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ABSTRACT
Tachysurus vachellii are commercially important edible fish due to delicious taste, little bone in muscle,
and high nutritional value especially in Asia. The complete mitochondrial genome of Tachysurus vachel-
lii has been sequenced. The mitochondrial genome is 16,529bp in length, with the base composition
of 31.6% A, 26.6% T, 26.9% C, and 14.9% G, containing two ribosomal RNA genes, 13 protein-coding
genes, 22 transfer RNA genes, and a major non-coding control region (D-loop region). The gene order
and orientation are similar with some typical fish species. The data will provide useful molecular infor-
mation for phylogenetic studies concerning T. vachellii and its related species.
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Tachysurus vachellii are commercially important edible fish
due to delicious taste, little bone in muscle, and high nutri-
tional value especially in Asia (Zhang et al. 2016a). However,
due to overfishing, environmental pollution and other factors,
the capture production of T. vachellii has been declining in
the recent years (Zhang et al. 2016b). To benefit the sustain-
able utilization of T. vachellii fishery resource, it is necessary
to determine the complete mitogenome sequence and make
clear its phylogenetic relationships with closely related spe-
cies. This information can also provide a theoretical basis for
the studies on molecular systematics, stock evaluation, con-
servation genetics, and evolutionary adaptation mechanisms
(Chak et al. 2020).

In the present study, the biological specimen was col-
lected from Nansi Lake, north latitude 34�6600 and east longi-
tude 117�2000, Jining city, China. They were preserved in 95%
alcohol, which were stored in biology herbarium of Heze
University under the voucher number: Zhangming214. All
DNA were extracted using phenol–chloroform extraction
methods and stored at �80 �C. The mitogenome was ampli-
fied by primers which were initially published (Zhang et al.
2015). Fragments generated from PCR amplification were
sequenced using Sanger sequencing technology (Yuping
et al. 2019). Sequenced fragments were assembled to create
the complete mitogenome using CodonCode Aligner 5.1.5
(CodonCode Corporation, Dedham, MA), followed with
sequence analysis, assembly, and visualization using SepMan
and DNAMan (Wang et al. 2021). The complete mitogenome
was annotated using the software of Sequin (version 15.10,
http://www.ncbi.nlm.nih.gov/Sequin/). Transfer RNA genes

and their potential cloverleaf structures were identified using
tRNAscan-SE 1.21. All newly determined sequences from this
study were deposited in GenBank database (accession num-
ber: MW288250).

The total length of T. vachellii mitochondrial DNA is
16,529 bp, which includes 13 protein-coding genes, 22 tRNA
genes, two rRNA genes, and two non-coding regions: a puta-
tive control region (D-loop region) and the origin of light-
strand replication. All genes showed the typical gene
arrangement conforming to the vertebrate consensus
(Prosdocimi et al. 2012). The content is 31.6% for A, 26.6%
for T, 26.9% for C, and 14.9% for G. A high Aþ T content
indicates an obvious antiguanine bias commonly observed in
fishes (Qiao et al. 2013). Except for eight tRNA (Gln, Ala, Asn,
Cys, Tyr, Ser, Glu, and Pro) genes and ND6, most of the genes
were encoded on the heavy strand (H-strand). All genes
displayed the typical gene arrangement conforming to the
vertebrate consensus (Chen et al. 2013). In the 13 protein-
coding genes of mitochondrial genome, four overlaps are
detected as shown in: ATP8-ATP6, ATP6-COXIII, ND4-ND4L, and
ND5-ND6 sharing 10, 1, 7, and 4 nucleotides, respectively.
The overlap of the ATPase genes appears to be common in
most vertebrate mitochondrial genome (7–10 bp) (Broughton
et al. 2001). Among the 22 tRNA genes, three overlaps are
found, i.e. tRNAIle-tRNAGln, tRNAGln-tRNAMet, and tRNAThr-
tRNAPro. There are also two overlaps between ND2 and
tRNATrp and between ND3 and tRNAArg. The D-loop was
887 bp, flanked by tRNAPro and tRNAPhe genes.

The maximum-likelihood tree by MEGA 7 based on 13
protein coding genes of the T. vachellii and the other 12
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kinds of fish were constructed (Park et al. 2019). Seen from
the phylogenetic tree (Figure 1), T. vachellii have a closer rela-
tionship with Tachysurus eupogon. It is worth noting that a
member of same genus, T. fulvidraco, was independent for
one branch, which may be one of the reasons of mis-
identification. Pseudobagrus, Leiocassis, Tachysurus clustered
into Bagridae were the closest kinship groups. Compared
with above groups, Hemibagrus was an early differentiation
genus, followed by Pangasiidae. Above branches and
Bagridae formed the sister group. Finally, they formed a sister
group with Sisoridae.
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Figure 1. Maximum-likelihood tree based on mitochondrial genome nucleotide sequences of the Tachysurus vachellii and the other 12 kinds of fish. Tachysurus
vachellii (MW288250) in the position of the evolutionary tree. Numbers above branches are bootstrap values by 1000 replicates. The GenBank accession numbers of
the sequences for the other 12 kinds of fish were used in the tree.
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