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Abstract

Over 700 drugs have failed in stroke clinical trials, an unprecedented rate thought to be attributed in part to limited and isolated
testing often solely in “young” rodent models and focusing on a single secondary injury mechanism. Here, extracellular vesicles
(EVs), nanometer-sized cell signaling particles, were tested in a mouse thromboembolic (TE) stroke model. Neural stem cell
(NSC) and mesenchymal stem cell (MSC) EVs derived from the same pluripotent stem cell (PSC) line were evaluated for
changes in infarct volume as well as sensorimotor function. NSC EVs improved cellular, tissue, and functional outcomes in
middle-aged rodents, whereas MSC EVs were less effective. Acute differences in lesion volume following NSC EV treatment
were corroborated by MRI in 18-month-old aged rodents. NSC EV treatment has a positive effect on motor function in the aged
rodent as indicated by beam walk, instances of foot faults, and strength evaluated by hanging wire test. Increased time with a
novel object also indicated that NSC EVs improved episodic memory formation in the rodent. The therapeutic effect of NSC EV's
appears to be mediated by altering the systemic immune response. These data strongly support further preclinical development of

a NSC EV-based stroke therapy and warrant their testing in combination with FDA-approved stroke therapies.

Keywords Neural stem cell extracellular vesicles - Thromboembolic stroke - Preclinical stroke model

Introduction

Despite the overwhelming global need, intravenous tissue plas-
minogen activator (IV-tPA) and endovascular thrombectomy
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(ET) are the only two FDA-approved stroke therapies to date
[1, 2]. Both of the above “reperfusion” therapies target opening
of major blood vessels in a carefully diagnosed, yet a very small
sub-population of stroke victims. While reperfusion could itself
trigger a secondary injury, neither of the FDA-approved stroke
therapies are directly neuroprotective or neuroregenerative.
Moreover, the use of I[V-tPA and/or ET is improbable as a field
therapy and both are limited to state-of-the-art facilities [3, 4].
Therefore, a larger population of stroke patients with limited
access to these facilities (e.g., rural populations) still remain un-
treated and often rely on later neurorehabilitation and endoge-
nous neuroregeneration mechanisms [5, 6].

Ideally, an implementable therapy would protect the brain
in acute stroke and enhance long-term functional outcomes
among stroke survivors. Along these lines, the Stroke
Treatment Academic Industry Roundtable (STAIR) recom-
mends development of stroke therapies, which could reduce
reperfusion injury and promote neurovascular plasticity and
recovery later. An assessment of the litany of failed treatments
by the Stem Cell Emerging Paradigm in Stroke Consortium
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meetings (STEPS 1, II, and III) resulted in identifying major
treatment deficiencies including (1) lack of a regenerative
therapy that will not only protect cells from ischemic injury
but stimulate regeneration of lost and damaged tissues and (2)
translational animal models more reflective of human pathol-
ogy and improved predictive testing of treatments [7, §].

One of the most promising therapeutic avenues capable of
addressing this need for a neuroprotective and/or regenerative
therapy is the use of extracellular vesicles (EVs) [9]. EVs are
membrane shed microvesicles (50-1000 nm) and exosomes
(40—150 nm) produced by all cells of the central nervous system
(CNS) [10, 11]. The therapeutic development of EVs is being
explored for multiple regenerative therapeutic scenarios, as
EVs overcome many of the limitations of cell therapies, includ-
ing butnot limited to the ability to deliver multiple doses, as well
as the ability to store and administer EVs without specialized
equipment or advanced training for medical personnel [12].

While reports on EV therapeutic benefits in rodent studies
of mechanically occluded stroke (both transient suture and
permanent electrocauterization models) are encouraging, op-
timal therapeutic EV sources have not been explored [13, 14].
Previously published stroke studies utilized non-neural
sourced mesenchymal stem cell (MSC) EVs administered sys-
temically into rodent models and produced behavioral im-
provements without significant reductions in infarct volume
[13—15]. However, there are many indications that EV cargoes
are cell type specific and the parental cell line plays a prodi-
gious role in the biological properties of the resultant EV [14].
Therefore, EVs derived from different sources (MSC vs. NSC
cells) may have unique properties relative to cell type. Also,
the context under which EVs are produced directly influences
the signal that the resultant EVs communicate [16, 17]. For
example, EVs extracted from sera of stroke patients induced
inflammatory cytokine expression in vitro [ 18]. Together, cell-
specific activity and systemic immunological activation are
novel multifaceted means by which EVs may provide benefi-
cial effects in both local and systemic processes post-ischemic
insult [19]. While specific mechanism(s) of action are still
being investigated, the potential therapeutic mechanisms of
EVs appear to include anti-oxidative, pro-angiogenic, immu-
nomodulatory, and/or neural plasticity regulating processes
[20, 21]. Additionally, since the majority of stroke (~87%)
occurs due to a thromboembolic (TE) occlusion and a larger
population of victims remains untreated with the FDA-
approved reperfusion therapies, it is critical to validate this
promising therapy in a physiologically relevant TE model of
stroke [9, 22, 23].

The objective of this study was to evaluate the therapeutic
potential of human neural stem cell-derived EVs in a highly
relevant preclinical stroke model without immunosuppres-
sion. NSC EV treatment significantly decreased neural injury
in the murine model of TE stroke and also resulted in de-
creased behavioral and motor function deficits.

Results

Pluripotent Stem Cell-Derived NSC and MSC EVs Were
Similar in Structural and Protein Marker Expression
But Not in Size

To eliminate the potential confounding variable of genetic
differences, NSC and MSC were isogenically derived from
H9 pluripotent stem cells using processes previously devel-
oped [24-26]. NSC and MSC EVs were quantified and eval-
uated for size differences using Nanosight’s nanoparticle
tracking analysis. NSC and MSC EVs have overlapping, but
distinct size and concentration profiles, with a broader peak
present in the MSC EV profile indicating presence of a range
of vesicles up to 300 nm in size, while the vast majority of
NSC EVs were under 200 nm (Fig. 1a). Evaluation of NSC
EVs by electron microscopy (EM) revealed the presence of
disperse multivesicular bodies (MVBs; Fig. 1b, left panel) and
purified vesicles (Fig. 1b, right panel) could be visualized by
EM after transfer to the electron microscopy grid.
Differentiated neural cells were cultured with NSC EVs la-
beled with Dil and EVs were taken up by the neural cells
in vitro, as shown in super resolution confocal microscopy
projection images (Fig. 1c and enlarged inset). Analysis of
EVs by flow cytometry revealed that both cell types produced
EVs that contained similar amounts of commonly reported EV
markers such as CD63 and CD81, which are both members of
the highly conserved tetraspanin superfamily.

NSC EVs Provided Significant Benefits in the Murine
Embolic Model

In order to compare the therapeutic efficacy of isogenically
derived NSC and MSC EVs side by side, EV biodistribution
was first evaluated. Indium-111 (In-111)-labeled EVs were
injected 1 h post-TE-MCAQO. Animals were imaged by single
photon emission computed tomography (SPECT) at 1 and
24 h post-injection (Fig. 2b) [27]. SPECT results demonstrat-
ed systemic distribution not only in the lungs, liver, and
spleen, as reported in other EV biodistribution studies [16,
28], but were also present in the infarcted hemisphere by 1 h
post-TE-MCAO. By 24 h, EVs were largely cleared from the
infarct site, although still present in the other organs. These
results suggest that EVs preferentially accumulate in the pen-
umbra of the injury. Based on this clearance from the infarct,
animals received a three-dose treatment regimen of either EV's
or PBS vehicle by tail vein injection at 2, 14, and 38 h post-
TE-MCAO. Animals were evaluated (after confirming no
difference in cerebral blood flow; Fig. S1, a) by neurological
deficit score (NDS) at 48 h and adhesive tape test (ATT) at
96 h post-TE-MCAO followed by blood collection and tissue
analysis (Fig. 2a). NSC EV-treated animals during NDS as-
sessment demonstrated a decrease in deficits compared to
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controls as evaluated by lower scores (p <0.055) Fig. 2c).  between the groups, 55% of animals in the MSC EV and PBS
NSC EV-treated animals performed significantly (»p <0.001)  groups survived to the endpoint, while 65% of NSC EV-
faster on ATT (96.17 £11.57 vs. 162.53 £6.3 s, respectively),  treated mice survived (Fig. S1). For these reasons, NSC EVs
indicating enhanced sensorimotor function, when compared ~ were further explored as a candidate treatment, while evalua-
to controls or MSC EV-treated animals (Fig. 2d). Analysis  tion of MSC EVs was discontinued.

of metabolically active tissue by 2,3,5-triphenyltetrazolium

chloride (TTC) staining versus dead tissue (colorless) indicat-  NSC EV Treatment Reduced Lesion Volume

ed significantly decreased tissue loss in NSC EV-treated ani-  and Improved Behavioral Outcomes in Aged Mice
mals compared to the MSC EV treatment group (27.97 +£2.78

vs. 48.19+5.79 mm?, Fig. 2e, f). Since EVs are present in  Stroke therapeutics are often tested in young animals within a

bodily fluids and they could affect the systemic immune re-  narrow time range post-stroke. NSC EVs were further ex-
sponse via both direct and indirect antigen presentation, we  plored in aged mice (18 + 1 months), starting approximately
next checked the peripheral immune response after EV treat- 6 h post-stroke, to fall outside the time window of traditional

ment. Quantitative flow cytometry analysis of freshly collect-  tPA administration in humans. Dosage in the embolic model
ed blood samples at 96 h post-stroke indicated that NSC EV  was maintained constant; however, the administration win-
treatment significantly promoted macrophage polarization to-  dow was shifted to 6, 24, and 48 h post-stroke. (Fig. 4a).
ward an anti-inflammatory M2 phenotype (Fig. 3a—c, j) and  Blinded investigators randomly divided mice into non-
increased the regulatory T cell (Fig. 3d—f, k) population  stroked (sham) and stroked with either PBS vehicle (control)
resulting in the downregulation of pro-inflammatory effector ~ or NSC EV in PBS treatment groups (N =24 animals/group).
Th17 cells (Fig. 3g—i, 1). Thus, our data indicates that NSCEV ~ Analysis of T2-weighted (T2W) sequences 2 days post-TE-
treatment after stroke is capable of dampening injury re-  MCAO indicated a significant decrease in lesion volume in
sponses while augmenting a reparative systemic immune re- ~ NSC EV-treated animals (58.2+5.03 and 37.9 +2.84 mm’,
sponse (Fig. 3). In summary, this data indicates PSC-derived  respectively) (Fig. 4b, ¢), while ex vivo Q-ball MRI
NSC EVs provide molecular and behavioral benefits, while  (performed on the fixed brain post-euthanasia) indicated that
PSC-derived MSC EV treatment resulted in more variable =~ NSC EV treatment attenuated the post-stroke cerebral atrophy
results in both infarct size and behavioral outcome assessment  and significantly decreased it compared to the vehicle-treated
indicating a clear NSC EV benefit in the middle-aged embolic ~ group (22.8 £0.40 and 10.6 +1.94% of contralateral hemi-
model. While overall survival was not significantly different  sphere) (Fig. 4d). Diffusion tensor imaging (DTI) and

@ Springer



Transl. Stroke Res. (2018) 9:530-539

533

a 2h 14h 38h

CBF CBF/NDS

ATT/TTC
blood collection

96h

Neurological deficit
B
=)
2
- 9
@ w
iy = I
5 £
=
o
O
Control MSCEV NSCEV
d e Infarct size
200 80 1 #
180 70 | -
160 - 1)
) £ 60 A
3140 | E
c 5014
g 120 k] .
= 3 401
100 A —
80 | 30 4 .
60 20 l
40 10

Control MSCEV NSCEV Control

Fig. 2 NSC EVs outperform MSC EVs in the murine embolic stroke
model and indicate acute benefits may be modulated by augmenting the
systemic immune response. One hour after stroke induction either free In-
111 or labeled EVs (b, left and right, respectively) were administered into
mice via tail vein injection and analyzed by SPECT. EVs were present in
the infarct region 1 h after injection (b, red circles, left brain panels), but
were largely cleared by 24 h (b, red circles, right brain panels). Systemic
presence in the lungs, liver, and spleen are in agreement with other EV
biodistribution studies (b, body panels). Based on rapid clearance, ani-
mals received three doses of EVs (MSC EV, NSC EV, or vehicle control;

fractional anisotropy (FA) analysis was also performed after
Q-ball imaging; however, no significant differences in diffu-
sivity or white matter integrity were observed between the two
groups subjected to TE stroke, which is likely due to less
white matter content in small rodents.

Behavioral characteristics and motor function were evalu-
ated 14 days post-TE-MCAO. NSC EV-treated animals ex-
hibited significantly improved coordination on the balance
beam relative to control, with NSC EV-treated animals cross-
ing in 18.9+1.36 s and control animals crossing in 28.0 =
0.45 s (Fig. 4e). Significantly fewer foot slips while crossing
the beam (2.21 +0.18 vs. 1.25+0.21 foot slips) were also
observed in NSC EV-treated animals (Fig. 4f). Grasping abil-
ity and forelimb strength were evaluated by the hanging wire
test. NSC EV-treated animals could hang an average of 28.47
+1.18 s, while control animals grasping was significantly
shorter (5.1+0.91 s) (Fig. 4g). Episodic memory was

MSCEV NSCEV

MSC EV NSC EV

N=12/group), at 2, 14, and 28 h after TE-MCAO, (as outlined in a).
Neurological deficit 48 h post-TE-MCAO (c) indicated that animals that
received MSC EVs were indistinguishable from controls, while NSC EV
evaluation trended toward significance (p =0.055). Adhesive tape test
indicated improved somatosensory function after NSC EV treatment
compared to either MSC EV or control (d) Acute effects on neural tissue
were analyzed by 2,3,5-triphenyltetrazolium Chloride (TTC) differentiat-
ed metabolically active (live, red) and inactive (dead, colorless) tissue
indicated significantly decreased injury and infarct following NSC EV
treatment (e, f)

Control

evaluated by novel object recognition (NOR) testing. NSC
EV-treated mice spent significantly more time exploring the
novel object (NO; 36.92 +1.48 s) than the control group that
spent only 26.50 +3.29 s on average with the NO. There were
no significant differences in time spent with the familiar object
between groups. Novel object discrimination index (DI) indi-
cated NSC EV-treated animals performed significantly better
than control group (0.26 + 0.04 and 0.0005 £ 0.05, respective-
ly; Fig. 41). Finally, depressive phenotype was assessed by tail
suspension test 28 days post-TE-MCAO. Controls were im-
mobile for a significantly longer time period (178.13 £9.96 s)
as compared to NSC EV-treated animals (123.08 +9.58 s)
(Fig. 4h). The NSC EV group was not statistically different
from the sham group in survival rates, while fewer animals
survived to the endpoint in the control group (Fig. S1 a; p <
0.319). Collectively, this data indicates an early neuroprotec-
tive effect of NSC EV in aged mice as indicated by reduced
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Fig.3 NSCEV treatment augments the systemic immune response to TE
stroke. Cells in circulation that were analyzed for immune cell presence
indicated an increase in functional M2 macrophages associated with
tissue repair (a—c, j) and increased immunosuppressive Tregs (d—f, k),
as well as a decrease in pro-inflammatory Th17 (CD4+, IL-17+) cells

lesion volume and improvements in functional outcomes as
measured by grasping ability, forelimb strength, motor coor-
dination, and memory consolidation.

Discussion

We present here the first experimental evidence that NSC
EVs improve cellular, tissue, and functional outcomes in the
murine TE-MCAO models. Mitigating the secondary injury
cascades, particularly the immune response, NSC EV inter-
vention led to significantly decreases in infarct size and
brain atrophy, which has never been observed acutely in
previous studies of exosome treatment for stroke [13—15].

@ Springer
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MSCEV NSCEV Control MSCEV NSCEV

compared to MSC EVs and control (g, 1). Asterisks (*) indicate statis-
tical differences from sham group while the number sign (#) indicates
significant statistical differences between control and NSC EV groups;
##1 value <0.05; **™p value < 0.01; **+*p value <0.001

Although various cell therapies have improved stroke re-
covery in preclinical models, NSC EVs possess a number
of advantages over cell-based therapeutics including de-
creased tumorigenicity, limited immunogenicity, enhanced
biodistribution, and BBB permeability [13, 29-31]. In ad-
dition, vesicles are involved in many biological processes
with the potential to serve as a neuroprotective and translat-
able therapeutic for neural disabilities including ischemic
stroke and, importantly, can likely be used in conjunction
with currently available tPA and/or endovascular therapies
[32, 33]. Tissue level changes generated large-scale reduc-
tions in neural injury and rapid recovery of neurological and
motor function outcomes in vivo, thus suggesting NSC EVs
are a promising therapeutic for human patients.
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Fig.4 NSCEYV treatment resulted in molecular and behavioral benefits in
aged rodents. Based on increased benefit from NSC EV treatment, aged
C57BL/6 animals (N = 24/group) were randomly split into control (PBS
vehicle) and NSC EV treatment groups by blinded investigators, who
delivered treatments at 6, 28, and 48 h as outlined in a. Analysis of
T2 W images (b, lesion shown in white) demonstrated a significant re-
duction in lesion size in NSC EV-treated aged mice relative to control
mice at 48 h (c¢). Volumetric analysis of T2 intensity (b) sequences re-
vealed a significant reduction in ipsilateral hemisphere atrophy in NSC
EV-treated mice relative to non-treated mice at 30 days (d). DTI se-
quences showed no significant differences in FA between NSC EV-
treated and control mice at 28 days (b). Balance and coordination was
evaluated by beam walk, where both TE-MCAO groups took longer to
cross the beam than sham animals, but NSC EV-treated animals were
significantly faster at performing the task than controls (e). The number

Control NSC EV

of foot slips during beam walk also indicated improved coordination in
treated animals vs. control (f). Forelimb coordination was further ana-
lyzed by hanging wire test, where NSC EV animals significantly
outperformed control animals (g). Tail suspension test revealed that con-
trol animals were immobile for significantly longer than NSC EV-treated
animals (h). Non-spatial memory of animals was evaluated by novel
object recognition test, where NOR discriminatory index indicated that
both TE-MCAO groups had detectable deficits, but NSC EV-treated mice
performed significantly better than controls, as a result of treated animals
spending more time with the novel object, compared to the familiar object
(i). Asterisks (*) indicate statistical differences from sham group while the
number sign (#) indicates significant statistical differences between con-
trol and NSC EV groups; *™p value <0.05; **p value <0.01; *#=*#,
value <0.001
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Functional benefits following MSC EV treatment for stroke
has been evaluated using several different cell lines, with varying
degrees of MSC marker definition and EV dose [13, 14, 34].
However, benefits in the infarct, including evidence of axonal
remodeling and angiogenesis in the ischemic boundary zone
were achieved using EVs from cells modified by a lentivirus,
indicating that modification can influence therapeutic potential
of'the resultant EV's [34]. Uniquely, the MSC EVs tested were of
PSC origin and differentiated in vivo. We have shown previously
that although these cells have many of the common markers
(CD73,CD93, and CD105), they can have unique differentiation
potential and methylation patterns [35]. MSC sourced using dif-
ferent tissue origins, isolation methods, and in vitro culture con-
ditions can alter the immunosuppression potency of MSC [36].
Thus, the results here may not represent results obtained by all
sources of MSCs. However, these findings do elude to unknown
subtleties of screening complex biologics, like EVs, for therapeu-
tic potential in humans.

Stroke is unpredictable and the degree of neuroprotection
provided by EVs may likely vary by the efficiency of their
delivery into the ischemic brain. Therefore, we tested NSC
EVs in two different treatment regimens in murine TE stroke.
NSC EVs therapy, as early as 2 h after TE stroke in middle-
aged (12 months old) mice, not only improved the neurolog-
ical outcomes and profoundly reduced the infarction volume
but also downregulated the systemic inflammatory response in
the blood. It is well established that following stroke, immune
cells such as leukocytes infiltrate the brain as a result of in-
creased adhesion phenomena and resultant BBB permeability,
leading to a brain localized neuroimmune response [37].
Circulating macrophages can also trigger a long-term adaptive
immune response causing chronic neurodegeneration and
subsequent neuropsychiatric dysfunction even after closure
of the BBB [38]. Naive immune cells such as macrophages
and T lymphocytes are highly plastic in nature, which can
adapt to a context-specific functional phenotype depending
upon the microenvironment. Activated macrophages can also
traverse into the draining cerebro-meningeal lymphatic sys-
tem to trigger an adaptive immune response, which can decide
the fate of outgoing T lymphocytes targeting the injured brain
[39]. Since EVs carry a number of proteins, various RNA
species, and bioactive lipids capable of diverse signaling, we
looked into the systemic immune response 96 h after stroke.
Mice treated with repeated doses of NSC EV showed in-
creased M2-type macrophages and Treg populations, with a
concurrent decrease in Th17 lymphocytes. Since macrophage
activation precedes T lymphocyte proliferation and activation,
it is likely that acute treatment with NSC EVs promoted a
conducive microenvironment resulting in alternatively (but
not classically) activated M2-type polarization. This likely
skews T lymphocytes to their regulatory phenotype, (Treg)
with concurrent suppression of pro-inflammatory Th17 (an
effector phenotype which releases IL-17 and causes long-
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term neurodegeneration after stroke) [40]. Although these
mechanistically novel findings in response to NSC EV thera-
py need further investigation, it is probable that such re-
sponses could have translational importance (Fig. 2); as such,
circulating immune cells from the blood could possibly be
used as a convenient biomarker to follow chronic effects of
disease progression and the therapeutic effect of NSC EV in
stroke during long-term follow-up.

Chronic neuropsychiatric dysfunctions such as the exacer-
bation of depression, anxiety, and dementia in aged individ-
uals are very common after stroke [41]. Therefore, we next
evaluated the delayed NSC EV therapy in the reproductively
senescent aged (18 months old) mice subjected to TE stroke
model and followed them for both acute and chronic out-
comes. NSC EV therapy, even in an extended treatment win-
dow, reduced the acute lesion volume and cerebral atrophy at
28 days post-stroke. NSC EV-treated stroke mice performed
better in various behavioral tasks related to motor function,
muscular strength, depression, and learning/memory. Taken
together, our data in murine TE stroke strongly supports fur-
ther development of NSC EV-based stroke therapy.

MRI assessments of infarct volume, atrophy, and brain swell-
ing are pivotal predictors of clinical severity and prognosis and
are critical readouts in assessing the efficacy of stroke therapies
[42,43]. NSC EVs administered both within and outside the tPA
therapeutic window resulted in a significant decrease in infarct
volume in our murine model. In addition, MRI results suggest
NSC EVs also resulted in a significant reduction in tissue loss
28 days post-TE-MCAO in aged mice. These findings directly
support recent reports in which MSC EV's were found to promote
tissue preservation and neurovascular remodeling through pro-
posed paracrine effectors [15, 44, 45].

NSC EVs may promote increases in vascular density and
angiogenic processes by mediating specific gene regulation.
For example, emerging data suggests downregulation of miR-
15a in cerebral vessels in a murine model of ischemic stroke
promotes angiogenesis in the peri-infarct region by increasing
FGF-2 and VEGEF levels [46, 47]. Many MSC EV-related
studies have observed improvements in functional recovery,
neurogenesis, and angiogenesis in rodent models of ischemic
stroke [14, 15, 48, 49]. However, these studies have yet to
report a significant difference in acute infarct volume as we
have shown here. These results suggest that NSC EVs maybe
therapeutically more potent than their MSC EV counterparts.
While the exact molecular mechanism(s) responsible for these
effects are currently unknown, it is possible that they are me-
diated by tetraspanin superfamily proteins. We routinely de-
tect tetraspanins CD63 and CD81 in NSC EVs. Tetraspanins
affect cell adhesion, motility, proliferation, and coagulation
[50], which we believe may improve stroke outcomes.

It is imperative for the success of translational research to
also incorporate behavioral tests that are sensitive to both the
area of brain damage and the interventions that are being
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applied [51]. Neurological deficit scores and adhesive tape
removal times revealed significant improvements in NSC
EV-treated mice 2 and 4 days post-TE-MCAO, respectively.
Furthermore, NSC EVs promoted significant improvements
in balance beam walking, the number of footfalls, hanging
wire, and tail suspension performance 14 days post-TE-
MCADO in aged rodents. In comparison, similar studies eval-
uating rodent MSC EVs also reported significant behavioral
improvements in comparatively young animals, in the absence
of changes in infarct volume [14, 34, 52]. However, how
rodent MSC EVs evaluated in young adult animals translate
to the therapeutic potential of human MSC EVs and how those
compare to NSC EVs are frequently not addressed—Ileaving
plausible gaps in our knowledge of how these resources in-
form further development in preclinical programs for evalua-
tion of EVs for therapeutic use in humans.

In addition to sensorimotor tests, we also evaluated NSC
EV effects on declarative memory. Fourteen days post-TE-
MCAOQO, our NSC EVs induced a significant improvement
not only in NOR but also in associated NO discrimination
performance. This suggests NSC EVs may also support the
conservation of key brain regions associated with declarative
memory and discrimination, like the dorsolateral prefrontal
cortex and the medial temporal lobe [53, 54]. Advanced im-
aging and pharmacological inactivation studies in multiple
animal models have also confirmed this theory by providing
evidence that the prefrontal cortex plays a critical role during
remote memory recall by regulating the hippocampus [55].
Stroke-induced injury to white matter tracts (including con-
nections to the frontal and temporal cortices) has been linked
to lasting deficits in episodic and declarative memory in both
rodent models, as well as human patients [55-58].

This study uniquely encompassed a direct comparison of
human MSC and NSC EVs while abiding by STEP and
STAIR committee recommendations for developing stroke
therapeutics. The extensive testing of NSC EVs has shown
impressive biological relevance in the TE-MCAO model of
ischemic stroke. By not only decreasing hemispheric swelling,
atrophy, and infarct volume but also improving functional
performance in vivo, NSC EVs possess potent and translat-
able therapeutic potential that with further testing may change
the current therapeutic paradigm of ischemic stroke. Further
testing in large animal models of stroke, as well as studies
evaluating the use in conjunction with tPA and endovascular
therapies, will further inform the therapeutic development po-
tential of NSC EVs.
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