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In this paper, we present a fully-automated subcortical and ventricular shape generation

pipeline that acts on structural magnetic resonance images (MRIs) of the human

brain. Principally, the proposed pipeline consists of three steps: (1) automated

structure segmentation using the diffeomorphic multi-atlas likelihood-fusion algorithm;

(2) study-specific shape template creation based on the Delaunay triangulation;

(3) deformation-based shape filtering using the large deformation diffeomorphic metric

mapping for surfaces. The proposed pipeline is shown to provide high accuracy,

sufficient smoothness, and accurate anatomical topology. Two datasets focused upon

Huntington’s disease (HD) were used for evaluating the performance of the proposed

pipeline. The first of these contains a total of 16 MRI scans, each with a gold standard

available, on which the proposed pipeline’s outputs were observed to be highly accurate

and smooth when compared with the gold standard. Visual examinations and outlier

analyses on the second dataset, which contains a total of 1,445 MRI scans, revealed

100% success rates for the putamen, the thalamus, the globus pallidus, the amygdala,

and the lateral ventricle in both hemispheres and rates no smaller than 97% for the

bilateral hippocampus and caudate. Another independent dataset, consisting of 15 atlas

images and 20 testing images, was also used to quantitatively evaluate the proposed

pipeline, with high accuracy having been obtained. In short, the proposed pipeline is

herein demonstrated to be effective, both quantitatively and qualitatively, using a large

collection of MRI scans.
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INTRODUCTION

Analyzing the shape of subcortical and ventricular structures
subjected to brain disorders is an area of ever growing
importance, especially in the fields of neurodegenerative diseases
such as Alzheimer’s disease (Qiu et al., 2009b; Wang et al., 2011;
Shi et al., 2013, 2015; Tang et al., 2014, 2015b; Miller et al.,
2015), Huntington’s disease (HD) (van den Bogaard et al., 2011;
Younes et al., 2014; Faria et al., 2016), and Parkinson’s disease
(Sterling et al., 2013; Nemmi et al., 2015) as well as various
neurodevelopmental disorders (Knickmeyer et al., 2008; Rimol
et al., 2010; Seymour et al., 2017). The anatomical shapes of
the structures of interest in those cases are usually represented
using a mesh that can be created from the corresponding
structural volumetric segmentation. In more detail, generating a
segmentation-based shape representation of a specific structure
of interest (such as the left hippocampus) consists of two
steps: (1) segmenting that structure of interest from a structural
magnetic resonance image (MRI), resulting in a 3D volumetric
segmentation; (2) converting that volumetric segmentation into
a smooth surface representing the structural segmentation’s
boundary (Levine et al., 2012).

The fully automated segmentation of subcortical and
ventricular structures, based on structural MRIs, is a well-
established field of research, with a variety of highly accurate
algorithms having already been developed (Barra and Boire,
2001; Khan et al., 2008; Powell et al., 2008; Patenaude
et al., 2011; Chakravarty et al., 2013; Tang et al., 2015c).
As for the generation of surfaces, image-based meshing is
typically employed, especially when creating computer models
for computational fluid dynamics and finite element analysis
(Young et al., 2008; Chen et al., 2013; Chernikov et al., 2013;
Foteinos and Chrisochoides, 2013; Zhang, 2013). More recently,
segmentation based meshing has also been applied to the medical
imaging field, see Zhang (2013) for a general introduction. One
of the most representative meshing techniques is the marching
cubes algorithm, which has been incorporated into a number
of commercial and non-commercial software packages. The
marching cubes algorithm takes a 3D segmentation image as its
input and outputs surface data in the form of a triangulatedmesh,
represented using vertices and faces.

Combining what we have just outlined leads to an
“automated volume segmentation + marching cubes based
surface generation” pipeline for subcortical and ventricular
structures. Such a procedure may well be vulnerable to noise
induced by inaccurate segmentations, resulting in disconnected
regions or holes within the surface (Qiu and Miller, 2008). In
addition, it is plausible that the marching cubes algorithm is
liable to miss thin subregions of a structure of interest such as
the thin “bridge” connecting the inferior horn and the main
body of the lateral ventricle (Qiu and Miller, 2008). In other
words, the resulting surface may not have the correct anatomical
topology. Furthermore, even for a structure of interest with a
highly accurate segmentation and an “easy” topology (a relatively
simple shape), it is likely that the marching cubes algorithm will
not deliver surfaces of a sufficient smoothness. Indeed, it is a
most challenging task to extract the structure of interest’s surface

with high accuracy, correct anatomical topology, and sufficient
smoothness in the same instance. To ensure a high degree of
accuracy in the surface, a precise volumetric segmentation and
a high fidelity in the surface with respect to the corresponding
volumetric segmentation is required. Naturally, to ensure a
correct anatomical topology, a surface generation approach
that is devised around the notion of preserving the anatomical
topology of the structure of interest is needed. Meanwhile, the
classic filtering and smoothing approaches may not be sufficient
to ensure the required smoothness without sacrificing the fidelity
to the corresponding volumetric segmentation.

Alternatives to the aforementioned combination are certainly
possible and there are numerous existing pipelines that can
generate smooth subcortical structural shapes directly from
MRIs. In contrast to a binary segmentation procedure for shape
generation, those pipelines generally employ shape modeling
for their segmentation purposes (Heimann and Meinzer, 2009;
Patenaude et al., 2011). In other words, the structural shapes
were not created from the binary segmentation, but directly
from the dense MR images. The main limitation of these shape-
modeling based approaches is the lack of flexibility in relation
to individual components; one may desire the ability to utilize
a more accurate segmentation algorithm or a more sophisticated
meshing algorithm.

It is in the context of all of the above that we propose a fully-
automated subcortical and ventricular shape generation pipeline
which satisfies the demand for accuracy (both topological and
otherwise) and smoothness in four steps: (1) automatically
segment the subcortical and ventricular structures of interest
using the raw structural MRI data acquired from a scanner;
(2) create a study-specific template shape with the correct
anatomical topology and sufficient surface smoothness; (3) create
a triangulated mesh from each binary segmentation obtained in
step (1) using themarching cubes algorithm; (4) filter and smooth
the surfaces generated in step (3) in a deformation based manner.

To perform the initial segmentation, we employ a fully-
automated segmentation pipeline, the diffeomorphic multi-atlas
likelihood fusion (MALF) algorithm (Tang et al., 2013), the
accuracy of which in segmenting subcortical and ventricular
structures has been validated on a variety of MRI datasets (Tang
et al., 2015c). Instead of applying the marching cubes algorithm
directly, to generate a corresponding triangulated mesh from
the segmentation of MALF with the desired properties, we
rely on deformation based shape generation in the setting of
large deformation diffeomorphic metric mapping (LDDMM)
for surfaces (Vaillant and Glaunès, 2005). Given a pre-defined
triangulated surface of a specific structure of interest, LDDMM
is capable of preserving the topology and smoothness of that
surface when registering it to a target surface. In other words,
if we register a template surface with the correct anatomical
topology and a high degree of smoothness to a target surface
using LDDMM, the deformed surface is guaranteed to inherit
that topology and smoothness from the template while being
as similar as possible to the target surface. This is essentially
due to the properties of diffeomorphic transformations and the
capability of LDDMM to deliver the accurate diffeomorphisms
needed for surface registration (Vaillant and Glaunès, 2005).
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In this paper, we will first detail each of the above steps
in the proposed pipeline. We then proceed to evaluate the
proposed pipeline quantitatively and qualitatively using three
MRI datasets. There are 16 structural MRIs in the first dataset,
for each of which we manually segmented the subcortical and
ventricular structures, with a view to quantitatively evaluating
the performance of the proposed pipeline by comparison with
the gold standard. Within the second dataset, there are a total
of 1,445 structural MRIs, on which we qualitatively examine the
surfaces delivered by the proposed pipeline. For the third dataset,
there are 15 atlas structural MRIs and 20 testing structural MRIs,
with the structures of interest being the subcortical structures
that have been manually delineated. We also compared our
results with those from a well-established pipeline that outputs
smooth subcortical surfaces directly from dense MRIs, namely
the FSL-FIRST pipeline (Patenaude et al., 2011). Three aspects
were examined; the accuracy based on quantitative evaluation,
the anatomy topology based on visual examination, and the
smoothness based on quantitative assessment.

MATERIALS AND METHODS

PREDICT-HD
The first two datasets that feature in this work are both part
of the PREDICT-HD study (https://www.predict-hd.net/) where
all enrolled subjects were at risk of HD and had previously
undergone elective predictive genetic testing. Subjects labeled
as premanifest HD (pre-HD) are those who were found to be
“gene expanded,” possessing a cytosine–adenine–guanine (CAG)
≥ 36 but not exhibiting the motor criteria consistent with
a diagnosis of HD (The Huntington’s Disease Collaborative
Research Group, 1993). A control group was defined as subjects
who were deemed “non-gene expanded,” possessing a CAG ≤

30. Participants of PREIDCT-HD were recruited from 32 sites
across the United States, Canada, Europe, and Australia and
underwent longitudinal study visits consisting of a neurological
motor examination, cognitive assessment, brain MRI, psychiatric
and functional assessment, and blood testing for genetic and
biochemical analyses. Informed written consent was obtained
from all subjects before participating in this study.

Subjects with pre-HD were further divided into three
subgroups (“low-HD,” “mid-HD,” and “high-HD”) based on their
CAP scores, a function of their CAG repeat length and current
age given by CAP = (age at study entry) × (CAG – 33.66)
(Zhang et al., 2011). The three subgroups are defined according to
CAP< 290 (the low-HD group), 290≤ CAP≤ 368 (the mid-HD
group), and CAP > 368 (the high-HD group).

Subjects
In the first dataset, there are a total of 16 subjects (3 males and
13 females, mean age = 42.1 ± 10.1 years), including 6 control
subjects, 4 low-HD subjects, 3 mid-HD subjects, and 3 high-HD
subjects. Only one scan of each subject was selected, resulting in
a total of 16 MRI scans in the first dataset.

For the second dataset, there are a total of 169 control subjects,
including 106 females (mean age at baseline= 48.3± 11.2 years)
and 63 males (mean age at baseline = 48.6 ± 14.8 years). Within

the control group, 59 subjects had only 1 scan, 43 subjects had 2
scans, 27 subjects had 3 scans, 16 subjects had 4 scans, 15 subjects
had 5 scans, 7 subjects had 6 scans, and 1 subject had 7 scans,
resulting in a total of 414 MRI scans, with the average interval
between two consecutive scans being 1.1 years. Within the low-
HD group, there are a total of 113 subjects, including 85 females
(mean age at baseline= 33.1± 9.1 years) and 28males (mean age
at baseline= 35.7± 10.8 years). In the low-HD group, 52 subjects
had only 1 scan, 35 subjects had 2 scans, 12 subjects had 3 scans,
8 subjects had 4 scans, 3 subjects had 5 scans, 2 subjects had 6
scans, and 1 subject had 8 scans, resulting in a total of 225 MRI
scans, with the average interval between two consecutive scans
being 0.8 years. Within the mid-HD group, there are a total of
141 subjects, including 98 females (mean age at baseline = 42.1
± 10.2 years) and 43 males (mean age at baseline = 42.4 ± 11.2
years). In the mid-HD group, 62 subjects had only 1 scan, 36
subjects had 2 scans, 14 subjects had 3 scans, 17 subjects had
4 scans, 5 subjects had 5 scans, 6 subjects had 6 scans, and 1
subject had 7 scans, resulting in a total of 312MRI scans, with the
average interval between two consecutive scans being 0.8 years.
Within the high-HD group, there are a total of 227 subjects,
including 136 females (mean age at baseline= 49.3± 10.9 years)
and 91 males (mean age at baseline = 50.0 ± 11.1 years). In the
high-HD group, 99 subjects had only 1 scan, 68 subjects had 2
scans, 26 subjects had 3 scans, 17 subjects had 4 scans, 8 subjects
had 5 scans, 8 subjects had 6 scans, and 1 subject had 8 scans,
resulting in a total of 477 MRI scans, with the average interval
between two consecutive scans being 0.9 years. There are another
4 females (mean age at baseline= 44.6± 9.9 years) that were not
identified as belonging to any group. Among those 4 subjects, 3
had been scanned once while the remainder had been scanned
twice, resulting in a total of 5 MRI scans. There are another 12
MRI scans for which we could not identify their demographic and
clinical information. However, given that the goal of this paper is
to evaluate a surface generation pipeline rather than to compare
groups of different clinical states, we retained all of the 1,445
scans from the second dataset for pipeline validation. A summary
of this dataset is tabulated in Table 1.

High resolution anatomical MR images of the first two
datasets were used in this study. Given that the PREDICT-
HD study was both multi-centered and longitudinal in nature,
the image acquisition procedures were heterogeneous, including
multiple vendors (GE, Phillips, and Siemens), different field
strengths (1.5 Tesla and 3 Tesla), and more than 20 different
MR acquisition protocols (due to issues with transmission and
receiver hardware). Detailed scanning information for each of the
1,445 MR scans can be found in the Supplementary Material 1.

The third dataset used in this study includes 35 brain MRI
scans from the OASIS project. The manual segmentations of
these images were produced by Neuromorphometrics, Inc.
(http://Neuromorphometrics.com/) using the brainCOLOR
labeling protocol. The data were applied in the 2012 MICCAI
Multi-Atlas Labeling Challenge and are publicly accessible
(https://masi.vuse.vanderbilt.edu/workshop2012/index.php/
Main_Page). In the challenge, 15 subjects were used as atlases
and the remaining 20 images were used for testing. For this
dataset, our structures of interest are the 12 subcortical regions.
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TABLE 1 | A summary of the second dataset, consisting of 1,445 MRI scans.

Control Low-HD

Male (no = 63) Female (no = 106) Male (no = 28) Female (no = 85)

Baseline age 48.6 ± 14.8 years 48.3 ± 11.2 years 35.7 ± 10.8 years 33.1 ± 9.1 years

No. of scans = 1 59 52

No. of scans = 2 43 35

no. of scans = 3 27 12

No. of scans = 4 16 8

No. of scans = 5 15 3

No. of scans = 6 7 2

No. of scans = 7 1 0

No. of scans = 8 0 1

Average inter-scan interval 1.1 years 0.8 years

Mid-HD High-HD

Male (no = 43) Female (no = 98) Male (no = 91) Female (no = 136)

Baseline age 42.4 ± 11.2 years 42.1 ± 10.2 years 50.0 ± 11.1 years 49.3 ± 10.9 years

No. of scans = 1 62 99

No. of scans = 2 36 68

No. of scans = 3 14 26

No. of scans = 4 17 17

No. of scans = 5 5 8

No. of scans = 6 6 8

No. of scans = 7 1 0

No. of scans = 8 0 1

Average inter-scan interval 0.8 years 0.9 years

Automated Structure Segmentation
As shown in Figure 1 (the work flow of the proposed pipeline),
one can view this pipeline as having two major components;
automated structure segmentation and surface filtering. The
subcortical and ventricular structures, in both hemispheres,
were extracted from each T1-weighted image using a fully-
automated structure segmentation pipeline (Tang et al., 2015c)
itself consisting of two steps, skull-stripping and brain structure
segmentation. The underlying theoretical basis of this approach
is multi-atlas likelihood-fusion (MALF) in the framework of a
random deformable template model (Tang et al., 2013). This
segmentation pipeline has been tested and validated on a number
of datasets with relevance to various brain structures, particularly
the subcortical and ventricular structures (Liang et al., 2015; Tang
et al., 2015a).

In this study, the 16 T1-weighted images of the first dataset
served as the atlases used in MALF to perform the automated
structure segmentation for the first and the second datasets. Each
structure of interest, such as the left hippocampus, was manually
delineated in all 16 atlases by a team of neuroanatomists at
Johns Hopkins University with more than 15 years’ experience
in manually tracing subcortical structures. Various sets of
subcortical and ventricular atlases, used in our other studies, were
all created by the same team and have proven their reliability
(Tang et al., 2013, 2015c, 2016; Seymour et al., 2017). Intra- and
inter-rater reliability of manual delineations by this team have

been quantified in earlier studies; intra-class correlation (ICC)
statistics revealed high rates of intra- and interrater reliability
(intra-rater ICC ranges between 0.96 and 0.98; inter-rater ICC
ranges between 0.9 and 0.93) (Qiu et al., 2009a).

To evaluate the proposed pipeline’s handling of the first
dataset, we adopted a leave-one-out strategy; one atlas image
was treated as the to-be-segmented image while the remainder
served as the atlas set used in segmenting that excluded image.
When evaluating the second dataset, we continued to use these
16 atlases for segmentation via MALF. For the third dataset, the
15 atlas images were used to segment the subcortical structures in
each of the 20 testing images.

Surface Generation
With the binary segmentation of the structures of interest
completed using the structure segmentation procedure discussed
above, we proceeded to create a triangulated mesh contouring
the boundary of the segmentation using the marching cubes
algorithm. The marching cubes algorithm yields triangulated
surfaces with a high fidelity to the segmentation. Thus, when the
segmentation is lacking accuracy, the marching cubes algorithm
will be incapable of correcting the mistakes incurred during
the segmentation step. In addition, the resulting surface may
well be insufficiently smooth for our purposes. To overcome
these limitations, one potential approach is to register a template
surface to a target surface (the raw structure surface created from
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FIGURE 1 | Demonstration of the workflow of the proposed pipeline. MALF, multi-atlas likelihood fusion.

the marching cubes algorithm). The template surface is supposed
to have correct anatomical topology and sufficient smoothness.
The deformed template surfaces are therefore expected to have
geometric characteristics identical to those of the target surfaces
while possessing the topology and connectivity of the template
surface.

In our pipeline, the template surface came from one of the
16 subjects in the first dataset. The 14 structures of interest
for the selected subject were manually delineated with care
taken to ensure both segmentation accuracy and boundary
smoothness during the manual delineation. That specific subject
was chosen based on three considerations: (1) the area of the
subject’s surface should be close to the mean area across all
16 surfaces from the manual segmentations; (2) the geometry
and topology of the subject’s surface should be correct based on
visual examination; (3) the selected surface should be sufficiently
smooth quantitatively and qualitatively.

In creating the template surface, instead of using the
marching cubes algorithm, we adopted the Delaunay algorithm
for triangulation (Lee and Schachter, 1980; Shewchuk, 2002) to
guarantee further smoothness. We have noticed, however, that
the Delaunay algorithm is much less stable than that of the
marching cubes, even though it yields smoother results. This is
our rationale for using marching cubes for the triangulation of
the raw structure surfaces rather than the Delaunay algorithm.

With the template surface and target surfaces for each
structure of interest created, we performed a rigid alignment
of the surfaces and then proceeded to the LDDMM surface
registration (Vaillant and Glaunès, 2005). Specifically, the
template surface was rigidly aligned (rotation and translation) to
the target surface, with the optimal rigid transformation between
the vertex sets of the two surfaces obtained by minimizing a score

that combines registration and soft assignment. After that, the
LDDMM surface registration was performed from the rigidly
aligned template surface to the target surface. Details on the “rigid
+ LDDMM” surface registration pipeline can be found in our
previous work (Tang et al., 2014). After obtaining all of the rigid
and diffeomorphic transformations between the template surface
and the target surfaces, we applied these transformations in turn
to the template surface, generating a deformed template surface
for each structure of interest in each subject MRI. This deformed
template surface is the result of our proposed pipeline, a smooth
surface of a subcortical and ventricular structure of interest in an
individual MRI scan.

Evaluation Criteria
As we have the gold standard—manual segmentations—at our
disposal for the first and the third datasets, we quantitatively
computed the accuracy and reliability of the proposed pipeline
through the use of the following evaluation metrics:

• Dice similarity coefficient (DSC)

DSC(A,B) = 2
V(A ∩ B)

V(A)+ V(B)
(1)

where V(A) and V(B) are the volumetric measurements of
segmented images A and B. For example, A may represent
the binary segmentation of the left hippocampus from manual
delineation while B represents the corresponding automated
segmentation fromMALF.

• Absolute volume difference (AVD)

AVD(A,B) =

∣

∣V(A)− V(B)
∣

∣

(

V(A)+ V(B)
)

/2
(2)
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where V(A) and V(B) are again the volumetric measurements of
segmented images A and B.

• Correlation coefficient

For the third quantitative comparison metric, we employed
the Pearson product-moment correlation coefficient (PCC)
between the volumetric measurements of the two segmentations
in comparison, for example those of the manual segmentation
and the MALF-derived automated segmentation.

In addition to evaluating the segmentation accuracy using the
first and the third datasets, we also assessed the smoothness of
the resulting surfaces quantitatively and qualitatively (through
visual examination by several raters) using all three datasets.
The smoothness of a surface was quantified using the following
metric:

• Geometric Laplacian (GL)

GL(v) = v−

∑

i∈n(v) l
−1
i vi

∑

i∈n(v) l
−1
i

(3)

where n(v) is the index set of the vertices vi which are themselves
the direct neighbors of v, and li is the Euclidean distance from v
to vi.GL(v) represents a kind of measure of roughness: the higher
it is, the rougher is the surface around v. The GL of a surface is
computed as the sum of the norm of all vertex-wise GL vectors,
namely GL =

∑

v

∥

∥GL(v)
∥

∥

2
.

Group Comparisons
In our first experiment, we compared results from the proposed
pipeline, in terms of both volumetric segmentations and
triangulated surfaces, with those before filtering (obtained from
MALF) using all three datasets. Their results were also compared
to the gold standard of the first and the third datasets. In
the first experiment, our structures of interest included all the
14 subcortical and lateral ventricle structures for the first two
datasets and the 12 subcortical structures for the third dataset.
In the second experiment, we performed a comparison with
a state-of-the-art pipeline, FSL-FIRST, that outputs volumetric
segmentations as well as smooth triangulated surfaces of
subcortical structures as well. This experiment was conducted on
the first dataset and analyzed the 12 subcortical structures only,
as FSL-FIRST does not output lateral ventricle results. Student’s
t-tests were employed to evaluate the significance of a group
difference in all settings.

RESULTS

The First Experiment
In Tables 2–4, we respectively detail the mean and standard
deviations of the DSCs, the AVDs, and the PCCs for each of
the 14 structures of interest of the first dataset when calculated
under the three possible comparisons; the raw automated
segmentations from MALF vs. the manual segmentations, the
raw automated segmentations from MALF vs. the filtered
automated segmentations, as well as the filtered automated
segmentations vs. the manual ones. The corresponding results on

TABLE 2 | The average Dice overlap coefficients between every pairing of the

three sets of segmentation results (manual segmentation, raw automated

segmentation, and filtered automated segmentation) over the 16 MRI scans of the

first group for each of the 14 subcortical and ventricle structures.

Manual vs. Raw

Auto

Raw Auto vs.

Filtered Auto

Manual vs.

Filtered Auto

Left caudate 0.914 ± 0.039 0.958 ± 0.008 0.913 ± 0.039

Right caudate 0.901 ± 0.028 0.957 ± 0.006 0.899 ± 0.027

Left pallidum 0.902 ± 0.023 0.957 ± 0.006 0.899 ± 0.024

Right pallidum 0.907 ± 0.018 0.957 ± 0.005 0.906 ± 0.022

Left putamen 0.928 ± 0.010 0.965 ± 0.005 0.928 ± 0.009

Right putamen 0.934 ± 0.012 0.966 ± 0.005 0.934 ± 0.009

Right thalamus 0.922 ± 0.011 0.969 ± 0.004 0.924 ± 0.011

Left thalamus 0.927 ± 0.009 0.970 ± 0.004 0.929 ± 0.008

Left amygdala 0.874 ± 0.017 0.943 ± 0.010 0.874 ± 0.020

Right amygdala 0.866 ± 0.025 0.946 ± 0.008 0.870 ± 0.025

Left hippocampus 0.917 ± 0.009 0.939 ± 0.006 0.909 ± 0.011

Right hippocampus 0.910 ± 0.013 0.943 ± 0.007 0.907 ± 0.014

Left ventricle 0.925 ± 0.023 0.891 ± 0.047 0.858 ± 0.058

Right ventricle 0.922 ± 0.027 0.902 ± 0.048 0.866 ± 0.059

TABLE 3 | The average absolute volume differences between every pairing of the

three sets of segmentation results (manual segmentation, raw automated

segmentation, and filtered automated segmentation) over the 16 MRI scans of the

first group for each of the 14 subcortical and ventricle structures.

Manual vs. Raw

Auto

Raw Auto vs.

Filtered Auto

Manual vs.

Filtered Auto

Left caudate 0.076 ± 0.092 0.011 ± 0.005 0.078 ± 0.088

Right caudate 0.098 ± 0.080 0.010 ± 0.005 0.100 ± 0.079

Left pallidum 0.103 ± 0.075 0.016 ± 0.007 0.108 ± 0.079

Right pallidum 0.082 ± 0.061 0.018 ± 0.006 0.086 ± 0.071

Left putamen 0.037 ± 0.027 0.007 ± 0.005 0.035 ± 0.027

Right putamen 0.055 ± 0.026 0.008 ± 0.004 0.055 ± 0.023

Right thalamus 0.090 ± 0.038 0.002 ± 0.002 0.092 ± 0.039

Left thalamus 0.075 ± 0.035 0.003 ± 0.003 0.075 ± 0.036

Left amygdala 0.082 ± 0.041 0.018 ± 0.005 0.077 ± 0.045

Right amygdala 0.069 ± 0.072 0.015 ± 0.005 0.065 ± 0.072

Left hippocampus 0.064 ± 0.029 0.014 ± 0.006 0.076 ± 0.029

Right hippocampus 0.065 ± 0.031 0.014 ± 0.005 0.074 ± 0.033

Left ventricle 0.078 ± 0.053 0.006 ± 0.005 0.080 ± 0.055

Right ventricle 0.082 ± 0.057 0.010 ± 0.006 0.088 ± 0.061

the 12 subcortical structures of the third dataset are demonstrated
in the Supplementary Material 2 (Table S1). Please note, the
filtered automated segmentations were generated from the
smoothly deformed surfaces via nearest neighbor assignment.
As shown in the first column of each of the three tables, the
raw automated segmentations obtained from MALF are highly
accurate when compared to the gold standard. This illustrates
the accuracy of the first step of our surface generation pipeline.
For the second step, generating a smoothed version of the raw
surface, we achieved a high fidelity, as is demonstrated in the
second column in each of the three tables. Comparing the final
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results, the filtered surface based segmentations, with the gold
standard, the accuracy is again high (the third column of each
of the three tables) and indeed similar to that of the raw accuracy.

Results on comparing the smoothness of the surfaces of
those three approaches for the first and the third datasets are
respectively demonstrated in Table 5 and the Supplementary
Material 2 (Table S2). Clearly, for each of the structures of
interest, surfaces from the proposed pipeline are significantly
smoother (p << 1E−10) than not only the raw automated
results from MALF but also the manual results. In Figure 2, we
present comparison results for the three methods (manual, raw
automated, and filtered automated), in terms of segmentations
that are superimposed on the structural MR image (for
better visualization) and the corresponding surfaces, for one

TABLE 4 | The Pearson product-moment correlation coefficients between every

pairing of the three sets of segmentation results (manual segmentation, raw

automated segmentation, and filtered automated segmentation) over the 16 MRI

scans of the first group for each of the 14 subcortical and ventricle structures.

Manual vs. Raw

Auto

Raw Auto vs.

Filtered Auto

Manual vs. Filtered

Auto

Left caudate 0.821 1.000 0.827

Right caudate 0.821 1.000 0.829

Left pallidum 0.737 0.999 0.741

Right pallidum 0.835 0.999 0.835

Left putamen 0.980 1.000 0.980

Right putamen 0.965 1.000 0.966

Right thalamus 0.899 1.000 0.898

Left thalamus 0.906 0.999 0.908

Left amygdala 0.633 0.999 0.641

Right amygdala 0.716 0.999 0.711

Left hippocampus 0.795 0.998 0.809

Right hippocampus 0.804 0.999 0.819

Left ventricle 0.996 1.000 0.996

Right ventricle 0.990 1.000 0.990

representative subject. Evidently, the proposed method is capable
of capturing thin regions of a structure of interest, such as in the
lateral ventricle, and thus preserving the structure’s anatomical
topology. Furthermore, even when compared with the gold
standard surfaces created from themarching cubes algorithm, the
surfaces delivered by the proposed pipeline are much smoother.

In Figure 3, we illustrate the smoothness comparison results
of both datasets before and after deformation based filtering,
from which a significant increase in smoothness was observed
for each structure in both datasets. In addition to smoothness,
the segmentation accuracy of the second dataset were also
visually examined independently by three experienced raters. We
found that on the bilateral putamen, globus pallidus, amygdala,
thalamus, and lateral ventricle, the proposed pipeline delivered
sufficiently well-generated surfaces for all 1,445 scans. In other
words, the failure rate for any of those 5 structures in both
hemispheres is 0%. For the other subcortical structures the
number of surfaces found to be flawed were as follows: 19 out
of 1,445 surfaces of the left caudate (failure rate being 1.31%),
15 out of 1,445 surfaces of the right caudate (failure rate being
1.04%), 7 out of 1,445 surfaces of the left hippocampus (failure
rate being 0.48%), and 33 out of 1,445 surfaces of the right
hippocampus (failure rate being 2.28%). We also note that the
19 left caudate surfaces with flaws were generated from the
scans of 16 subjects while the 15 right caudate surfaces came
from 9 subjects, the 7 left hippocampus surfaces came from 4
subjects, and the 33 right hippocampus surfaces came from 14
subjects. Such observations suggest that a failure for the proposed
pipeline is more likely to recur in longitudinal scans of the
same subject than on the dataset as a whole. In Figures 4, 5, we
present the outputs in representative failure cases for the caudate
(both left and right) and the hippocampus (both left and right)
respectively.

In addition to qualitative assessment, we also conducted
outlier analysis based on each surface’s GL value. To be specific,
outliers were defined as those whose GL values were outside the
range

[

Q1 − 1.5(Q3 − Q1),Q1 + 1.5(Q3 − Q1)
]

, where Q1 and
Q3 respectively denote the 25 percentile and the 75 percentile

TABLE 5 | Smoothness quantification, as measured by the Geometric Laplacian, of the four sets of surface results [manual, raw automated (MALF), filtered automated

(proposed), and FSL-FIRST] over the 16 MRI scans of the first group for the 12 subcortical structures.

Manual MALF Proposed FSL-FIRST

Left caudate 562.371 ± 70.610 619.822 ± 61.332 192.202 ± 8.967 187.216 ± 9.973

Right caudate 553.225 ± 81.988 599.452 ± 58.889 208.535 ± 7.896 193.338 ± 12.298

Left pallidum 249.926 ± 27.753 250.861 ± 30.475 87.136 ± 3.919 73.241 ± 4.416

Right pallidum 246.651 ± 20.956 254.202 ± 28.085 78.655 ± 3.506 67.427 ± 4.129

Left putamen 509.561 ± 61.449 560.402 ± 54.812 176.756 ± 6.163 123.851 ± 8.138

Right putamen 515.220 ± 57.479 568.109 ± 48.324 181.189 ± 6.611 126.411 ± 8.534

Right thalamus 634.443 ± 45.398 724.972 ± 65.240 197.801 ± 5.349 133.038 ± 5.835

Left thalamus 626.319 ± 46.549 708.264 ± 56.974 194.041 ± 7.095 132.420 ± 5.196

Left amygdala 232.511 ± 22.514 244.034 ± 18.729 84.181 ± 1.899 195.033 ± 13.753

Right amygdala 218.056 ± 22.433 229.562 ± 21.813 77.585 ± 2.445 167.832 ± 10.335

Left hippocampus 581.167 ± 27.421 607.406 ± 37.712 183.013 ± 4.637 77.366 ± 6.519

Right hippocampus 595.273 ± 32.929 619.702 ± 45.359 181.883 ± 4.959 80.187 ± 5.993
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FIGURE 2 | A comparison of the manual results, the raw automated segmentation results, and the filtered automated results, for the 7 subcortical and ventricular

structures (both left and right) of one representative subject. Both segmentations (left column) and the corresponding triangulated surfaces (right column) are

presented.

of all structure-specific GL values. From this outlier analysis,
we detected 15 outliers for the left caudate, 9 outliers for the
right caudate, 6 outliers for the left hippocampus, and 26 outliers
for the right hippocampus. These numbers agree well with our
qualitative assessment results.

The Second Experiment
The mean values and standard deviations of GL for the
12 subcortical surfaces, delivered by FSL-FIRST, are also
listed in Table 5, from which we observed a similar level of
smoothness as results from the proposed pipeline, both being
significantly smoother than those from the gold standard and
MALF. Comparing between the proposed pipeline and FSL-
FIRST, the bilateral amygdalar surfaces from the proposed
pipeline are much smoother than those from FSL-FIRST
whereas an opposite pattern was observed for the bilateral
hippocampal surfaces. Overall, those two methods have similar
performance in terms of surface smoothness. With regards to
the segmentation accuracy, as quantified by the DSCs (Table 6),
the AVDs (Table 7), and PCCs (Table 8), the proposed pipeline
significantly outperformed FSL-FIRST.

DISCUSSION

In this paper, we have developed a fully-automated shape
generation pipeline for subcortical and ventricular structures of

the human brain which preserves smoothness and anatomical
topology in the surfaces. The performance of the pipeline
has been validated on three datasets, both quantitatively and
qualitatively. We found that, without sacrificing the accuracy, the
resultant surfaces have high smoothness and correct anatomical
topology. Based on visual examinations and outlier analyses on
a large number of surfaces (1,445 in total for each structure), the
pipeline has a very low rate of failure; to be specific, the failure
rate is 0% for the putamen, the globus pallidus, the amygdala,
the thalamus, and the lateral ventricle in both hemispheres,
1.31% for the left caudate, 1.04% for the right caudate, 0.48%
for the left hippocampus, and 2.28% for the right hippocampus.
As is exemplified in Figures 4, 5, the main cause of failure for
the caudate and the hippocampus is segmentation inaccuracy
incurred in theMALF based automated segmentation. Those two
structures are both adjacent to the cerebrospinal fluid and it has
been found that this makes them more susceptible to inaccuracy
(Tang et al., 2013). Even for those two structures, the failure rates
on the first and the third datasets are 0% while those on the
second dataset are < 3% and we consider such results to be a
strong indicator of the pipeline’s capacity for high performance.

There are three main components in the pipeline: automated
structure segmentation; creation of study-specific template
shapes; and LDDMM-based shape filtering. For automated
structure segmentation, we utilized a well-developed algorithm
of our own group’s creation, the diffeomorphic multi-atlas
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FIGURE 3 | A comparison of the smoothness, as assessed by the Geometric Laplacian, of surfaces from MALF (the raw automated segmentation results) and the

proposed method (the filtered automated results), for the 7 subcortical and ventricular structures (both left and right) for both datasets. Lcaud, left caudate; Rcaud,

right caudate; Lpall, left pallidum; Rpall, right pallidum; Lputa, left putamen; Rputa, right putamen; Lthal, Left Thalamus; Rthal, right thalamus; Lamyg, left amygdala;

Ramyg, right amygdala; Lhipp, left hippocampus; Rhipp, right hippocampus; Lvent, left ventricle; Rvent, right ventricle. (A,B) Respectively denote the results for the

first and the second dataset.

FIGURE 4 | Representative failure cases for the left caudate (top) and the right caudate (bottom) from the second dataset.

likelihood fusion. Using the first and the third datasets, which
have the manual segmentations available, we again validated the
performance of the MALF algorithm in terms of the automated
segmentation of subcortical and ventricular structures. For
this component, we can also use other automated structure

segmentation algorithms, as long as the accuracy is sufficient,
such as FreeSurfer (Fischl et al., 2002) and FSL-FIRST (Patenaude
et al., 2011). FreeSurfer based segmentations have also been
used for surface generation in existing works (Qiu and Miller,
2008; Qiu et al., 2009b; Tang et al., 2014). In FSL-FIRST, the
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FIGURE 5 | Representative failure cases for the left hippocampus (top) and the right hippocampus (bottom) from the second dataset.

TABLE 6 | The average Dice overlap coefficients between the gold standard and

segmentations from the proposed method as well as those between the gold

standard and FSL-FIRST over the 16 MRI scans of the first group for the 12

subcortical structures alongside the corresponding p-values obtained from

Student’s t-tests.

Proposed method FSL-FIRST p-value

Left caudate 0.913 ± 0.039 0.832 ± 0.025 3.548E-06

Right caudate 0.899 ± 0.027 0.834 ± 0.016 2.727E-08

Left pallidum 0.899 ± 0.024 0.818 ± 0.041 1.658E-05

Right pallidum 0.906 ± 0.022 0.797 ± 0.042 7.068E-08

Left putamen 0.928 ± 0.009 0.881 ± 0.023 1.314E-06

Right putamen 0.934 ± 0.009 0.882 ± 0.021 1.286E-09

Right thalamus 0.924 ± 0.011 0.898 ± 0.023 2.849E-04

Left thalamus 0.929 ± 0.008 0.902 ± 0.019 2.397E-03

Left amygdala 0.874 ± 0.020 0.779 ± 0.041 3.057E-07

Right amygdala 0.870 ± 0.025 0.776 ± 0.032 2.818E-07

Left hippocampus 0.909 ± 0.011 0.826 ± 0.024 6.721E-09

Right hippocampus 0.907 ± 0.014 0.833 ± 0.019 9.484E-10

segmentation of a subcortical structure of interest is actually
obtained from its corresponding smooth surface. In other words,
FSL-FIRST outputs both smooth surfaces and segmentations
for subcortical structures. In that sense, it may be redundant
to perform another round of surface generation based on
segmentations from FSL-FIRST.

In this work, we did not compare the surface results from
the proposed pipeline with those obtained from replacing our
segmentation module with another one since that is essentially
a comparison of various segmentation algorithms, which is not

TABLE 7 | The average absolute volume differences between the gold standard

and segmentations from the proposed method as well as those between the gold

standard and FSL-FIRST over the 16 MRI scans of the first group for the 12

subcortical structures alongside the corresponding p-values obtained from

Student’s t-tests.

Proposed method FSL-FIRST p-value

Left caudate 0.078 ± 0.088 0.135 ± 0.042 5.273E-02

Right caudate 0.100 ± 0.079 0.099 ± 0.049 9.674E-01

Left pallidum 0.108 ± 0.079 0.179 ± 0.081 4.673E-02

Right pallidum 0.086 ± 0.071 0.244 ± 0.055 1.359E-05

Left putamen 0.035 ± 0.027 0.183 ± 0.059 5.703E-09

Right putamen 0.055 ± 0.023 0.147 ± 0.055 1.153E-06

Right thalamus 0.092 ± 0.039 0.083 ± 0.066 7.772E-01

Left thalamus 0.075 ± 0.036 0.061 ± 0.062 1.786E-01

Left amygdala 0.077 ± 0.045 0.132 ± 0.079 4.229E-02

Right amygdala 0.065 ± 0.072 0.205 ± 0.140 1.486E-03

Left hippocampus 0.076 ± 0.029 0.259 ± 0.087 7.400E-07

Right hippocampus 0.074 ± 0.033 0.188 ± 0.083 2.403E-04

the goal of this paper. With that being said, we did validate the
segmentation accuracy of our pipeline using the gold standard of
the first dataset, with the DSCs ranging between 0.87 and 0.93
(Table 2), the AVDs ranging between 0.04 and 0.1 (Table 3), and
the PCCs ranging between 0.72 and 1 (Table 4), as well as the
third dataset (see Table S1 in the Supplementary Material 2).

For the second step, the creation of study-specific template
shapes, we applied the Delaunay algorithm (Lee and Schachter,
1980; Shewchuk, 2002) for triangulating a carefully-selected
manual segmentation for each structure of interest. The reason

Frontiers in Neuroscience | www.frontiersin.org 10 May 2018 | Volume 12 | Article 321

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles


Tang et al. Shape Generation With Preserved Topology

TABLE 8 | The Pearson product-moment correlation coefficients between the

gold standard and segmentations from the proposed method as well as those

between the gold standard and FSL-FIRST over the 16 MRI scans of the first

group for the 12 subcortical structures alongside the corresponding p-values

indicating the significance level of each correlation.

Proposed method FSL-FIRST

PCC p-value PCC p-value

Left caudate 0.827 7.730E-05 0.953 1.129E-08

Right caudate 0.829 7.075E-05 0.948 2.528E-08

Left pallidum 0.741 1.031E-03 0.831 6.723E-05

Right pallidum 0.835 5.635E-05 0.921 4.022E-07

Left putamen 0.980 3.128E-11 0.946 3.024E-08

Right putamen 0.966 1.349E-09 0.965 1.475E-09

Right thalamus 0.908 1.160E-06 0.730 1.329E-03

Left thalamus 0.898 2.347E-06 0.706 2.237E-03

Left amygdala 0.641 7.484E-03 0.440 8.847E-02

Right amygdala 0.711 2.009E-03 0.097 7.217E-01

Left hippocampus 0.809 1.454E-04 0.568 2.179E-02

Right hippocampus 0.819 1.032E-04 0.576 1.962E-02

for using a manually created segmentation is 2-fold: firstly,
a manual segmentation can guarantee correct anatomy and
smoothness to some degree; secondly, we had previously
generated the manual segmentations to serve as atlases in our
automated structure segmentation phase, meaning no additional
effort was required here. With that being said, we can also create
a template shape based on an automated segmentation with
sufficient accuracy, correct anatomy, and sufficient smoothness.
The Delaunay algorithm is superior to the marching cubes
algorithm in terms of smoothness of the resultant surfaces though
it can fail in some cases, especially when the segmentation is
flawed. Therefore, in this case, we were well-placed to generate
the template shapes using the Delaunay algorithm since we
could pay special attention to those surfaces. Meanwhile the
marching cubes algorithm was better suited for the target
segmentations.

In practice, there are two guiding rules in selecting the
template surface: (1) the same definitions should be used in
the automated segmentations of the target MRIs as in the
segmentation of the template surface. For example, in this
work, all automated segmentations of the first two datasets
were obtained by using the atlases of the 16 subjects while
the template surface was also obtained from this 16-subject
pool. It may be inappropriate to use a template surface from a
MALF-based segmentation definition to smooth an automated
segmentation from FSL-FIRST; (2) It is better to select a
template surface from the same study sample. In other words,
it may be inappropriate to use a template surface from our
HD study to smooth an automated segmentation from another
study.

For the third step, LDDMM-based shape filtering, the key
idea is to use a diffeomorphic transformation that can accurately
deform the template shape to be very close to the target
one while preserving the smoothness and topology of the

template shape. LDDMM-surface is a validated algorithm that
has been shown to yield sophisticated diffeomorphisms that
can accurately register a pair of surfaces (Vaillant and Glaunès,
2005). According to our experiments on all three datasets, the
deformed results, based on LDDMM-surface matching, are very
close to the raw data (the target segmentations for which we
aim to create their corresponding surfaces) while preserving
the topology and smoothness of the template shapes. The high
fidelity of the resulting surfaces to the target segmentations
is somewhat of a double-edge sword; on the one hand, it
guarantees high accuracy while on the other, it causes sensitivity
to the inaccuracy induced in the segmentation process. In
other words, when the segmentations are noisy (like those from
the second dataset that the pipeline failed on), the resulting
surfaces will inherit the noise (inaccuracy) of the segmentations
from MALF. A potential solution is to utilize a much more
robust variant of the LDDMM-surface matching, such as the
one proposed by Tward and colleagues (Tward et al., 2016).
Investigation of more advanced surface matching algorithms that
are capable of maintaining a high fidelity to the segmentation
while being robust to noisy subregions of the segmentations
will be one of our future efforts. Furthermore, there are wholly
separate registration approaches that can be applied to deforming
surfaces, such as the 14 methods compared in (Klein et al.,
2009). We did not compare here the surfaces generated by
using different surface deformation approaches as that goes
beyond the scope of this paper; to formulate the proposed
pipeline.

This work was strongly motivated by the ongoing search
for simpler, more effective, and more flexible pipelines capable
of generating subcortical and ventricular surfaces with high
smoothness and correct anatomy. According to our comparison
results with another popular pipeline that directly outputs
binary segmentations and smooth triangulated surfaces, namely
FSL-FIRST, the surface results from the proposed pipeline
have a similar degree of smoothness as those from FSL-
FIRST, whereas the proposed pipeline’s segmentation accuracy
is significantly higher than FSL-FIRST for almost each of
the 12 subcortical structures, which agrees with our previous
findings (Tang et al., 2015c). This again may suggest a
superiority of the proposed pipeline, although we must be
aware of the potential unfairness given that a specific structure’s
definition may differ significantly for atlases used in MALF
and those in FSL-FIRST. Compared with existing pipelines,
the main contribution of this work, aside from the pipeline
performance, is to have provided a general framework that can
be easily adopted or modified according to one’s own purpose;
for example, to replace MALF with another segmentation
algorithm that one favors more or to choose a template
surface that one considers to be more suitable for a specific
study.

One potential limitation of the proposed pipeline is
that it is difficult to be sure that no subtle disease-related
features were lost during this surface generation process.
A way to partially address this question is to compare
the disease-related features (via group comparison to a
control group) obtained by using a set of surfaces created
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manually (to ensure accuracy) and those obtained by
using a set of surfaces created from the proposed pipeline.
However, given the lack of such a set of manually created
surfaces involving both control and disease subjects,
it is not possible to conduct such an experiment at
this moment. We anticipate that as one of our future
endeavors.

The statistical shape analysis of subcortical and ventricular
structures of the human brain has become a topic of
most considerable interest in contemporary research (Styner
et al., 2003; Qiu and Miller, 2008; Qiu et al., 2010). We
are confident that the proposed pipeline will further the
development of this research field, especially in the investigations
of HD.
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