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Abstract

Background: Sodium-glucose cotransporter proteins (SGLT) belong to the SLC5A family, characterized by the cotransport of
Na+ with solute. SGLT1 is responsible for intestinal glucose absorption. Until recently the only role described for SGLT
proteins was to transport sugar with Na+. However, human SGLT3 (hSGLT3) does not transport sugar but causes
depolarization of the plasma membrane when expressed in Xenopus oocytes. For this reason SGLT3 was suggested to be a
sugar sensor rather than a transporter. Despite 70% amino acid identity between hSGLT3 and hSGLT1, their sugar transport,
apparent sugar affinities, and sugar specificity differ greatly. Residue 457 is important for the function of SGLT1 and
mutation at this position in hSGLT1 causes glucose-galactose malabsorption. Moreover, the crystal structure of vibrio SGLT
reveals that the residue corresponding to 457 interacts directly with the sugar molecule. We thus wondered if this residue
could account for some of the functional differences between SGLT1 and SGLT3.

Methodology/Principal Findings: We mutated the glutamate at position 457 in hSGLT3 to glutamine, the amino acid
present in all SGLT1 proteins, and characterized the mutant. Surprisingly, we found that E457Q-hSGLT3 transported sugar,
had the same stoichiometry as SGLT1, and that the sugar specificity and apparent affinities for most sugars were similar to
hSGLT1. We also show that SGLT3 functions as a sugar sensor in a living organism. We expressed hSGLT3 and E457Q-hSGLT3
in C. elegans sensory neurons and found that animals sensed glucose in an hSGLT3-dependent manner.

Conclusions/Significance: In summary, we demonstrate that hSGLT3 functions as a sugar sensor in vivo and that mutating a
single amino acid converts this sugar sensor into a sugar transporter similar to SGLT1.
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Introduction

SGLT1 is an electrogenic transporter that couples the

movement of two Na+ ions to the transport of a single sugar

molecule into cells [1]. Its biophysical and physiological properties

are well characterized, leading to detailed structural and

mechanistic models of its function [2]. Human SGLT3 (hSGLT3)

is a protein from the same family as SGLT1 that despite a high

degree of amino acid identity appears to have different

characteristics. First, hSGLT3 does not transport sugars, although

sugars bind to the protein. The consequence of sugar binding to

hSGLT3 is membrane depolarization resulting from cation

permeation [3]. In addition, sugars (except imino sugars) bind

hSGLT3 with much weaker apparent affinity than hSGLT1 [4].

Finally, hSGLT3 has different sugar selectivity than hSGLT1 [4].

For example, hSGLT3 binds imino sugars while hSGLT1 does

not. Because the binding of sugars to hSGLT3 causes membrane

depolarization and not sugar transport, it has been suggested that

hSGLT3 functions as a sugar sensor instead of a sugar transporter

[3].

hSGLT3 is expressed at the neuromuscular junction and in the

enteric nervous system. In both cases hSGLT3 colocalizes with the

acetylcholine receptor [3]. These data suggest that sugar sensing

by hSGLT3 may occur in multiple tissues. Other studies have

suggested that sugar sensing may be a common function of SGLT

proteins [5,6].

Residue Q457 in transmembrane segment 11 of hSGLT1 plays

a key role in its function. The importance of this residue was

initially revealed by the finding that a patient with glucose-

galactose malabsorption, a disease characterized by inability to

absorb intestinal glucose, had a mutation at this site (Q457R)

[2,7]. Subsequent structure-function studies revealed that residue

Q457 in hSGLT1 is likely involved in sugar binding and

translocation through hydrogen bond interactions with the

pyranose ring of the sugar [8]. More recently, the crystal structure

of the vibrio SGLT (vSGLT) shows that the residue corresponding

to amino acid 457 in mammalian proteins directly interacts with

the sugar [9]. Interestingly, while all cloned SGLT1 and SGLT2

cotransporters have a conserved glutamine at amino acid 457,

SGLT3s have either glutamate (human SGLT3, pig SGLT3, rat

SGLT3a and mouse SGLT3a), glycine (mouse SGLT3b) or serine

(rat SGLT3b) (Fig. 1).

It is not known if amino acid 457 underlies the striking SGLT1/

SGLT3 functional differences. Specifically, we wondered if
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introducing a glutamine instead of a glutamate at position 457 in

hSGLT3 (E457Q-hSGLT3) would transform hSGLT3 into a

sugar transporter. Moreover, despite finding that hSGLT3 acts

like a sugar sensor in Xenopus oocytes, there is no direct evidence

that it acts as a sugar sensor in vivo. In this paper we report that

substitution of E457 with a glutamine converts hSGLT3 into a

sugar transporter with functional features resembling SGLT1,

including lower K0.5s for sugars and modified sugar specificity. We

also show that hSGLT3 functions as a sugar sensor in vivo when

expressed in C. elegans ASK chemosensory neurons.

Results

A point mutation converts hSGLT3 from a sugar sensor
to a sugar cotransporter

In spite of the high amino acid identity between hSGLT3 and

hSGLT1 (70%), the biophysical characteristics of the proteins

differ greatly. hSGLT3 has a glutamate at position 457 while all

SGLT1 sugar transporters have a glutamine (Fig. 1). Previous

studies on SGLT1 [8] and the recently resolved structure of

vSGLT [9] suggest that the amino acid at positions corresponding

to 457 in SGLT1 plays a direct role in sugar binding and

transport. We investigated the functional consequences of

substituting E457 to glutamine in hSGLT3. To study the function

of E457Q-hSGLT3, 14C-aM-glc (alpha-methyl-D-glucose, a non-

metabolizable sugar that is a substrate for SGLT proteins)

transport experiments were carried out in Xenopus oocytes

expressing hSGLT3 or E457Q-hSGLT3 (Fig. 2A). As expected

from previous studies, hSGLT3 expressing oocytes did not

transport sugar [3]. However, E457Q-hSGLT3 expressing oocytes

showed a dramatic increase in sugar uptake, transporting

approximately 100 times more sugar than non-injected (control)

or hSGLT3 expressing oocytes. To confirm that sugar uptake was

through E457Q-hSGLT3, we repeated the experiments in the

presence of 0.1 mM phlorizin (Pz), a competitive inhibitor of

SGLT proteins, or in the absence of Na+, since SGLT proteins use

the Na+ electrochemical gradient to drive sugar transport. In these

two conditions, the sugar uptake was as low as in non-injected

oocytes. These results show that sugar transport in E457Q-

hSGLT3 expressing oocytes is Na+ dependent and is inhibited by

Pz, indicating that it is mediated by the E457Q-hSGLT3. These

data demonstrate that mutating E457 to Q transforms the sugar

sensor hSGLT3 into a sugar transporter.

SGLT1 uses the electrochemical gradient of Na+ to transport

sugar. In each transport cycle the stoichiometry is 2 Na+/1 glucose

[1]. We thus explored whether a similar stoichiometry existed in

E457Q-hSGLT3. We recorded current induced by 1 mM aM-glc

in individual oocytes expressing E457Q-hSGLT3, clamped at

280 mV, and simultaneously measured 14C-aM-glc transported

into cells (filled circles in Fig. 2B). We fitted a linear regression to

the data points and found that the stoichiometry was 2.0 positive

charges transported per aM-glc molecule, the same as in SGLT1,

indicating that ion and sugar transport in E457Q-hSGLT3 is

tightly coupled and neither ions nor sugar leak through the

protein. This suggests that the side chain at 457 in SGLT proteins

is responsible for coupling ion flux to sugar transport. To test this,

we performed the same experiment in the hSGLT1 mutant

Q457E, which replaces the amino acid in hSGLT1 for that in

hSGLT3. We previously reported that the K0.5 for sugars in

Q457E-hSGLT1 is weaker than in WT-hSGLT1 [8]. Here we

show that Q457E-hSGLT1 behaved as an uncoupled transporter

(empty circles, Fig. 2B). These data clearly indicate the importance

of residue 457 on the coupling between ions and sugar, and the

resulting stoichiometry.

E457Q mutation increases the sugar-induced currents
In order to further study the characteristics of E457Q-hSGLT3,

we recorded sugar-induced currents. We clamped the oocyte at

250 mV and measured currents at voltages ranging from 2150 to

+50 mV in 20 mV decrements (Fig. 3A) in the absence (Fig. 3B)

and presence (Fig. 3C) of 150 mM aM-glc. The current/voltage

relationships obtained from these data are shown in Figure 3D. In

Figure 1. Amino acid alignment of SGLTs. Four SGLT1s and 3 SGLT2s from different species (h: human, m: mouse, p: pig) have a glutamine at
position 457. SGLT1s and SGLT2s proteins transport sugars. The alignment also includes 6 SGLT3s. None of the SGLT3s encodes a glutamine at
position 457 (boxed). Rather a glutamate, glycine or serine is present at that position. In SGLT1, Q457 is involved in sugar recognition, binding and
translocation [8,9] and mutation at this site can cause glucose-galactose malabsorption [2,7]. Stars, semicolons and periods denote identity and
conservation respectively. Transmembrane segments (TM) 10 and part of 11 are also shown (based on alignment with vSGLT, whose crystal structure
has been solved [9]).
doi:10.1371/journal.pone.0010241.g001
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Figure 3E, F and G data obtained from an oocyte expressing WT-

hSGLT3 are shown for comparison. Our data show that the

sugar-induced current (difference between black and open circles

in 3D and 3G) is larger in E457Q-hSGLT3 than in WT-hSGLT3

expressing oocytes.

In the absence of sugar, SGLT1 proteins exhibit pre-steady-

state currents after a step change in membrane voltage. These

currents are generally attributed to sodium binding and voltage-

dependent changes in the conformation of the transporter [10,11].

The pre-steady-state currents in WT-hSGLT3 were very small

compared to those reported for SGLT1. Figure 3B shows that the

pre-steady-state currents were larger in E457Q-hSGLT3 (Fig. 3B)

than in WT-hSGLT3 (Fig. 3F). The pre-steady-state currents

disappeared completely when sugar was added to the mutant

(Fig. 3C), but only decreased slightly when sugar was added to

WT-hSGLT3 (Fig. 3F). It is possible that the lower apparent

affinity of the wild-type protein for this sugar leaves a greater

fraction of SGLT3 proteins unbound to sugar.

To confirm that these results were due to the activity of WT-

hSGLT3 and E457Q-SGLT3 we performed the same experi-

ments in non-injected oocytes (Figure S1). Pre-steady-state

currents were not present in non-injected oocytes (Fig. S1A) and

150 mM aM-glc did not induce current (Fig. S1C).

E457Q mutation changes hSGLT3 ligand specificity and
apparent affinity of sugars

We next tested whether E457Q imparted other SGLT1-like

properties to SGLT3. We first recorded sugar-induced depolar-

izations in E457Q-hSGLT3 expressing oocytes and compared our

results with published data for WT-hSGLT3 and hSGLT1 [4].

Figure 4A shows that five of the eight sugars we tested [1-deoxy-

glucose (-DO-glc), 3DO-glc, 6DO-glc, glc, aM-glc] induced

similar maximal depolarizations at saturating concentrations.

These data indicate that these sugars interact with E457Q-

hSGLT3 with comparable efficiency, and that they are similarly

effective as agonists. However, two of the sugars, 2DO-glc and 1-

deoxynojirimycin (DNJ), induced much smaller depolarizations

indicating poor or lack of interaction with E457Q-hSGLT3. 2DO-

glc is neither a substrate for hSGLT1 nor hSGLT3, and DNJ was

previously shown to be good ligand for hSGLT3 but a poor one

for hSGLT1 [4]. Our data suggest that the E457Q substitution

changes the transporter interaction with DNJ and renders it more

similar to hSGLT1.

It was previously shown that all sugars and inhibitors tested

(except imino sugars) have weaker apparent affinity (K0.5) for

hSGLT3 than for hSGLT1 [4]. We tested whether the mutation

we introduced (E457Q) would change hSGLT3 sugar K0.5s to

render them similar to hSGLT1. For all sugars in Fig. 4A except

2DO-glc and DNJ the K0.5s were then calculated (Table 1).

Figure 4B shows one example of depolarization caused by glucose

(black circles) at substrate concentrations that range from 0.1 to

5 mM in a representative oocyte. The fit that provides the K0.5

value is shown as a dotted line. For comparison we also show the

fit obtained from glucose-induced depolarizations in a WT-

hSGLT3 expressing oocyte and the fit gives a K0.5 similar to that

previously published [3,4]. The results (Table 1) show that

substituting glutamate for a glutamine at position 457 not only

converted hSGLT3 from a sugar sensor to a sugar transporter, but

also dramatically increased the apparent affinities for glucose, aM-

glc, 1DO-glc, 3DO-glc and 6DO-glc, so that they are similar or

even stronger than those of SGLT1. The only apparent affinity

that was not affected by the E457Q mutation was that for

galactose (134622 mM, n = 2), suggesting that E457Q-hSGLT3

retains selectivity for glucose derivatives over galactose derivatives,

just like WT-hSGLT3 and in contrast to hSGLT1. Apparent

affinities of 2DO-glc and the imino sugar DNJ for E457Q-

Figure 2. Substitution of glutamate by glutamine at position 457 in hSGLT3 changes the protein from a glucose sensor to a glucose
transporter. A. We measured 50 mM aM-glc transport in control oocytes (non-injected) and WT-hSGLT3 and E457Q-hSGLT3 expressing oocytes.
Data show the mean 6 SE of the sugar uptake in individual oocytes. The number of oocytes per condition varied from 4 to 8. In oocytes expressing
E457Q-hSGLT3, experiments were also carried out in the presence of 0.1 mM phlorizin (Pz), or in absence of Na+. B. Charge uptake and sugar uptake
were simultaneously measured in oocytes expressing E457Q-hSGLT3 (filled circles) and Q457E-hSGLT1 (open circles). Each point corresponds to
datum obtained from one oocyte clamped in the presence of aM-glc. The background uptake of aM-glc in non-injected oocytes has been subtracted.
The solid line shows a fit of E457Q-hSGLT3 data with a linear regression giving a slope of 2.0 indicating that 2 net positive charges are transported per
aM-glc molecule.
doi:10.1371/journal.pone.0010241.g002
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hSGLT3 were not determined because their induced depolariza-

tions were too small.

Phlorizin, in addition to inhibiting SGLT1 with an inhibition

constant, Ki, of 0.2 mM [12] also inhibits hSGLT3 with a Ki of

120 mM [4]. We asked if the E457Q mutation also affected

phlorizin inhibition of hSGLT3. To calculate the Ki of phlorizin

for E457Q-hSGLT3, we measured the inhibitory effect of ph-

lorizin at concentrations ranging from 0.1 to 10 mM on depo-

larizations induced by the K0.5 of aM-glc, 0.5 mM, and plotted the

inhibition as a function of phlorizin concentration (Fig. 4C). By

fitting these data with equation (1) (Methods), we obtained the Ki

of phlorizin for E457Q-hSGLT3. We found that phlorizin inhibits

E457Q-hSGLT3 with an inhibition constant (Ki = 1.6 mM) that is

stronger than WT-hSGLT3 (Table 1). This observation suggests

that E457Q alters the phlorizin binding site or the allosteric

coupling of phlorizin binding with the inhibited state. We conclude

that E457Q mutation renders hSGLT3 sensitivity to phlorizin

similar to hSGLT1.

hSGLT3 mediates glucose-sensing when expressed in C.
elegans ASK neurons

hSGLT3 can function as a sugar sensor when expressed in

Xenopus oocytes [3]. Does hSGLT3 function as a sugar sensor in a

living organism? To test this, we expressed WT-hSGLT3 in C.

elegans ASK chemosensory neurons. We reasoned that if hSGLT3

alters the membrane potential in these sensory neurons when

animals are exposed to glucose, hSGLT3 may be able to drive

sugar sensing (Fig. 5A). We also expressed E457Q-hSGLT3 to

determine if the functional differences between WT and mutant

hSGLT3 observed in the oocytes are reflected in vivo.

ASK neurons are located in the head of C. elegans and

participate with other sensory neurons in mediating attraction to

lysine as well as avoidance of acidic solutions [13,14]. The

molecular mechanisms underlying this chemosensitivity are not

fully understood but involve the DEG/ENaC channel DEG-1 and

TRP channel OSM-9 [14,15]. We generated transgenic animals

expressing WT-hSGLT3 or E457Q-hSGLT3 under the control of

Figure 3. Current recordings in WT and in E457Q-hSGLT3. A. Voltage/pulse protocol used in experiments shown in panels B–G. The voltage is
initially clamped at 250 mV, then the voltage jumped from 2150 to +50 mV with 20 mV increments for 100 ms and finally the voltage is returned to
-50 mV. B. Current recordings in a E457Q-hSGLT3 expressing oocyte in presence of Na+. C. Analogous currents are shown from the same oocyte in
the presence of 150 mM aM-glc. Note that the presteady-state currents disappear after adding sugar. D. Steady-state currents in a E457Q-hSGLT3
expressing oocyte at different voltages (from 2150 to +50 mV) in Na+ alone and after adding 150 mM aM-glc. E, F, and G. Currents recorded with
the same conditions as in A, B, and C respectively in a WT-hSGLT3 expressing oocyte. Note that the presteady-state currents in E457Q-hSGLT3 (B) are
larger than in WT-hSGLT3 (E).
doi:10.1371/journal.pone.0010241.g003
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the ASK specific promoter srg-8 [16] and assayed attraction to 10

mM glucose on standard chemotaxis plates (Fig. 5A) [13].

We found that while non-transgenic control C. elegans were

neither repulsed by nor attracted to 10 mM glucose, C. elegans

expressing WT-hSGLT3 and E457Q-hSGLT3 were repulsed by

glucose (p = 0.043 and p = 0.041 respectively, Fig. 5B). In a

previous study, it was shown that in hSGLT3 expressing oocytes

glucose induces higher currents with increasing concentration of

protons [3]. We thus repeated the experiments on chemotaxis

plates at pH 5. We found that while transgenic animals that

expressed E457Q-hSGLT3 were no longer repulsed by glucose,

WT-hSGLT3 expressing C. elegans were now attracted to glucose

(Fig. 5C). Attraction was clearly mediated by hSGLT3 because it

was inhibited by the SGLT inhibitor phlorizin, and it was not

observed in wild type control C. elegans. To confirm that ASK

neurons remained functional in WT-hSGLT3 and E457Q-

hSGLT3 animals, we measured attraction to lysine-acetate which

is mediated by ASK neurons. C. elegans were attracted to lysine in

all genetic backgrounds (attraction index = 0.3760.06, 0.2960.05

and 0.3160.06 for wild type C. elegans, WT-hSGLT3 transgenic C.

elegans, and E457Q-hSGLT3 transgenic C. elegans, respectively)

indicating that ASK neurons functioned normally.

C. elegans expressing WT-hSGLT3 or E457Q-hSGLT3

displayed different behaviors in vivo towards glucose depending

on the pH. To study how pH affects the function of hSGLT3

and E457Q-hSGLT3, we carried out experiments in oocytes

expressing each protein. We clamped the oocytes at 250 mV

and measured the sugar-induced current at pH 6 and pH 5

mimicking the conditions of our C. elegans experiments. For WT-

hSGLT3 (Fig. 6A), we found that 10 mM glucose induced a

small current at pH 6. However, when the same oocyte was

perfused with pH 5 solution the same concentration of sugar

induced a much larger current, approximately 4 times greater.

We also observed a H+-induced current when the pH was

lowered from 6 to 5 even in the absence of sugar. Thus, we show

that in oocytes that express WT-hSGLT3 the combination of

Figure 4. Apparent affinities in E457Q-hSGLT3 are similar to hSGLT1 affinities. A. Depolarizations induced by different sugars in an E457Q-
hSGLT3 expressing oocyte. When used at saturating concentrations, different sugars induced similar maximal depolarizations. The concentrations
were 500 mM for DNJ; 10 mM for 1DO-glc, glc and aM-glc; 50 mM for 2DO-glc, 3DO-glc, 6DO-glc; and 100 mM for galactose. Galactose showed a
smaller depolarization because the concentration tested was not saturating. 2DO-glc and DNJ showed small depolarizations and are known to be
poor hSGLT1 agonists. B. Depolarizations induced by glucose in one representative oocyte expressing E457Q-hSGLT3 and one hSGLT3 are shown as a
function of sugar concentration. Dotted lines represent the fit of the data with equation (1) to estimate the K0.5 and maximal depolarization (DVmax)
values. K0.5 in this example was 0.460.1 mM for E457Q-hSGLT3 and 2863 mM for hSGLT3. C. Ki of phlorizin for E457Q-hSGLT3. Graphic illustrates the
inhibition of 0.5 mM aM-glc-induced depolarization by phlorizin. The amount of aM-glc-induced depolarization inhibited by 0–10 mM Pz is plotted
against Pz concentration. The curve is a fit to equation (1) (Methods).
doi:10.1371/journal.pone.0010241.g004
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pH 5 and 10 mM glucose produced much larger currents than

glucose at pH 6. In contrast, in E457Q-hSGLT3 expressing

oocytes (Fig. 6B), the 10 mM glucose-induced current was

almost the same at both pH 6 and pH 5. And the H+-induced

current observed in WT-hSGLT3 when dropping the pH was

almost non-existent in E457Q-hSGLT3. Thus, increasing [H+]

had a much smaller effect on E457Q-hSGLT3 induced currents

than on WT-hSGLT3. Even though low pH increases glucose-

induced currents, WT-hSGLT3 still does not transport glucose

in these conditions (Fig. S2).

C. elegans expressing WT-hSGLT3 were neither repulsed by nor

attracted to glucose when 100 mM Pz was present (Fig. 5C). Thus,

we also tested how the glucose-induced current was affected by Pz.

Figure 5C shows that Pz significantly inhibited the current induced

by glucose and H+ at pH 5. Indeed Pz inhibits ,2/3 of the current.

To confirm the effect of Pz on the isolated H+-induced currents we

repeated the experiment in the absence of sugar (Fig. 6D). To

conclude, these results show that at the same concentration used in

our C. elegans experiments, 100 mM, Pz significantly inhibits sugar

induced currents at pH 5, thus explaining why there is no attractive

Figure 5. hSGLT3 mediates glucose chemotaxis when expressed in C. elegans sensory neurons. A. Scheme of the behavioral assay we
performed in C. elegans (see Methods for details). B. Transgenic animals expressing WT-hSGLT3 or E457Q-hSGLT3 in ASK chemosensory neurons were
tested for chemotaxis to 10 mM glucose on pH 6 plates in which a gradient of glucose was established. Attraction index (AI) was (number of animals
at glucose spot - number of animals at control spot)/(total number of animals). Thirty to forty animals were assayed in each trial. Number of trials was
6, 5, and 8 respectively. C. elegans expressing WT-hSGLT3 or E457Q-hSGLT3 in ASK sensory neurons were repulsed by glucose. C. The same strains
were assayed on pH 5 agar plates. For experiments in which we used phlorizin we incubated the chunk of agar in 10 mM glucose plus 0.1 mM
phlorizin, prior to establishing the gradient on the plate. C. elegans expressing WT-hSGLT3 were attracted to glucose whereas animals expressing
E457Q-hSGLT3 showed no preference for glucose over the control spot. Importantly, attraction of WT-hSGLT3 expressing C. elegans to glucose was
inhibited when Pz was present, confirming that it was mediated by hSGLT3. Number of trials was 10, 14, 5 and 8 for wild type C. elegans, WT-hSGLT3,
WT-hSGLT3+Pz and E457Q-hSGLT3 respectively. Data are expressed as mean 6 SE. * indicates p,0.05 by comparison with wild type non-transgenic
control C. elegans, by t-test.
doi:10.1371/journal.pone.0010241.g005

Table 1. Apparent affinities are similar in E457Q-hSGLT3 and hSGLT1.

hSGLT1 WT-hSGLT3 E457Q-hSGLT3

K0.5 (mM) Ratioglc K0.5 (mM) Ratioglc K0.5 (mM) Ratioglc

aM-glc 0.760.04a 1.4 2166c 1.1 0.560.03 (3) 1.7

Glucose 0.560.02a 1 1966c 1 0.360.07 (3) 1

Galactose 0.660.02a 1.2 NDc 134622 (2) 447

1DO-glc 1061a 20 43610c 2.2 0.360.04 (3) 1

2DO-glc NDa NDc ND

3DO-glc NDa NDc 2.260.2 (3) 7.3

6DO-glc 360.5a 6 .50c 2.960.4 (3) 10

DNJ NDa 0.00460.001c 261024 ND

Phlorizin (Ki) 0.000260.00001a 461024 0.12c 661023 0.001660.00009 (3) 561023

K0.5s were obtained for different sugars in E457Q-hSGLT3 expressing oocytes. Data from WT-hSGLT3 and hSGLT1 are from other studies and are shown for comparison.
Next to each K0.5 we show the ratio of the K0.5 of each sugar compared to glucose. E457Q-hSGLT3 data are mean 6 SE in mM obtained from 2–3 oocytes; a = reference
[8]; b = reference [12]; c = reference [4]. ND = not determined (due to low currents).
doi:10.1371/journal.pone.0010241.t001

Sugar Sensing In Vivo by SGLT3
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effect of glucose on C. elegans with the inhibitor. Importantly, our

data also indicate that the H+-induced current in the absence of

sugar is mediated by hSGLT3, as it is inhibited by Pz.

E457Q mutation decreases the H+ permeability in
hSGLT3

The proton-induced current observed in WT-hSGLT3 may be

carried by either Na+ or H+ ions. To establish which ion permeates

hSGLT3 at pH 5, we calculated the reversal potentials (Erev) of

WT-hSGLT3 and E457Q-hSGLT3 in oocytes at physiological pH

(7.4) and at pH 5 in the presence or absence of Na+ (Table 2). In

WT-hSGLT3, Erev shifted , +70 mV when extracellular pH was

changed from 7.4 to 5 in Na+ and without Na+. However, in

E457Q-hSGLT3, the shift was smaller (+30240 mV) than in the

WT-hSGLT3. For a perfectly selective proton channel a shift of

+138 mV is expected for this pH change. These results suggest

that both H+ and Na+ ions permeate through WT-hSGLT3 and

E457Q-hSGLT3, but that H+ ions permeate more readily through

WT-hSGLT3 than through E457Q-hSGLT3. Note that in non-

injected oocytes the shift was only , +2 mV indicating that H+

ions do not leak across the oocytes’ plasma membrane.

These data suggest that in our animal model, more H+ ions are

likely to enter into ASK neurons in WT-hSGLT3 than E457Q-

hSGLT3 transgenic C. elegans, leading to greater depolarization.

This may explain why C. elegans expressing WT-hSGLT3 or

E457Q-SGLT3 behave so differently on pH 5 plates containing

Figure 6. Glucose-induced currents are larger at pH 5 than pH 6 in hSGLT3 expressing oocytes. A. At pH 6, 10 mM glucose induced
small currents in WT-hSGLT3 oocytes. However, at pH 5 the glucose-induced current increased approximately 4 fold. In addition, there was an inward
current when the extracellular solution pH was reduced from 6 to 5. These glucose- or H+- induced currents returned to the baseline when the
glucose was removed from the bath and when the pH was returned to 6. Striped bars indicate the presence of glucose in the bath. B. The same
experiment was performed in oocytes expressing E457Q-hSGLT3. Sugar-induced currents were similar at both pHs and H+-induced current was
absent. C. The effect of phlorizin was measured on glucose-induced currents at pH 5 in a WT-hSGLT3 expressing oocyte. Phlorizin blocked
approximately two-thirds of the total induced current. D. Phlorizin also blocked approximately two-thirds of the current induced by pH 5 in the
absence of sugar. These data suggest that phlorizin blocks both the H+-induced and sugar-induced components of current.
doi:10.1371/journal.pone.0010241.g006

Table 2. H+ permeation is higher in E457Q-hSGLT3 than in
WT-hSGLT3.

Erev (mV) N7 N5 DN7-N5 C7 C5 DC7-C5

hSGLT3 23964 +2962 +6865 22961 +3966 +6867

E457Q-hSGLT3 24664 21665 +3066 25262 2666 +4363

Reversal potentials (Erev) obtained from oocytes expressing WT-hSGLT3 or
E457Q-hSGLT3 in the presence of Na+ at pH 7.4 (N7) and pH 5 (N5) and in the
absence of Na+ at the same pHs (C7 and C5). D values in both conditions are
also shown. In WT-hSGLT3 expressing oocytes, there was a +68 mV shift in the
reversal potential when pH was lowered to 5 both in the absence and presence
of Na+. In contrast, in E457Q-hSGLT3 the shift was smaller (,30–40 mV). Data
are shown as mean 6 SEM, n = 4.
doi:10.1371/journal.pone.0010241.t002
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glucose. At this point it is unclear whether larger depolarizations

that result from larger currents at pH 5 in WT-hSGLT3

expressing ASK neurons, or whether the protons themselves,

drive attraction to glucose. Regardless of the precise mechanism

our data argue that when WT-hSGLT3 or E457Q-hSGLT3 are

expressed in C. elegans ASK neurons, they are capable of inducing

a behavioral response to glucose. This response turns from

repulsion to attraction when WT-hSGLT3 currents are enhanced

by low pH and currents are carried by both Na+ and H+.

Discussion

Channel or transporter
Because hSGLT3 belongs to a family of transporters and has high

amino acid identity with human SGLT1, the Na+/glucose

cotransporter, the finding that it was a sugar sensor and not a sugar

transporter was unexpected [3]. However, the distinction between

channels and transporters, once thought to be very clear, has become

increasingly blurred. The CLC family is a prime example of this, as

CLC-ec was found to be a H+-Cl2 antiporter [17], and not a

channel as predicted. In fact, five of nine members of the family of

human ClC proteins are antiporters and not channels [18–20].

Another example of this blurred boundary is the Excitatory Amino

Acid Transporter 2 (EAAT2), a glutamate transporter which also has

a ligand-dependent Cl2 channel current [21]. In fact, a recent

meeting and review pointed to numerous examples of transporters

that show channel-like behavior, either in their wild-type form, or as

a result of mutations or toxin application [22].

Our data and previous publications clearly demonstrate that

hSGLT3 does not transport sugar, but it senses the sugar [3]. We

do not know if the ‘‘channel-like’’ behavior of the sensor is actually

a cation uniporter or a channel. However, whether hSGLT3 is a

channel or a uniporter, to our knowledge the E457Q-hSGLT3

mutant is the first demonstration of the conversion of a protein

with channel-like behavior into a coupled transporter in a well-

defined stoichiometry. Thus, this mutant may provide a unique

model in which to further investigate the biophysical differences

between channels and transporters. In addition, since only a single

amino acid change results in this altered function, our data suggest

that the conformational changes involved in transport function are

likely to be similar to those involved in glucose sensor function,

comparable to what has been proposed for the differences in CLC

channel/transporter function [23].

E457Q-hSGLT3 sugar transport
We showed that by changing one amino acid, E457, in

hSGLT3 for the amino acid present in hSGLT1, Q457, we

converted this sugar sensor into a sugar transporter with the same

stoichiometry as hSGLT1. Moreover, by replacing the analogous

amino acid in hSGLT1 for glutamate (Q457E-hSGLT1) hSGLT1

became an uncoupled transporter (Fig. 2B). So, why is E457Q-

hSGLT3 able to transport? Several studies indicate that sugars

interact directly with the residue analogous to 457 in SGLT

proteins [8,9]. Sugars, although they are not transported by WT-

hSGLT3, do bind to the protein and depolarize the membrane.

This suggests that even though residue 457 is glutamate in WT-

hSGLT3, it still likely interacts with sugars. However, the

interaction between glutamate and sugar in hSGLT3 may be

different than in SGLT1, where residue 457 is glutamine. Another

possibility is that in hSGLT3, the conformational changes that in

SGLT1 follow sugar binding and result in sugar transport may not

occur due to the presence of glutamate at this position.

An alternative explanation for the presence of transport in

E457Q-hSGLT3 is that the glutamine substitution enhances Na+

binding. This hypothesis is supported by data in Figure 3B and 3E

that show greater presteady-state currents in the mutant protein

than in the wild type. Pre-steady-state currents in SGLT proteins

are thought to reflect conformational changes in the protein after

Na+ binding has occurred, but before sugar binding. The pre-

steady-state currents in E457Q-hSGLT3 are not large, but in all

oocytes tested they were larger than in any WT-hSGLT3

expressing oocyte. Even though we cannot completely rule out

that these larger pre-steady-state currents are due to a higher

expression level of E457Q-hSGLT3 than WT, our results suggest

that a glutamine at position 457 may promote Na+ binding to the

protein, which could allow hSGLT3 to function as a transporter

by enabling necessary conformational changes prior to sugar

binding. Therefore, residue 457 may be essential for either binding

sugars in a manner that allows their transport or for allowing the

right conformational changes that either precede or follow sugar-

binding to occur and that ultimately result in transport of sugars.

These possibilities are not mutually exclusive, and may all apply.

Future detailed biophysical experiments will allow discrimination

between these and other potential explanations.

Interaction of sugars with SGLT proteins
How do sugar specificity and K0.5s change in E457Q-hSGLT3?

As seen in Voss et al. [4] and Table 1, most sugars tested have

lower K0.5 for hSGLT1 than for hSGLT3, with imino sugars

being the exception. Imino sugars have nitrogen instead of oxygen

in their ring structure. The imino sugar DNJ interacts with

hSGLT3 with a K0.5 almost 5,000 times lower than glucose (4 mM

compared to 19 mM for glucose), and 50 mM DNJ induces

depolarizations that are double those of glucose [4]. Conversely,

hSGLT1 does not interact with DNJ [4]. In E457Q-hSGLT3,

500 mM DNJ induced a very small depolarization (,5-fold smaller

than glucose-induced depolarization), indicating that the interac-

tion of the imino sugar DNJ with E457Q-hSGLT3 is much worse

than with WT-hSGLT3. In the vSGLT crystal structure, the side-

chain of the glutamine corresponding to Q457 interacts directly

with the oxygen (O5) in the ring of the sugar molecule [9], as well

as with the 69-OH, suggesting that the poor interaction of DNJ

with E457Q-hSGLT3 and hSGLT1 is due to the presence of a

glutamine at position 457.

The removal of the 69-OH group from glucose (6DO-glc)

increases K0.5 in hSGLT1 6-fold, and in hSGLT3 the interaction

with 6DO-glc is so poor that no K0.5 can be measured [4].

However, in E457Q-hSGLT3, the 6DO-glc K0.5 was similar to

that of hSGLT1. Our data might be interpreted to suggest that the

interaction with 6DO-glc is favored if the amino acid at this

position is glutamine instead of glutamate. However, pig SGLT3,

which has glutamate at position 457, interacts with 6DO-glc even

more strongly than with glucose [8]. Thus, while the side chain is

likely to play a role, determinants elsewhere in the binding site of

SGLT proteins cannot be discounted in determining the sugar

specificity.

The lack of a -OH group at positions 2 (2DO-glc) or 3 (3DO-

glc) causes loss of sugar binding in both hSGLT1 and hSGLT3

[4]. Similarly, E457Q-hSGLT3 did not interact with 2DO-glc.

However, it did interact reasonably well with 3DO-glc

(K0.5 = 2.2 mM) displaying a maximal current similar to glucose.

Given that the side chain of 457 is likely to contact the opposite

end of the sugar, our data suggest that the E457Q mutation leads

to allosteric changes in the binding site that permit interaction with

3DO-glc.

Finally, the change in the orientation of the 49-OH group in

galactose with respect to glucose does not change the interaction of

sugar with hSGLT1; however it does in WT-hSGLT3 to the point
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that we see no interaction with galactose [3]. Galactose-induced

depolarization in E457Q-hSGLT3 expressing oocytes, but the

K0.5 was 134 mM. This K0.5 is more than 400 times weaker than

the K0.5 of glucose (Ratioglc = 447, Table 1). Therefore, we

conclude that the mutation had no favorable effect on the

discrimination between glucose and galactose.

Overall, we observed that the K0.5s of sugars for E457Q-

hSGLT3 resembled those of hSGLT1 more than hSGLT3, along

with changes in specificity, namely an increased selectivity against

imino sugars and for 3DO-glc, indicating the remarkable role of

amino acid 457 in determining both binding affinity and specificity

in SGLT proteins.

Physiological glucose sensing
While all cells of the body use glucose as a source of energy,

some cell types detect the amount of glucose present in the

extracellular environment by proportionally depolarizing the

membrane to the sugar concentration. This is termed glucose

sensing and has been described in pancreas [24], portal vein [25],

brain [26,27] and carotid body [28], among other tissues. A well-

described glucose sensing mechanism involves the sugar trans-

porter GLUT. GLUT transports glucose into the cell, where it is

metabolized through glycolysis. Glycolysis increases the ATP

levels, thus inhibiting ATP-sensitive K+ channels, and leading to

depolarization of the plasma membrane. Human SGLT3 has also

been proposed to function as a glucose sensor after being

characterized by expression in Xenopus laevis oocytes where it was

found to depolarize the membrane in response to extracellular

glucose, without any sugar transport [3].

Since that first report, several studies have suggested that

SGLT3 may have sugar sensing functions in different tissues. In

the gastrointestinal system, Freeman et al. [5] proposed that

detection of glucose in the intestine that subsequently inhibits

gastric emptying and stimulates intestinal fluid secretion involves

SGLT3. In the brain, O’Malley et al. [6] suggested that glucose-

excited neurons can sense glucose through the actions of SGLT

proteins, and detected SGLT3, among other SGLTs, in rat

hypothalamic primary cultures. However, the glucose sensing

property of hSGLT3 in vivo has not been tested until now. In this

work we show, by expressing hSGLT3 in C. elegans ASK

chemosensory neurons, that hSGLT3 can function as a sugar

sensor in vivo. We show that C. elegans that express WT-hSGLT3 in

those cells are repulsed by or attracted to glucose depending on the

pH. We also show that the attraction is inhibited by phlorizin.

Interestingly, C. elegans expressing E457Q-hSGLT3 are repulsed

by glucose at pH 6 and do not show any preference for glucose

over the control spot at pH 5. Wild type control C. elegans are

neither repulsed by nor attracted to 10 mM glucose at either pH

(Fig. 5). One explanation of why C. elegans that express WT-

hSGLT3 are repulsed by glucose on standard chemotaxis plates

(pH 6) but are attracted to this sugar at pH 5 could be that ASK

sensory neurons are capable of mediating both attraction and

repulsion [13–15] and the larger H+ concentration at pH 5 can

exert an effect on the behavior. The magnitude of the WT-

hSGLT3 glucose-induced currents cannot be directly compared

with E457Q-hSGLT3’s because they depend on their level of

expression in oocytes and in C. elegans. However, we can compare

how WT-hSGLT3 and E457Q-hSGLT3, expressed in oocytes,

respond to glucose at those pHs. As seen in Figure 6A, in WT-

hSGLT3 expressing oocytes there is a current when the pH is

lowered from 6 to 5, and 10 mM glucose induces small currents at

pH 6, but much larger currents at pH 5. It is possible that small

currents mediated by WT-hSGLT3 on standard plates (pH 6)

result in repulsion and that larger currents that occur on pH 5

plates result in attraction. Alternatively, at different pHs different

cations could carry the current, thus leading to different behavioral

outcomes; thus at pH 5, H+ ions carry more current than Na+ in

WT-hSGLT3. Viewed strictly as a depolarization, different cations

would not be expected to have different effects; however the

translocation of H+ into the cell at pH 5 could have a different

effect than Na+ on C. elegans neuronal physiology due to a potential

change in internal pH. This could also explain why E457Q-

hSGLT3, whose glucose-induced currents are less pH sensitive

(Fig. 6B) than WT-hSGLT3 (which suggests that the amount of H+

transported is less), mediates repulsion on standard plates but

shows no preference at pH 5. The idea that less H+ are

transported in E457Q-hSGLT3 is supported by the calculation

of the Erev, that indicates that H+ permeate less through the

mutant protein. Regardless of the precise mechanism by which

WT-hSGLT3 and E457Q-hSGLT3 affects C. elegans neuronal

physiology, which is beyond the scope of this work, our data

demonstrate that hSGLT3 is capable of acting as a bona fide

glucose sensor in vivo, and that its action is sufficient to result in

altered behavior in the context of a living organism.

Materials and Methods

Mutagenesis
The plasmid containing WT-hSGLT3 cDNA was used as a

template for site-directed mutagenesis. Glutamate at amino acid

457 was replaced by glutamine (E457Q) using the QuikChange kit

(Stratagene). The oligonucleotide primers used were: sense, 59-

ATCCATTACACACAATCAATTTCTAGC -39; and antisense,

59- GCTAGAAATTGATTGTGTGTAATGGAT -39. Bold let-

ters represent the nucleotides changed. The gene was sequenced

from start codon to stop codon to ensure that only the desired

mutation was present. For information about Q457E-hSGLT1

construct see reference [8].

Expression of proteins in Xenopus laevis oocytes
WT-hSGLT3 and E457Q-hSGLT3 cDNAs were linearized

with XbaI and RNA was transcribed and capped in vitro using the

T3 RNA promoter (MEGAscript kit, Ambion). Mature Xenopus

laevis oocytes were injected with 50 ng of cRNA coding for each

protein. Oocytes were maintained in OR2 supplemented with

penicillin (10,000 U/ml)/streptomycin (10 mg/ml) at 19uC for 3–

8 days until used.

Electrophysiology
Experiments were performed at room temperature using the

two-electrode voltage-clamp method in a rapid perfusion chamber

to measure changes in membrane potential. For the experiments,

the oocytes were bathed in Na+ buffer composed of (mM):

100 NaCl, 2 KCl, 1 MgCl2, 1 CaCl2, 10 Hepes/Tris, pH 7.4,

and in Na+-free buffer where choline-Cl replaced NaCl. The

pH 5.0 solutions contained the same ions and used MES as a

buffer. The experiments were controlled and data were acquired

using pClamp software (Axon Instruments). The apparent sugar

affinities (K0.5) were obtained by measuring depolarizations

in oocytes with increasing sugar concentrations (from 0 to

150 mM). The depolarizations were fit to equation

E~ Emax S½ �= K0:5z S½ �ð Þ 1ð Þ

where Emax is the maximal depolarization, [S] is the substrate

concentration, and K0.5 is the substrate concentration for 0.5

Emax.
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Transport experiments
aM-glc transport into oocytes was measured using a radioactive

tracer technique [29]. The oocytes were incubated in 50 mM aM-

glc with traces of 14C-aM-glc for 1 hour in Na+ buffer at pH 7.5.

The oocytes were then washed with cold Na+-free solution, and

individually solubilized with 10% SDS. Sugar uptake was

determined by using a scintillation counter. Sugar uptake in non-

injected oocytes from the same batch of oocytes was used as control.

For experiments studying the stoichiometry, E457Q-hSGLT3

oocytes were clamped at -80 mV and when base line current was

stable, the oocyte was perfused with 1 mM aM-glc (2 mM aM-glc in

Q457E-hSGLT1) containing trace 14C-aM-glc for several minutes.

The presence of sugar induced current in E457Q-hSGLT3 or Q457E-

hSGLT1 expressing oocytes. The sugar was then removed from the

bath and induced current returned to the base line. The oocyte was

then washed, solubilized and counted as described. The induced

current was converted to its molar equivalent as described before [30].

Molecular biology in C. elegans
The Psrg-8:hSGLT3-GFP vector was created by introducing WT-

hSGLT3 or E457Q-hSGLT3 cDNA without stop codon in frame

with GFP into vector pPD95.77 which includes enhanced GFP

(constructed by Scott Clark, NYU) and in which we previously

introduced the promoter of the srg-8 gene [16]. Prior to subcloning

into pPD95.77, WT-hSGLT3 or E457Q-hSGLT3 cDNA and srg-

8 promoter were cloned into TOPO pCR2.1 vector for

amplification and sequencing.

C. elegans strains and growth
Nematode strains were maintained at 20uC on standard

nematode growth medium (NGM) seeded with Escherichia coli

strain OP50 as food source [31]. WT-hSGLT3 or E457Q-

hSGLT3 plasmids were injected into wild type N2 C. elegans,

cotransformation marker was pPD117.01 vector which encodes

GFP under the control of the promoter of the mec-7 gene expressed

in mechanosensory neurons [32].

Behavioral assays
To test chemotaxis to glucose and lysine-acetate we followed

standard procedures [13]. Briefly, a chunk of agar 1 cm in

diameter was removed from 10 cm plates and soaked in the test

solution (10 mM glucose, 10 mM glucose with phlorizin, or 0.5 M

lysine-acetate) for 3 h. Chunks were put back in the plate

overnight to allow equilibration and formation of a gradient.

When we tested the effect of phlorizin, we incubated the chunk of

agar in 10 mM glucose plus 0.1 mM phlorizin prior to re-inserting

the chunk back into the plate. Thirty to forty C. elegans were then

placed between the glucose spot and a control spot on the opposite

side of the plate (Fig. 5A). 10 mL of 20 mM NaN3 was placed on

both spots to anaesthetize animals once they reached the spot.

After 1 hour animals on each side of the plate were counted and

attraction index (AI) was determined as follows: (number of

animals at glucose spot - number of animals at control spot)/(total

number of animals). Control spot is the place on the plate at the

opposite side of glucose spot. An AI of 1.0 indicates complete

attraction; an AI of 0 indicates a random distribution of the

animals on the assay plate; a negative AI is indicative of repulsion.

Supporting Information

Figure S1 Recording of currents in a non-injected oocyte. A.

Currents recordings in a non-injected oocyte perfused with the

Na+ solution. Voltage pulses were the same as shown in Figure 3A.

B. The same oocyte was perfused with the Na+ solution plus

150 mM aM-glc. C. Current-voltage relationships of currents

shown in A and B.

Found at: doi:10.1371/journal.pone.0010241.s001 (0.23 MB TIF)

Figure S2 WT-hSGLT3 does not transport sugar in a low pH

solution. aM-glc uptake in oocytes expressing hSGLT3 compared

with non-injected oocytes at pH 5 for 1 hour. The data show that

hSGLT3 oocytes did not transport sugar at this pH.

Found at: doi:10.1371/journal.pone.0010241.s002 (0.11 MB TIF)
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