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Abstract 

Analyzing single-cell RNA sequencing (scRNA-seq) data remains a challenge due to its high dimensionalit y, sparsit y and technical noise. Rec- 
ognizing the benefits of dimensionality reduction in simplifying complexity and enhancing the signal-to-noise ratio, we introduce scBiG, a no v el 
graph node embedding method designed for representation learning in scRNA-seq dat a. scBiG est ablishes a bipartite graph connecting cells 
and expressed genes, and then constructs a multilayer graph convolutional network to learn cell and gene embeddings. Through a series of 
e xtensiv e e xperiments, w e demonstrate that scBiG surpasses commonly used dimensionality reduction techniques in various analytical tasks. 
Downstream tasks encompass unsupervised cell clustering, cell trajectory inference, gene expression reconstruction and gene co-expression 
analy sis. A dditionally, scBiG e xhibits notable computational efficiency and scalability. In summary, scBiG offers a useful graph neural network 
frame w ork f or represent ation learning in scRNA-seq dat a, empo w ering a div erse arra y of do wnstream analy ses. 
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he continuous advancement of single-cell RNA sequenc-
ng (scRNA-seq) technologies has opened up new avenues
or transcriptomic research. The scRNA-seq techniques offer
reat potential for exploring gene expression at the individ-
al cell level. They have propelled scientific exploration by
evealing previously unknown cell types and scrutinizing cel-
ular heterogeneity ( 1 ). However, analyzing high-dimensional
nd sparse single-cell gene expression data is not a trivial
ask ( 2 ,3 ). Dimensionality reduction has emerged as a pivotal
tep in scRNA-seq analysis, enabling the reduction of com-
lexity and enhancement of signal to support downstream
nalyses. 

A plethora of dimensionality reduction methods have been
dopted or proposed for scRNA-seq data to obtain embed-
ings of single cells. Earlier methods include principal com-
onent analysis (PCA) ( 4 ), independent component analysis
ICA) ( 5 ) and zero-inflated factor analysis (ZIFA) ( 6 ). Both
C A and IC A are generic dimensionality reduction methods
ased on linear projections. ZIFA incorporates an additional
ero-inflation layer to specifically account for the excess zeros
n scRNA-seq data. More recently, deep learning-based meth-
ds have been developed, including autoencoders like DCA
 7 ) and SAUCIE ( 8 ), variational autoencoders like scVI ( 9 ),
nd graph autoencoders like scGAE ( 10 ). Using autoencoder
etworks and zero-inflated negative binomial (ZINB) distri-
utions, scVI and DCA represent each cell as a point in a low-
imensional latent space. SAUCIE uses multiple layers of en-
oders and decoders and an embedding layer to achieve multi-
le tasks such as imputation and batch effect removal in addi-
ion to dimensionality reduction. scGAE constructs a nearest
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neighbor graph for cells and trains a graph neural network
(GNN) to produce cell embeddings. 

In addition to representation learning methods that treat
each cell independently, methods based on GNNs ( 11 ,12 ) aim
to capture higher-order relationships between nodes by itera-
tive information passing, making them well suited for model-
ing complex scRNA-seq data. For example, scGNN ( 13 ) uses
a Gaussian mixture model and a GNN with multimodal au-
toencoders to learn cell–cell relationships. Graph-sc ( 14 ) con-
structs a cell–gene graph, obtains initial low-dimensional cell
embeddings by PCA and trains a graph autoencoder to update
cell embeddings. There have been a few methods that extended
the representation learning from cells to other features. For ex-
ample, SIMBA ( 15 ) utilizes graph structures to co-embed cells
and various features, such as genes and open chromatin re-
gions, into a shared latent space and uses these embeddings for
downstream analysis. siVAE ( 16 ) is a deep generative model
that uses pairs of encoders and decoders to learn representa-
tions of genes and cells in the latent space based on the varia-
tional autoencoder framework. 

Inspired by the success of graph-based representation learn-
ing in scRNA-seq data analysis ( 17 ), we propose the scBiG
(representation learning of s ingle- c ell gene expression data
based on Bi partite G raph embedding) method, which lever-
ages higher-order information in the cell–gene bipartite graph
to simultaneously obtain cell and gene embeddings. scBiG’s
key innovation lies in modeling cell–gene relationships by
transforming a gene expression matrix into a cell–gene bipar-
tite graph. Using a model-driven graph reconstruction strat-
egy, it conducts self-supervised training of a GNN on this
sparse graph, effectively capturing higher-order topological
uary 3, 2024. Accepted: January 9, 2024 
enomics and Bioinformatics. 
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Figure 1. Ov ervie w of the scBiG method. ( A ) scBiG tak es the count matrix as input, constructs a cell–gene bipartite graph and then initializ es node 
embeddings. The GCN-based encoder updates the node embeddings and the ZINB model-based decoder reconstructs the gene expression profiles. ( B ) 
Network str uct ure of the GCN-based encoder. Initial cell and gene embeddings ( e (0) 

c ,i and e (0) 
g , j ) are generated b y random initialization, and the netw ork 

passes, aggregates and updates the neighborhood information for cell and gene nodes in the bipartite graph, respectively. The final node embeddings 
( e c ,i and e g , j ) are obtained as the weighted average of the embeddings in previous layers. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

features. As we will demonstrate in the results, the method
facilitates the reconstruction of scRNA-seq data while extract-
ing biologically meaningful representations of both cells and
genes. Specifically, we evaluated the performance of scBiG’s
cell embeddings in both clustering analysis and trajectory in-
ference. Additionally, the learned gene embeddings have been
shown to capture cell-type-specific gene co-expression pat-
terns. Overall, we expect scBiG to be a useful tool for learning
low-dimensional representations (of both cells and genes) and
extracting biological signals from scRNA-seq data. 

Materials and methods 

An overview of the scBiG method 

By constructing a cell–gene bipartite graph from the single-
cell gene expression matrix, scBiG converts the dimension-
ality reduction problem to a node embedding problem given
the bipartite graph, allowing it to simultaneously learn low-
dimensional representations of both cells and genes. Specifi-
cally, scBiG employs a graph autoencoder network to extract
higher-order representations of cells and genes from the bipar- 
tite graph. First, the graph encoder takes the initial cell and 

gene embeddings, as well as the cell–gene bipartite graph, to 

calculate the final embeddings of both cells and genes. Sub- 
sequently, these final embeddings, along with the bipartite 
graph, are utilized by the graph decoder to reconstruct the 
gene expression matrix (Figure 1 A) by estimating ZINB pa- 
rameters for each cell–gene pair. 

The encoder in scBiG uses multiple layers of graph convo- 
lutional network (GCN) ( 18 ,19 ), in which each layer accepts 
a cell–gene bipartite graph of interactions and node embed- 
dings from the previous layer. The node embeddings are up- 
dated iteratively to capture higher-order features by aggregat- 
ing cell-to-gene and gene-to-cell interaction information. The 
final cell and gene embeddings are obtained through weighted 

averaging across layers (Figure 1 B). 
In order to train the GCN, scBiG constructs a loss function 

based on the negative log-likelihood function of ZINB distri- 
butions along with a regularization term. Through the self- 
supervised encoding–decoding reconstruction strategy, scBiG 

effectively learns embeddings of cells and genes, which are 
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seful for various downstream analytical tasks. Finally, scBiG
utputs the cell and gene embeddings, as well as the recon-
tructed gene expression matrix (optional) obtained through
he reconstructed complete cell–gene bipartite graph. 

ata pre-processing 

e assume that scRNA-seq data are summarized as a count
atrix where rows represent cells and columns represent

enes. The pre-processing steps of scBiG are as follows. First,
enes expressed in < 3 cells and cells with < 200 expressed
enes are filtered out. The remaining count matrix is denoted
s X = [ x i j ] ∈ R 

m ×n , where x ij represents the expression of
ene j in cell i , m represents the number of cells and n rep-
esents the number of genes. Next, for cell i , we calculate the
ibrary size factor l i as 

l i = 

∑ n 
j=1 x i j 

median i ′ { 
∑ n 

j=1 x i ′ j } . (1)

hen, the counts are normalized by the library size factors and
og-transformed to get the normalized expression values: 

˜ x i j = log 
(

x i j 

l i 
+ 1 

)
. (2)

n addition, we define the gene factor s j as the the maximum
xpression value of gene j across all cells: 

s j = max 

i 

{˜ x i j 
}
. (3)

he library size factor l i and gene factor s j would be used in
 subsequent step of expression matrix reconstruction. 

onstruction of the cell–gene bipartite graph 

o represent the relationship between cells and genes, we
onvert the gene expression matrix into a cell–gene bipartite
raph denoted as G = (U, V, A ) . In this graph, U denotes the
et of cells, V denotes the set of genes and A denotes the adja-
ency matrix: 

A = 

(
O 1 R 

R 

T O 2 

)
, (4)

here O 1 ∈ R 

m ×m and O 2 ∈ R 

n ×n are matrices of zeros,
nd R = [ r i j ] ∈ R 

m ×n is the cell–gene adjacency matrix: 

r i j = 

{
1 , if gene j is expressed in cell i, 
0 , otherwise . (5)

e define the edge between gene j and cell i as a positive edge
f r ij = 1 and a negative edge if r ij = 0. 

raph encoder based on GCN 

iven the cell–gene bipartite graph G , we use a GCN to en-
ode representations of cells and genes. Specifically, the initial
ell embeddings e (0) 

c ,i ∈ R 

h and gene embeddings e (0) 
g , j ∈ R 

h are
andomly initialized and treated as model parameters, where
 is the embedding dimension. Then, starting from the first
raph convolutional layer, the cell embeddings and gene em-
beddings are updated in the k th layer as ⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

e (k ) c ,i = 

∑ 

g∈ N c ,i 

1 √ ∣∣N c ,i 
∣∣√ ∣∣N g , j 

∣∣e (k −1) 
g , j , 

e (k ) g , j = 

∑ 

c ∈ N g , j 

1 √ ∣∣N c ,i 
∣∣√ ∣∣N g , j 

∣∣e (k −1) 
c ,i , 

(6)

where k (1 ≤ k ≤ K ) is the layer index and K is the number of
graph convolution layers; N c,i and N g,j represent the neighbor
sets of cell i and gene j in the bipartite graph; and | N c,i | and
| N g,j | are the number of neighbors of cell i and gene j (i.e., the
degrees of cell i and gene j ). 1 / 

√ | N c ,i | 
√ | N g , j | serves as a degree

normalization term. 
After K layers of graph convolution, scBiG obtains ( K +

1) sets of embeddings for cell i ( e (0) 
c ,i , . . . , e 

(K) 
c ,i ) and gene j

( e (0) 
g , j , . . . , e 

(K) 
g , j ), respectively. Since the embeddings from the last

layer may suffer from oversmoothing as the layer number in-
creases ( 20 ), we do not directly use them as the inputs of the
decoder. Instead, we calculate the weighted average of these
embeddings to obtain the final embeddings, which are denoted
as e c ,i for cell i and e g , j for gene j : ⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

e c ,i = 

K ∑ 

k =0 

w 

(k ) e (k ) c ,i , 

e g , j = 

K ∑ 

k =0 

w 

(k ) e (k ) g , j , 

(7)

where 
{
w 

(k ) 
}K 

k =0 are layer weights and take values between 0
and 1. 

Model-guided graph decoder 

Given the embeddings of all cells and genes, along with a pro-
vided bipartite graph G 

′ whose edges {( i , j )} represent a list of
cell–gene pairs whose expression values are to be predicted, a
model-guided graph decoder is constructed. We use the ZINB
distribution to model the count of gene j in cell i : 

ZINB (x i j | πi j , μi j , θi j ) = (1 − πi j ) · NB (x i j | μi j , θi j ) 

+ πi j · δ0 (x i j ) , 
(8)

where x ij is the count value of gene j in cell i , π ij is the
probability of zero inflation, NB represents the negative bi-
nomial distribution with mean μij and dispersion θ ij , and δ0 ( ·)
is the Dirac delta function. The decoder processes the above-
mentioned inputs and generates the parameters of the ZINB
distribution for each pair of cell and gene within the graph G 

′ ,
thereby reconstructing the bipartite graph. 

To learn the ZINB parameters, π ij , μij and θ ij for edge ( i , j )
in G 

′ , we integrate a generalized matrix factorization (GMF)
model ( 21 ) into the decoder, which takes embeddings e c ,i of
cell i and e g , j of gene j as input and implements the following
forward propagation process: ⎧ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎩ 

e = e c ,i � e g , j , 

μi j = exp 

(
sigmoid ( W μe ) × s j 

) × l i , 
θi j = softplus 

(
W θe × s j 

)
, 

πi j = sigmoid ( W πe ) , 

(9)

where � denotes the Hadamard product, W μ ∈ R 

1 ×h , W θ ∈
R 

1 ×h and W π ∈ R 

1 ×h are weight parameters, and l i and s j , re-
spectively, are the library size factor and gene factor calculated
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in the pre-processing step. For mean μij , we apply the sigmoid
activation function to constrain the output between 0 and 1,
and then recover the expression level using gene factor s j and
library size factor l i . For dispersion θ ij , we use the softplus ac-
tivation function to ensure nonnegativity. 

Self-supervised learning 

scBiG utilizes the encoder to extract cell and gene embeddings
from the cell–gene bipartite graph G and subsequently feeds
these embeddings, along with a graph to be reconstructed, into
the decoder to predict ZINB parameters for each cell–gene
pair. To improve efficiency and enhance generalization, during
each iteration, scBiG randomly samples 10% positive edges
from G to construct a positive subgraph G pos , and samples
the same number of negative edges to construct a negative
subgraph G neg . The model then employs both G pos and G neg

as inputs to the decoder and computes the loss function based
on the negative log-likelihood (NLL) function: 

L NLL = − 1 

N 

∑ 

(i, j) ∈ G pos 

log ( ZINB (x i j ;πi j , μi j , θi j )) 

− 1 

N 

∑ 

(i ′ , j ′ ) ∈ G neg 

log ( ZINB (0 ;πi ′ j ′ , μi ′ j ′ , θi ′ j ′ )) , 

(10)

where N is the number of edges in G pos or G neg . To prevent
overfitting, we also add regularization terms of the initial em-
beddings and define the overall loss function of scBiG as 

L = L NLL + λ
‖ E 

(0) 
c ‖ 2 F + ‖ E 

(0) 
g ‖ 2 F 

2(m + n ) 
, (11)

where λ > 0 is the regularization coefficient, ‖·‖ F denotes

the Frobenius norm, and E 

(0) 
c = 

(
e (0) 

c , 1 , . . . , e 
(0) 
c ,m 

)
∈ R 

h ×m and

E 

(0) 
g = 

(
e (0) 

g , 1 , . . . , e 
(0) 
g ,n 

)
∈ R 

h ×n are the initial embedding matri-

ces of cells and genes, respectively. 
After training the model parameters, scBiG utilizes the en-

coder to extract all cell and gene embeddings. Subsequently,
scBiG constructs a complete bipartite graph G comp in which
each pair of cell and gene is connected by an edge. The
gene / cell embeddings and this complete bipartite graph are
then provided to the graph decoder, which reconstructs the
graph by estimating the ZINB parameters, ˆ μi j , ˆ θi j , ˆ πi j , for
each edge in G comp . Finally, scBiG takes ˆ μi j as the recon-
structed expression value ˆ x i j for gene j in cell i to obtain the
reconstructed expression matrix 

ˆ X . 

Implementation 

The scBiG package is implemented in Python 3.8, using
Scanpy version 1.9.1 ( 22 ) for data pre-processing and Py-
Torch version 1.10.0 ( 23 ) and Deep Graph Library version
0.8.2 (https: // doi.org / 10.48550 / arXiv.1909.01315) for im-
plementing the GNN. In our model, the number of graph con-
volution layers K is set to 2, and the embedding dimension h
is set to 64. The weights of GCN layers are set as w 

(0) = 1 / 2 ,
w 

(1) = 1 / 4 , and w 

(2) = 1 / 4 . We use Adam ( 24 ) for optimiza-
tion with a learning rate of 0.1 and train scBiG for a total
of 200 epochs. The parameter λ is set to 0.0001 in the loss
function. 

In the numerical evaluation, we used two-dimensional visu-
alization of the embedded data. Therefore, we also performed
a comparison by directly setting the embedding dimension h to
2 in the clustering analysis ( Supplementary Table S1 ). The re- 
sults indicate that, due to the complexity of scRNA-seq data,
two-dimensional embeddings are not sufficient to fully cap- 
ture their intrinsic features. 

Alternative methods for comparison 

In our study, we evaluated the performance of scBiG in three 
analytical tasks: dimensionality reduction, reconstruction of 
gene expression and gene co-expression analysis. For dimen- 
sionality reduction, we compared scBiG with nine alternative 
methods, including Seurat ( 25 ), ICA ( 5 ), ZIFA ( 6 ), graph-sc 
( 14 ), scGAE ( 10 ), scGNN ( 13 ), DCA ( 7 ), scVI ( 9 ) and SIMBA
( 15 ). When implementing these methods, their own parame- 
ters for the dimensions were used if default values were given 

in the software; otherwise, we set the embedding dimension to 

64, the same value used in scBiG. For reconstruction of gene 
expression, we compared it with five alternative methods, in- 
cluding MAGIC ( 26 ), scImpute ( 27 ), ALRA ( 28 ), DCA ( 7 ) and
scVI ( 9 ). For gene co-expression analysis, we compared it with 

siVAE ( 16 ) and SIMBA ( 15 ). Supplementary Table S2 provides 
a brief summary of the alternative methods and corresponding 
software tools. 

Data description 

For clustering analysis, we downloaded seven real scRNA-seq 

datasets with cell type annotations ( Supplementary Table S3 ).
These seven datasets included three human datasets and four 
mouse datasets. For simplicity, these datasets are referred to as 
human pancreas (1724 cells) ( 29 ), mouse ES (2717 embryonic 
stem cells) ( 30 ), mouse bladder (2746 cells) ( 31 ), mouse kid- 
ney (3660 cells) ( 32 ), human PBMC (4271 cells) ( 33 ), human 

kidney (5685 cells) ( 34 ) and mouse retina (14 653 cells) ( 35 ).
For cell trajectory analysis, we downloaded two real datasets 
( Supplementary Table S3 ), including a human embryo dataset 
(90 cells from 6 developmental stages) ( 36 ) and a mouse em- 
bryo dataset (268 cells from 10 developmental stages) ( 37 ).
In addition, we also used PROSSTT ( 38 ) to generate a sim- 
ulated dataset (500 cells and 10 000 genes) with ground 

truth and pseudotime orders ( Supplementary Methods ). For 
gene co-expression analysis, we downloaded two real datasets 
( Supplementary Table S3 ), including a human liver dataset 
(500 cells) ( 39 ) and a mouse trachea dataset (7193 cells) ( 40 ).
For reconstruction of gene expression, we used Splatter ( 41 ) 
to generate simulated single-cell count matrices of 5000 cells 
and 10 000 genes ( Supplementary Methods ). By adjusting the 
parameter ‘dropout.mid’ in the software, we generated four 
simulated datasets with different sparsity levels (0.8, 0.85, 0.9 

and 0.95). In order to evaluate runtime and memory usage, we 
also used Splatter to generate six datasets with 10 000 genes 
and 2000, 4000, 8000, 16 000, 32 000 and 64 000 cells, re- 
spectively. 

Results 

Cell embeddings obtained by scBiG improve 

clustering analysis 

To evaluate scBiG’s ability to learn informative cell represen- 
tations, we performed clustering analysis on the cell embed- 
dings obtained by scBiG and nine alternative dimensional- 
ity reduction methods (Seurat, ICA, ZIFA, graph-sc, scGAE,
scGNN, DCA, scVI and SIMBA). In order to focus on the 
evaluation of dimensionality reduction, we obtained the cell 

https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae004#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae004#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae004#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae004#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae004#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae004#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae004#supplementary-data
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mbeddings from different methods on seven real datasets
 Supplementary Table S3 ), and all embedded data were clus-
ered using the Louvain algorithm ( 42 ) and visualized via the
MAP algorithm ( 43 ). These processes were implemented in

he Scanpy package ( 22 ). We calculated the clustering accu-
acy based on the adjusted Rand index (ARI) and normalized
utual information (NMI) ( Supplementary Methods ). Our re-

ults suggest that scBiG achieved the highest average ARI and
MI scores across the seven datasets, followed by SIMBA

nd ICA (Figure 2 A and Supplementary Figures S1 –S6 ). In
ddition, scBiG achieved the highest average ARI scores on
our datasets: human pancreas, mouse ES, mouse kidney and
ouse retina. For example, on the human pancreas dataset,

cBiG achieved an ARI value of 0.92 and clearly delineated
he major pancreatic cell types (Figure 2 B and C). The second
est method on this dataset was ICA with an ARI of 0.76,
hich had difficulty distinguishing the alpha and ductal cells.
urthermore, on larger-scale data such as the mouse retina
ataset with 14 653 cells, scBiG also led to the highest ARI of
.76 ( Supplementary Figure S2 ). 
Next, to assess the robustness of the above methods, we

reated 10 subsamples of each real dataset by randomly se-
ecting 95% of the cells each time. The same clustering and
valuation process was then repeated on each subsample.
he summarized clustering accuracy (ARI and NMI) on the
ubsampled datasets suggests scBiG as the overall most ro-
ust method, as it had the highest median accuracy and the
mallest standard deviation (SD) when considering the av-
rage ARI / NMI / SD values across the seven datasets (Fig-
re 3 and Supplementary Figures S7 and S8 ). Specifically,
cBiG ranked first on four of the seven datasets and ranked
mong the top three in the other three datasets, in terms of
he median ARI scores. In summary, the results showed that
cBiG exhibited strong representation learning capability and
obustness. 

ell embeddings obtained by scBiG improve cell 
rajectory inference 

n addition to cell clustering analysis, we also investigated the
ell embeddings’ effectiveness in the task of cell trajectory in-
erence, which aims to construct a continuous path that repre-
ents dynamic cellular processes rather than dividing cells into
iscrete clusters. In this analysis, we still considered the nine
lternative dimensionality reduction methods used in the clus-
ering analysis. To perform trajectory inference based on cell
mbeddings, we selected Slingshot ( 44 ), a method construct-
ng minimum spanning trees on clustered cells (obtained by
he Louvain method in Scanpy) for lineage reconstruction. In
 previous benchmark study, Slingshot achieved a high over-
ll score, performing well across four evaluation criteria ( 45 ).
n this analysis, we considered one simulated dataset and two
eal scRNA-seq datasets: human embryo and mouse embryo
see the ‘Materials and methods’ section). To quantitatively
ssess the similarity between computationally inferred pseu-
otime orders and true time points, we used the pseudotime
rdering score (POS) ( 46 ) and Kendall’s rank correlation co-
fficient ( Supplementary Methods ), both of which take values
etween −1 and 1. 
On the simulated dataset, five methods achieved a POS

bove 0.9, including scBiG (0.99), ZIFA (0.99), scVI (0.99),
eurat (0.95) and SIMBA (0.93). As for the rank correla-
ion coefficient, the best five methods were scBiG (0.87), scVI
(0.87), ZIFA (0.87), SIMBA (0.81) and Seurat (0.81). The top-
performing methods were able to reconstruct the cell trajec-
tory reflecting the correct order of the five cell states (Fig-
ure 4 A and Supplementary Figure S9 ). The human embryo
dataset consisted of embryonic cells at crucial stages of preim-
plantation development, including zygote, 2-cell, 4-cell, 8-cell,
16-cell and blastocyst stages (Figure 4 B and Supplementary 
Figure S10 ). Five methods, including scBiG, achieved a POS
close to 1. In addition, the trajectory inferred from scBiG’s
cell embeddings reflected the continuous path of developmen-
tal stages (POS = 0.89, Cor = 1). The mouse embryo dataset
consisted of embryonic cells at ten different developmental
stages. scBiG (POS = 0.92, Cor = 0.76) and Seurat (POS =
0.92, Cor = 0.75) led to the highest accuracy on this dataset
( Supplementary Figure S11 ). Overall, the cell trajectories in-
ferred by scBiG exhibited good agreements with ground truth
labels, suggesting that its cell embeddings could effectively
capture continuous cell states. These findings highlight the ef-
ficacy of scBiG in inferring developmental trajectories from
scRNA-seq data, providing valuable insights into dynamic cel-
lular differentiation processes. 

scBiG achieves reliable reconstruction of gene 

expression data 

As scBiG is able to reconstruct gene expression levels via its
decoder, we evaluated its performance in this task by apply-
ing scBiG and five alternative methods (MAGIC, scImpute,
ALRA, DCA and scVI) to four simulated datasets with vary-
ing sparsity levels (see the ‘Materials and methods’ section).
We used the root mean square error (RMSE) and Spearman’s
rank correlation coefficient (Spearman’s ρ) as evaluation met-
rics to compare the ground truth expression levels in the sim-
ulation and the reconstructed values inferred by the computa-
tional methods ( Supplementary Methods ). 

The numerical results showed that scBiG achieved the low-
est RMSE across all datasets. It was also among the top three
methods in terms of the Spearman’s ρ correlation (Figure 5 ).
Another two methods, MAGIC and DCA, had similar Spear-
man’s ρ compared with scBiG. The DCA method also led to
a comparable RMSE when the sparsity level of the data was
between 80% and 90%, but had higher RMSE than scBiG
when the sparsity level reached 95%. The MAGIC method
led to much larger RMSE than DCA and scBiG. Another ob-
servation is that even though not all methods led to an RMSE
better than the observed data, gene expression reconstruction
always improved Spearman’s ρ, especially when the sparsity
level in the observed data was high. In summary, the above
results demonstrated the effectiveness of scBiG in recovering
gene expression signals from sparse single-cell data. 

Gene embeddings obtained by scBiG capture cell 
type specificity 

Gene co-expression analysis serves as a powerful tool for un-
raveling gene functions and regulatory mechanisms. Prior re-
search has demonstrated that feature genes extracted through
PCA can effectively represent network modules within co-
expression networks ( 47 ). Building upon this insight, we hy-
pothesize that the gene embeddings learned by the scBiG
model not only encapsulate a wide spectrum of features within
gene expression data but also encapsulate distinct gene mod-
ules, which reflect subpopulations of interconnected genes.
To further enhance gene module discovery, we extended the

https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae004#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae004#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae004#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae004#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae004#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae004#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae004#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae004#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae004#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae004#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae004#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae004#supplementary-data
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Figure 2. Comparison of different dimensionality reduction methods in clustering analysis. ( A ) ARI and NMI values of nine methods on seven real 
datasets. The methods are ordered based on the average ARI / NMI values. ZIFA is not included in the heatmaps because it did not finish running within 
12 h on the three largest datasets. ( B ) UMAP visualizations of the human pancreas dataset based on the 10 dimensionality reduction methods. Cells are 
visualiz ed b y the annot ated cell t ypes. ( C ) Same UMAP visualizations as sho wn in panel (B) but visualiz ed b y the inferred cluster labels. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

scBiG model by considering gene–gene correlations. Specif-
ically, edges were added between highly correlated genes in
the cell–gene bipartite graph before training the network
( Supplementary Methods ). This extension was only used in
the co-expression analysis since our comparative analysis had
shown that cell clustering performance was not improved by
incorporating the gene–gene edges ( Supplementary Table S4 ).

In this analysis, we compared scBiG with siVAE ( 16 ) and
SIMBA ( 15 ), which can also learn gene embeddings from
scRNA-seq data. In addition, we tried a naive approach by
directly applying PCA to the normalized gene expression ma-
trices to obtain gene embeddings. For all methods, we only
used the top 1000 highly variable genes (HVGs) selected by
Scanpy in the modeling process. We investigated the gene em-
beddings learned by different methods on two real datasets:
human liver ( 39 ) and mouse trachea ( 40 ). For each dataset, we
collected known cell-type-specific marker genes. Embeddings 
of marker genes for the same cell type were expected to be 
more similar. The human liver dataset included four cell types,
and the marker genes were obtained from the cell type signa- 
ture gene sets in MSigDB (gene sets annotated with ‘Aizarani 
liver’) ( 48 ). The mouse trachea dataset included six cell types,
and the marker genes were obtained from the CellMarker ( 49 ) 
database. 

For the human liver dataset, there were 211 marker genes 
in the top 1000 HVGs. We performed PCA on the learned 

embeddings of these 211 genes (Figure 6 A). Based on the 
gene embeddings learned from scBiG (with gene–gene edges),
marker genes of the same cell type tended to be closer to each 

other, while marker genes of different cell types were more 
separated in the PCA plot. In contrast, the grouping patterns 
of marker genes were less obvious based on gene embeddings 

https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae004#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae004#supplementary-data
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GFE

Figure 3. Comparison of different dimensionality reduction methods on subsampled datasets. B o xplots of ARI values were obtained by applying the 
ten dimensionality reduction methods to subsamples of scRNA-seq datasets: ( A ) human PBMC; ( B ) human pancreas; ( C ) mouse retina; ( D ) mouse ES; 
( E ) mouse bladder; ( F ) mouse kidney; and ( G ) human kidney. 

A

B

Figure 4. Cell trajectories inferred based on different dimensionality reduction methods. The curves represent the inferred cell trajectories by Slingshot 
based on the obtained cell embeddings. ( A ) Results on the simulated dataset. The ground truth structure in the simulated data is a curved branching 
str uct ure with five branches, and each branch represents a de v elopment al st ate. Cells are visualiz ed b y the de v elopment al st ates. ( B ) Results on the 
human embryo dataset. Cells are visualized by their developmental stages. 
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A B

Figure 5. Accuracy of gene expression reconstruction by scBiG and alternative methods on simulated datasets with four sparsity levels. ‘Observed’ 
represents the result based on observed counts without reconstruction. ( A ) Accuracy based on the RMSE. ( B ) Accuracy based on the Spearman’s rank 
correlation coefficient (Spearman’s ρ). 

A

B

Figure 6. Comparison of marker gene embeddings on the human liver dataset. ( A ) PCA plots based on gene embeddings of normalized data, siVAE, 
SIMBA, scBiG and scBiG with or without gene–gene edges. Dots represent marker genes and genes are visualized by cell types. ( B ) Similarities 
betw een mark er gene embeddings. For each method, the diagonal v alues indicate the a v erage similarit y bet w een mark er genes of the same cell type 
(intra-cell-t ype similarit y). T he off-diagonal v alues indicate the a v erage similarit y bet w een mark er genes of tw o different cell t ypes (inter-cell-t ype 
similarity). The inter / intra ratio is used to measure the relative difference between inter- and intra-cell-type similarities ( Supplementary Methods ). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

obtained by the other methods. We then calculated the sim-
ilarities between the marker gene embeddings. scBiG (with
gene–gene edges) led to relatively large intra-cell-type simi-
larities and low inter-cell-type similarities with the lowest ra-
tio between inter- and intra-cell-type similarities (Figure 6 B
and Supplementary Methods ). 

For the mouse trachea dataset, there were 410 marker
genes in the top 1000 HVGs, corresponding to the six dif-
ferent cell types in this dataset. The PCA plots of gene em-
beddings showed that marker genes of the same cell type
had stronger clustering patterns in the results of scBiG and
SIMBA ( Supplementary Figure S12 ). scBiG with gene–gene
edges also achieved more distinct marker gene separation than
the version without gene–gene edges. In addition, SIMBA and
scBiG (with gene–gene edges) had the lowest ratio between
intra- and inter-cell-type similarities. Together, these results
suggested scBiG’s ability to capture biologically meaningful 
features of marker genes using its graph convolutional net- 
work. 

Ablation and sensitivity analyses 

The scBiG model consists of two main modules: a GNN-based 

encoding module and a ZINB-based decoding module (see 
the ‘Materials and methods’ section). In the context of cell 
clustering analysis, we have performed a series of compara- 
tive analyses to validate the effectiveness of each module in 

scBiG. Specifically, we designed analyses to (i) investigate the 
impact of layer weights in Equation ( 7 ), (ii) study the perfor- 
mance of varying combinations of decoder models and (iii) 
examine the impact of varying numbers of HVGs (Table 1 ). 

https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae004#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae004#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae004#supplementary-data
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Table 1. Clustering performance (ARI) of different scBiG variants 

Human PBMC Mouse ES Mouse bladder Human kidney Mouse kidney Human pancreas 

scBiG 0.732 (0.033) 0.912 (0.006) 0.626 (0.023) 0.609 (0.018) 0.860 (0.011) 0.918 (0.010) 
scBiG- E 

(0) 
c 0.726 (0.027) 0.709 (0.109) 0.583 (0.037) 0.607 (0.025) 0.852 (0.016) 0.908 (0.015) 

scBiG- E 

(2) 
c 0.235 (0.012) 0.138 (0.015) 0.278 (0.012) 0.183 (0.013) 0.311 (0.020) 0.276 (0.019) 

DOT + MSE 0.534 (0.052) 0.675 (0.063) 0.340 (0.048) 0.621 (0.010) 0.537 (0.040) 0.648 (0.041) 
GMF + MSE 0.634 (0.017) 0.882 (0.043) 0.531 (0.035) 0.389 (0.213) 0.814 (0.025) 0.874 (0.022) 
scBiG (2000 HVGs) 0.710 (0.037) 0.793 (0.041) 0.520 (0.058) 0.664 (0.024) 0.815 (0.026) 0.928 (0.016) 
scBiG (3000 HVGs) 0.718 (0.027) 0.827 (0.048) 0.475 (0.066) 0.675 (0.016) 0.850 (0.030) 0.919 (0.007) 
scBiG (5000 HVGs) 0.716 (0.028) 0.844 (0.033) 0.519 (0.053) 0.699 (0.019) 0.846 (0.029) 0.924 (0.006) 

A B

Figure 7. Computational efficiency of scBiG and alternative methods on simulated data with different cell numbers: ( A ) running time and ( B ) maximum 

memory usage. 
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The encoder of scBiG consists of two graph convolu-
ional layers, and the final cell embeddings are obtained as
 weighted combination of the initial embeddings ( E 

(0) 
c ), the

mbeddings of the first layer ( E 

(1) 
c ) and the embeddings of the

ast layer ( E 

(2) 
c ). To examine the effectiveness of the setting

n scBiG ( E c = ( 1 / 2) E 

(0) 
c + ( 1 / 4) E 

(1) 
c + ( 1 / 4) E 

(2) 
c ), we com-

ared it with two variants: directly using initial cell embed-
ings as final embeddings (denoted as scBiG- E 

(0) 
c ) and directly

sing embeddings in the last layer as final embeddings (de-
oted as scBiG- E 

(2) 
c ). The results indicated that scBiG achieved

he best overall clustering performance (Table 1 ). Only using
he last layer’s cell embeddings resulted in poor performance,
hich is likely due to oversmoothing, while the weighted mul-

ilayer combination effectively prevented it. For the decoder
ayer, scBiG uses a combination of GMF and ZINB mod-
ls. We considered two different variants of the decoders:
ne using a dot product decoder with MSE loss (DOT +
SE) and one using a GMF decoder with MSE loss (GMF

 MSE) ( Supplementary Methods ). The results showed that
cBiG achieved higher ARI scores than the two variants. With
he combination of GMF and ZINB models, scBiG could en-
ance the representation learning of scRNA-seq data. Lastly,
s selecting HVGs is a common optional pre-processing step in
cRNA-seq analysis, we conducted an analysis to compare the
ffect of using 2000, 3000 and 5000 HVGs versus all genes in
he cell–gene bipartite graph. Our results indicate that scBiG
s not sensitive to HVG selection. 

untime and memory usage 

e compared the computational scalability and efficiency of
cBiG and alternative methods by measuring their running
time and memory usage (Figure 7 ). These experiments were
conducted on the NVIDIA Tesla V100S-PCIE (32G). Informa-
tion about the GPU usage of each method is summarized in
Supplementary Table S2 . scBiG demonstrated a near-linear in-
crease in running time concerning the number of cells. Specif-
ically, scBiG ranked as the second fastest method when deal-
ing with datasets containing 4000 cells or fewer, and it took
the second position behind ICA when the cell count exceeds
32 000. Regarding maximum memory usage, scBiG fell within
the mid-range and was comparable in magnitude to other
methods, including DCA and graph-sc. When utilizing 2000
HVGs, denoted as scBiG 

* , further reductions in both running
time and memory usage could be achieved. However, on the
same datasets (without selecting HVGs), ZIFA was not able to
process 32 000 cells due to memory overflow issues. scGNN
and scGAE were unable to process 64 000 cells for the same
reason. 

Discussion 

In this article, we introduce scBiG, a novel graph representa-
tion learning method to simultaneously learn cell and gene em-
beddings. scBiG’s strength lies in its approach of constructing
a bipartite graph that connects cells and genes, and utilizing
a graph autoencoder for encoding and decoding. This process
enables representation learning for both cells and genes, as
well as reconstruction of gene expression levels. The encoder
within scBiG incorporates multiple graph convolution layers,
facilitating the learning and extraction of higher-order fea-
tures from cell and gene nodes. Meanwhile, the decoder em-
ploys a ZINB distribution model to guide training and recon-
struct gene expression levels. Through self-supervised learn-

https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae004#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae004#supplementary-data
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ing, scBiG effectively learns lower-dimensional embeddings
that prove valuable for various downstream tasks, including
cell clustering, cell trajectory inference, gene expression recon-
struction and gene co-expression analysis. 

Our simulation and real data studies have demonstrated
that the cell embeddings learned by scBiG capture meaningful
cell–cell relationships, and can improve cell clustering analysis
and cell trajectory inference, compared with multiple alterna-
tive methods. Furthermore, by taking gene correlations into
consideration when constructing the bipartite graph, scBiG
enhances representation learning and module identification in
gene co-expression analysis. scBiG is also shown to more accu-
rately recover gene expression levels, and it exhibits remark-
able robustness to data sparsity . Notably , scBiG serves as a
robust deep learning framework for scRNA-seq datasets, and
it presents a promising avenue for advancing graph represen-
tation learning in the field of single-cell genomics. 

In our future work, we will consider improving the design
of the network architecture, so that it can consider cell-type-
specific and common components in the gene embeddings,
making downstream comparison more straightforward. Addi-
tionally, we plan to extend the utility of scBiG to more general
settings, by including additional information such as batches,
gene sequences and protein–protein interactions to expand the
bipartite graph. This expansion will further enrich our abil-
ity to comprehensively learn representations of both cells and
genes, thereby enhancing scBiG’s capacity to unveil complex
biological processes. 

Data availability 

scBiG is implemented as a Python package, which is freely
available from its GitHub repository ( https://github.com/
sldyns/scBiG ). The accession numbers of all real data used in
this work are described in Supplementary Table S3 . The data
and code used to reproduce the analyses are available at https:
// github.com/ sldyns/ scBiG/ tree/ main/ reproducibility and
https:// doi.org/ 10.5281/ zenodo.10460509 . 

Supplementary data 

Supplementary Data are available at NARGAB Online. 
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