V

� �2
	 r2 ¼ 1

V.

2.3.3 Q-statistic and heterogeneity index

Heterogeneity was also assessed using the Q-statistic (Cochran,

1954) and the heterogeneity index (I2) measure (Higgins and

Thompson, 2002); I2 was further used to quantify heterogeneity in

M statistics.

3 Results

3.1 RE2C association analysis
Of 9 455 778 variants in a RE2C meta-analysis of 48

CARDIoGRAMplusC4D studies, 4645 showed genome-wide sig-

nificant associations with coronary disease (PRE2C<5	10�8), yield-

ing 382 loci where lead variants were centered on a genetic distance

window of 6 0:5 cM (Table 1).

This compares with the conventional FE meta-analysis that

revealed 2213 GWAS (PFE<5	10�8) variants in 46 loci, and an

RE2 analysis that afforded 5942 GWAS (PRE2<5	10�8) variants in

406 loci (Fig. 1).

3.2 Single-variant heterogeneity analysis of 382 novel

RE2C loci
Most (85.6%) of the lead variants showed marked heterogeneity

(Q-statistic P<1	10�7), with at least half of the lead variants

showing relatively high levels of heterogeneity (I2>72.1%)

(Supplementary Table S2). Next, we calculated SPREs and gener-

ated forest plots to inspect heterogeneity patterns at lead variants of

the 382 RE2C loci. Most ð90%Þ of the RE2C lead variants had one

or more outlier studies where genetic effect-size estimates deviated

substantially ð SPREj j > 3rÞ from the average genetic effect. This

empirical threshold to flag overly influential outliers ð SPREj j >
3rÞ was informed by rs2891168 (chromosome 9p21) in the pri-

mary CARDIoGRAMplusC4D meta-analysis, where this well-

established locus had max SPREj j ¼ 2:87 (CARDIoGRAMplusC4D

Consortium, 2015). An inspection of forest plots for the 382 RE2C

lead variants revealed heterogeneity patterns that were grouped into

three categories (Supplementary Fig. S1). Most (n¼323) of the lead

variants fell in the first category where at least one study showed

outsized effects while the majority of the studies showed minimal

effects (Supplementary Fig. S2 and Table S3). Lead variants (n¼28)

in the second category generally showed heterogeneity patterns with

outlier studies showing contrasting effects, in particular the forest

plots showed both positive outlier studies ðSPRE > þ 3rÞ with

the potential to inflate the average genetic effect as well as negative

outliers ðSPRE < � 3rÞ that might lower or change the direction

of the mean genetic effect, a scenario where dropping either type of

outlier would likely induce a false positive or negative signal

(Supplementary Fig. S3 and Table S3). The final category comprised

31 lead variants where there was little evidence of overly influential

outlier studies consistent with heterogeneity patterns plausibly

induced by biologically relevant differences (Supplementary Fig. S4

and Table S3). A general trend that emerged from inspecting hetero-

geneity patterns at the individual RE2C lead variants was that

RE2C P-values became more extreme (i.e. smaller) with increasing

levels of heterogeneity (Supplementary Table S2).

3.3 M Statistic, multi-variant heterogeneity analysis
A multi-variant heterogeneity analysis across the 382 RE2C

lead variants revealed five significant outlier studies (14, 15, 16, 17

and 18) that systematically showed stronger than average effects

(Bonferroni-corrected M statistic P-values <0.05) (Supplementary

Fig. S5). A meta-regression of the M statistics found no evidence

of systematic heterogeneity patterns due to differences in ancestry,

Table 1. A summary of RE2C association results from the

CARDIoGRAMplusC4D meta-analysis of coronary disease

Description

Number of variants examined in the

CARDIoGRAMplusC4D meta-analysis of

coronary disease

9 455 778

Number of variants significantly associated with

coronary disease under the RE2C method

(PRE2C<5	10�8)

4645

Number of loci obtained after grouping the

4645 significantly associated variants

by a genetic distance window of 60.5 cM

around each lead variant

382

Number of lead variants that replicated in the

UK Biobank (UKBB) prospective study

(PUKBB<5	10�5)

24

cM, centiMorgans.

Fig. 1. A flowchart summarizing meta-analysis genetic association results under the RE2 and RE2C random-effects models and the traditional fixed-effect (FE)

method
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age-of CAD onset and CAD family-history (Supplementary Table

S4), design factors that were prominent in our previous analysis of

the CARDIoGRAMplusC4D data (Magosi et al., 2017) using lead

variants for 46 published loci (CARDIoGRAMplusC4D

Consortium, 2015). We note that studies 15, 16, 17 and 18 showed

relatively high genomic inflation (1:08 < k < 1:38) prior to study-

level genomic correction and a meta-regression of the M statistics

confirmed varying levels of genomic inflation among contributing

studies in the CARDIoGRAMplusC4D meta-analysis as a significant

explanatory factor (F4;43 ¼ 16:68; P ¼ 2:52 	 10�8; adjusted�
R2 ¼ 70:55%; I2 ¼ 88:28%) (Supplementary Table S4).

3.4 Replication in the UK Biobank study
We next explored whether genetic associations between lead var-

iants at the novel RE2C loci and CAD risk could be replicated in a

large-scale prospective study based on 296 525 participants (includ-

ing 34 541 cases of coronary heart disease) from England, Scotland

and Wales aged 45–69 years (van der Harst and Verweij, 2018).

Only 24 of the 323 RE2C lead variants available in the UK Biobank

GWAS were replicated (PUKBB<5	10�5, Supplementary Table

S5). All but 3 of the replicated genetic signals had traditional FE

meta-analysis P-values that were significant at genome-wide levels

(PFE <5	10�8) and just 2 of the 24 showed marked heterogeneity

(I2>0.5) (Supplementary Table S5). Furthermore, 3 replicated var-

iants included an influential outlier study in the

CARDIoGRAMplusC4D meta-analysis, these 3 variants were also

GWAS-significant in the FE meta-analysis (Supplementary Tables

S2 and S5). These findings are consistent with Han and Eskin’s

(2011) observation that the power of RE2 only exceeded FE meta-

analysis for markedly heterogeneous variants.

Finally, a meta-regression model of M statistics for 323 RE2C

lead variants in a combined CARDIoGRAMplusC4D and UK

Biobank meta-analysis confirmed genomic control inflation as a po-

tential source of systematic heterogeneity in genetic meta-analyses

(Supplementary Table S6 and Fig. S6).

4 Discussion

Our application of the RE2C method to the

CARDIoGRAMplusC4D meta-analysis dataset highlights the high

sensitivity but low specificity of the method as a discovery tool for

small-effect heterogeneous genetic associations. Consequently the

practical advantage afforded by the improved power of the RE2C

method will likely be in augmenting P-values for putative loci high-

lighted by traditional fixed and random-effects meta-analyses.

Beyond variants that would have otherwise been detected

through a traditional FE meta-analysis approach, 21 lead variants

that were associated with CAD under the RE2C method

(PRE2C<5	10�8) were suggestively associated under the tradition-

al FE method (5	10�8<PFE � 5	10�5); and 2 (rs12509595,

rs62181365) of these were part of the group of RE2C lead variants

that replicated in the UKBB analysis while the remaining 19 fell

below the replication threshold (PUKBB<5	10�5) (Supplementary

Tables S2 and S5). Of the list of 24 significant RE2C replicated var-

iants in the UKBB analysis, a single lead variant (rs662799) on

chromosome 11 showed neither significant nor suggestive associ-

ation with CAD under the traditional FE method (Q-statistic

P¼2.4	10�4, I2 ¼ 47%, PFE ¼ 1.28	10�4) (Supplementary Table

S4 and Fig. S7). Notably, rs662799 maps to the APOA1-C3-A4-A5

locus, immediately upstream of APOA5, a locus that is strongly

associated with higher triglyceride levels (TG) and lower HDL

cholesterol (HDL-C) in individuals of East Asian and European an-

cestry (bTG ¼ 0:081; SEðbTGÞ ¼ 0:003; P ¼ 4:18 	 10�213;

bHDL�C ¼ �2:516; SEðbHDL�CÞ ¼ 0:126; P ¼ 1:84 	 10�85)

(Lu et al., 2016; Spracklen et al., 2017). APOA5 is a ‘well-known’

CAD-associated locus (e.g. rs964184; CARDIoGRAM Consortium

et al., 2011), thus the rs662799 CAD association detected in this

RE2C analysis represents a confident positive assignment that can

guide future functional genomic experiments to identify the underly-

ing causal variants(s).

Altogether, the majority (n¼331) of lead variants discovered in

the CARDIoGRAMplusC4D meta-analysis by the RE2C random-

effects method fell outside the scope of tentatively associated CAD

risk variants (PFE>5	10�5) (Supplementary Table S2). Significant

P-values under the RE2 and RE2C models can represent a non-

null average genetic effect and/or considerable heterogeneity ðH0 :

l ¼ 0 and s2 ¼ 0 versus H1 : l 6¼ 0 or s2 > 0; asymptoticallyÞ
(Neupane et al., 2012). Therefore, the genome-wide significant

RE2C P-values at the 277 lead variants where genetic associations

with CAD were irreproducible in the UKBB dataset

(PUKBB>5	10�5) and where PFE>5	10�5, likely signify substantial

heterogeneity of genetic effects at the individual variants rather than

novel CAD signals.

Small-effect genetic associations at variants with relatively high

heterogeneity might elicit skepticism regarding the potential repro-

ducibility of such associations. However, there are notable excep-

tions within the coronary disease landscape, such as rs2891168, the

lead variant for the chromosome 9p21 CAD risk locus in the

CARDIoGRAMplusC4D data (2015) that shows substantial hetero-

geneity (Q-statistic P < 4.2	10�7; I2 ¼ 58%) but with no excep-

tional outlier studies (i.e. SPREj j < 2:6r), a heterogeneity pattern

typified in Supplementary Figure S4. rs2891168 tags one of the

strongest associated loci in CARDIoGRAMplusC4D (odds ratio ¼
1.2, P<2	10�98), a meta-analysis dataset heavily weighted by

European (69%), South Asian (20%) and East Asian (7%) data

(Supplementary Table S1). Other tagging variants for this locus in

strong linkage disequilibrium have been convincingly validated to

show comparable strength associations with CAD risk in some non-

European populations (e.g. India and Pakistan, Coronary Artery

Disease (C4D) Genetics Consortium, 2011; Han Chinese, Lu et al.,

2012; multi-ethnic cohorts from East Asia, Han et al., 2017) but not

for instance, and to our knowledge in populations of African ances-

try. The latter are poorly represented in CARDIoGRAMplusC4D

(African Americans form �1% of the total data), limiting opportu-

nities to judge the informativity or otherwise of individual loci in

this meta-analysis dataset.

Based on our experience of applying RE2C to the

CARDIoGRAMplusC4D dataset, we recommend as best practice

that reports of small-effect heterogeneous loci discovered with this

method be accompanied by forest plots and SPRE statistics to ex-

plore the distribution of genetic effect estimates across participating

studies. This can highlight overly influential outlier studies with the

potential to inflate genetic signals prompting researchers to reflect

upon the underlying data that gave rise to novel heterogeneous

associations.
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