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We compared intestinal microbes in anterior noninfectious scleritis patients with and 
without rheumatoid arthritis. Active noninfectious anterior scleritis patients without other 
immune diseases (G group, 16 patients) or with active rheumatoid arthritis (GY group, 
seven patients) were included in this study. Eight age- and sex-matched healthy subjects 
served as controls (N group). DNA was extracted from fecal samples. The V3-V4 16S 
rDNA region was amplified and sequenced by high-throughput 16S rDNA analysis, and 
microbial contents were determined. A significant decrease in species richness in the GY 
group was revealed by α- and β-diversity analyses (p = 0.02 and p = 0.004, respectively). 
At the genus level, 14 enriched and 10 decreased microbes in the G group and 13 enriched 
and 18 decreased microbes in the GY group were identified. Among them, four microbes 
were enriched in both the G and GY groups, including Turicibacter, Romboutsia, 
Atopobium, and Coprobacillus. Although two microbes (Lachnospiraceae_ND3007_group 
and Eggerthella) exhibited similar tendencies in the G and GY groups, changes in these 
microbes were more significant in the GY group (p < 0.05). Interaction analysis showed 
that Intestinibacter, Romboutsia, and Turicibacter, which were enriched in both the G and 
GY groups, correlated positively with each other. In addition, nine microbes were decreased 
in the GY group, which demonstrates a potential protective role for these microbes in the 
pathogenesis of scleritis via interactions with each other.

Keywords: intestinal microbes, scleritis, rheumatoid arthritis, noninfectious anterior scleritis, Turicibacter, 
Romboutsia, Atopobium, Coprobacillus

INTRODUCTION

Scleritis is an immune-mediated disease with initial symptoms of red eyes and pain. Scleritis 
can be  divided into anterior scleritis and posterior scleritis according to anatomical location. 
Furthermore, anterior scleritis can be divided based on clinical manifestations into nodular anterior 
scleritis, diffuse anterior scleritis and necrotizing anterior scleritis. Overall, the pathogenesis of 
scleritis has not been completely elucidated. Although the immune response and infection are 
considered the main two causes of anterior scleritis, scleritis caused by direct infection of the 
sclera by pathogenic microorganisms such as bacteria is relatively rare. More than 50% of scleritis 
cases are associated with immune-mediated diseases, including rheumatoid arthritis and antineutrophil 
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cytoplasmic antibody (ANCA)-associated granulomatosis (GPA; 
Vergouwen et  al., 2020). Among them, rheumatoid arthritis is 
the most common immune-mediated disease associated with 
scleritis, and 8%–15% of patients with scleritis have rheumatoid 
arthritis (RA; Promelle et  al., 2021). It has been reported that 
the level of anti-cyclic citrullinated peptide antibody in RA 
patients correlates strongly with the severity of ocular 
manifestations, including scleritis (Vignesh and Srinivasan, 2015). 
The mechanism of rheumatoid arthritis-associated scleritis is 
unclear and may be  related to the similar structure between 
the synovium and sclera. Indeed, cells infiltrating the synovium 
of patients with RA and the sclera of patients with scleritis are 
similar (Wakefield et al., 2013). Furthermore, HLA-DR4, HLA-DR1, 
HLA-DR13, and HLA-DR15 are significantly associated with 
scleritis complicated with RA (Karami et  al., 2019).

Intestinal microbes are closely related to the occurrence of 
RA. However, the role of intestinal microbiota in the pathogenesis 
of scleritis has not been reported, and whether the intestinal 
microbiota involved in RA is also related to scleritis is still 
unknown. Therefore, we  investigated the relationship between 
intestinal microbes and scleritis by comparing intestinal microbes 
between noninfectious scleritis patients with and without 
RA. Our results showed four bacterial genera to be  enriched 
in noninfectious anterior scleritis patients both with and without 
RA, including Coprobacillus, Romboutsia, Atopobium, and 
Turicibacter. In addition, the abundances of three microbes 
(Candidatus_Stoquefichus, Anaeroplasma, and Lactococcus) were 
altered in noninfectious anterior scleritis patients without other 
immune-mediated diseases, and the abundances of nine microbes 
(Eubacterium_eligens_group, Odoribacter, Family_XIII_UCG-001, 
Ruminiclostridium_9, Ruminococcaceae_UCG-003, 
Ruminococcaceae_UCG-009, Eubcterium_rectale_group, Roseburia, 
and Catabacter) were changed in noninfectious anterior scleritis 
patients with RA. All these results suggest that intestinal 
microbes have coexisting identical and distinct roles in the 
development of scleritis in patients with and without RA.

MATERIALS AND METHODS

Participants
Thirty-one individuals were enrolled in the study, including 16 
patients with active noninfectious anterior scleritis (G group, 
average age: 56.1 ± 7.8 years, male/female: 0.14:1), seven patients 
with active noninfectious anterior scleritis combined with active 
RA (GY group, average age: 59.7 ± 10.1 years, male/female: 0.16:1), 

and eight healthy controls without immune-mediated diseases 
(N group, average age: 56.1 ± 10.5 years, male/female: 0.14:1). 
Healthy controls consisted of family members from scleritis 
patients and age-related cataract patients without immune-mediated 
diseases. There was no significant difference in age or sex among 
the three groups in this study. The inclusion criteria for individuals 
enrolled in the study were as follows: (1) without other immune 
system diseases, such as ulcerative colitis, systemic lupus 
erythematosus, or Crohn’s disease; (2) without infectious disease; 
and (3) patients in the active stage of disease and not taking 
any medications. The diagnosis of noninfectious anterior scleritis 
was based on characteristic clinical manifestations, including 
ocular tenderness to touch, painful inflammation radiating to 
the forehead, edema affecting episcleral and scleral tissues, and 
injections of both the superficial and deep episcleral vessels 
(Dutta Majumder et  al., 2020). The diagnosis of active RA was 
based on the American College of Rheumatology/European League 
Against Rheumatism 2010 criteria for RA, including confirmed 
presence of synovitis in at least one joint, absence of an alternative 
diagnosis better explaining the synovitis, and a total score of 6 
or greater (of a possible 10) from the individual scores in the 
following four domains: number and site of involved joints (range 
0–5), serological abnormality (range 0–3), elevated acute-phase 
response (range 0–1), and symptom duration (two levels; range 
0–1; Aletaha et  al., 2010). Informed consent was obtained from 
all subjects. This study met the requirements of the Declaration 
of Helsinki and was approved by the Clinical Ethics Committee.

Fecal Sample Collection and DNA 
Extraction
Feces were collected from patients with anterior scleritis and 
healthy controls admitted to the Ophthalmologic Center of 
the Second Hospital between July 2018 and December 2019 
and stored at ~80°C for analysis. DNA extraction from feces 
was performed according to E.Z.N.A. Stool DNA Kit (Omega 
Bio-Tek, Norcross, GA, United  States) following the 
manufacturer’s instructions. The quality of the extracted DNA 
was assessed by 1% agarose gel electrophoresis and 
spectrophotometry (260/280 nm optical density ratio). The target 
sequence that needed to be  amplified was introduced in the 
sequencing of the 16S ribosomal RNA (rRNA) gene amplicon.

Sequencing of 16S rRNA Gene Amplicons
The extracted DNA was sent to Beijing Aoweisen Gene Technology 
Co., Ltd. (Beijing, China). We  referred to previously reported 
experimental methods to amplify the target gene (Li et  al., 
2022), as follows. We  detected the DNA using the Illumina 
MiSeq PE300 platform (Santiago, CA, United  States) and used 
the universal primers 338F (5-ACTCCTACGGGAGGCAGCAG-3) 
and 806R (5-GGACTACNNGGG TATCTAAT-3) to amplify the 
V3 to V4 16S ribosomal DNA (rDNA) region. Next, we amplified 
the target sequence by polymerase chain reaction.

Sequence Analysis
We used previously reported experimental methods to analyze 
the sequence (Li et al., 2022) as follows. Paired-end sequencing 

Abbreviations: ANCA, Antineutrophil cytoplasmic antibody; HLA-DR, Human 
leukocyte antigen DR; RA, Rheumatoid arthritis; DNA, Deoxyribonucleic acid; 
RNA, Ribonucleic acid; 16S rRNA, 16S Ribosomal RNA; OTU, Operational 
taxonomic unit; ACE, Abundance-based coverage estimator; LDA, Linear 
discriminant analysis; LEFse, LDA effect Size; AMOVA, Analysis of Molecular 
Variance; VKH, Vogt–Koyanagi–Harada Syndrome; MMPs, Matrix 
metalloproteinases; TIMPs, Tissue inhibitor of matrix metalloproteinases; H2S, 
Hydrogen sulfide; SCFA, Short-chain fatty acid; CD, Crohn’s disease; UC, Ulcerative 
colitis; MS, Multiple sclerosis; G, Patients with active noninfectious anterior 
scleritis; GY, Patients with active noninfectious anterior scleritis combined with 
active rheumatoid arthritis; N, Healthy controls without immune-mediated diseases.
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of the target sequence was performed using the Illumina MiSeq 
platform, and QIIME (Professor Gregory Caporaso, Flagstaff, 
United States; version 1.8.0) was used to filter, split, and remove 
chimeras. Sequences with scores less than 20 or that had base 
ambiguity, primer mismatch, or a length less than 150 bp were 
excluded. The sequences were clustered and grouped as 
operational taxonomic units (OTUs) based on barcodes. We set 
the OTU similarity to 97%, and we  matched every OTU to 
corresponding species classification information by comparison 
with the Silva database. Then, we  calculated the microbial 
α-diversity, including the Shannon, abundance-based coverage 
estimator (ACE), and Chao1 indices, in Mothur (version 1.31.2, 
Professor Patrick Schloss; MI, United  States). The species 
communities of each sample were compared, and β-diversity 
was calculated by UniFrac. Clustering was performed using 
pheatmap in TBtools (version 1.098652, Chengjie, Chen; 
Guangzhou, China) based on the weighted UniFrac distance. 
The data are presented based on the row scale. Raw reads 
were uploaded to the Sequence Read Archive (SRA) database 
on the National Center for Biotechnology Information website. 
The BioProject ID is PRJNA836534.

Statistical Analysis
To explore differences between groups, Mothur software (version 
1.31.2) was used to perform Metastats analysis, and a p < 0.05 
indicated significance. Linear discriminant analysis (LDA) 
coupled with effect size (LEfSe) was performed using Glaxy 
(The Huck Institutes of the Life Sciences, The Institute for 
CyberScience at Penn State, and Johns Hopkins University, 
United States). Only data with a p < 0.05 and a log LDA score > 2 
are reported. Spearman correlation analysis was used as the 
mapping parameter of the correlation diagram. We  visualized 
and analyzed the network using the personalbio platform (Zikui 
Sun, Shanghai, China), and the correlation was | R | > 0.6, 
p < 0.05.

RESULTS

Microbiome Species Diversity and Number 
of Samples Sequenced
The α-diversity (Chao1, observed_species, PD_whole_tree, and 
Shannon) and β-diversity [analysis of molecular variance 
(AMOVA)] of the intestinal microbes in each group were 
analyzed (Figures 1A,B). According to α-diversity analysis, the 
species in the N group were most abundant, followed by the 
G and GY groups, and there were significant differences in 
species richness between the N and GY (p = 0.02) groups. 
Differences in species richness between the N and GY (p = 0.004) 
groups were detected by β-diversity analysis, and differences 
between the G and GY (p = 0.04) groups were significant.

We examined the number of reads sampled and found that 
the number of OTUs did not further increase with an increase 
in the number of samples sequenced. Thus, the sequencing 
depth and coverage were sufficient to cover the total diversity 
of the microbiomes examined (Figure  1C).

Changes in Intestinal Microbes in 
Noninfectious Anterior Scleritis Patients 
Without Other Immune-Related Diseases
To investigate microbes involved in the pathogenesis of 
noninfectious anterior scleritis, we  screened microorganisms 
with significantly different abundances between healthy people 
(Group N) and patients with noninfectious anterior scleritis 
without RA (Group G; Figure  2A).

At the genus level, 14 enriched and 10 decreased microbes 
were detected in the G group. Among these enriched microbes, 
six were only detected in Group G, including Rikenellaceae_
RC9_gut_group, Candidatus_Stoquefichus, Anaeroplasma, 
Enterorhabdus, Howardella, and Coprobacillus. Eight microbes 
were detected in both Group G and Group N, but the contents 
in the former were higher, including Prevotella, Megasphaera, 
Romboutsia, Intestinibacter, Lactobacillus, Atopobium, Turicibacter, 
and Eggerthella. Among the 10 microbes with decreased 
abundance, 4 were only detected in Group N: Senegalimassilia, 
Dielma, Gelria, and Prevotellaceae_Ga6A1_group. Six microbes 
were detected in both Group G and Group N, but the content 
in Group G was lower, including Ruminococcaceae_UCG-007, 
Lactococcus, Holdemanella, Cellulosilyticum, Lachnospiraceae_
ND3007_group, and Lactonifactor.

To identify possible biomarkers, LEfSe analysis was performed 
to examine different microbial features between active 
noninfectious anterior scleritis patients and healthy controls. 
The results were similar to those above, with enrichment of 
Romboutsia, Turicibacter, and Eggerthella and a decrease in 
Lachnospiraceae_ND3007_group, Holdemanella, and Dielma in 
the G group (Figure  2B).

At the family level, Anaeroplasmataceae, Family_XI, 
Peptostreptococcaceae, and Lactobacillaceae were increased and 
Thermoanaerobacteraceae and Flavobacteriaceae decreased. At 
the order level, Anaeroplasmatales and Selenomonadales were 
enriched, whereas Thermoanaerobacterales and Flavobacteriales 
were reduced. At the class level, Negativicutes was increased 
and Flavobacteriia decreased. At the phylum level, 
Saccharibacteria showed enrichment.

Changes in Intestinal Microbes in 
Noninfectious Anterior Scleritis Patients 
With RA
Next, we  screened microbes with significantly different 
abundances in noninfectious anterior scleritis patients with RA 
(GY group; Figure  2C).

At the genus level, 13 enriched and 18 decreased microbes 
were detected in the GY group. Among the enriched microbes, 
four were only detected in the GY group, including 
Peptoniphilus, Anaerofustis, Catabacter, and Coprobacillus. 
Nine microbes were detected in Group GY and Group N, but 
the content in Group GY was higher than that in Group N, 
including Clostridium_innocuum_group, Leuconostoc, Atopobium, 
Turicibacter, Peptoclostridium, Eggerthella, Enterococcus, 
Subdoligranulum, and Romboutsia. The 18 microbes with 
decreased abundance in the GY group included Bilophila, 
Eubacterium_eligens_group, Odoribacter, Eubacterium_ 
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ruminantium_group, Family_XIII_UCG-001, Ruminococcaceae_
UCG-005, Ruminiclosridium_9, Ruminococcaceae_UCG- 
003, Lachnospiraceae_ NK4A136_group, Parabacteroides, 
Ruminococcaceae_UCG-009, Paraprevotella, Eubacterium_rectale_
group, Butyricimonas, Roseburia, Ruminococcaceae_UCG- 
002, Lachnospira, and Lachnospiraceae_ND3007_group. The 

Intestinibacter content in the GY group was higher than that in 
the N group, but the difference was not significant.

In LEfSe analysis of was performed to examine microbial 
features between noninfectious anterior scleritis patients with 
RA and healthy controls. Similar findings were found, including 
Subdoligranulum, Peptoclostridium, and Eggerthella enrichment 

A

B
C

FIGURE 1 | (A) α-Diversity using the Chao1, observed OTUs, PD_whole_tree, and Shannon measures for patients with active noninfectious anterior scleritis, 
patients with active noninfectious anterior scleritis combined with active rheumatoid arthritis, and healthy controls. (B) β-Diversity was assessed by analysis of 
molecular variance (ANOVA) in patients with active noninfectious anterior scleritis, patients with active noninfectious anterior scleritis combined with active 
rheumatoid arthritis, and healthy controls. (C) Rarefaction curves of the gut microbes from 16 patients with active noninfectious anterior scleritis, seven patients with 
active noninfectious anterior scleritis combined with active rheumatoid arthritis, and 11 healthy controls.
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and decreases in Eubacterium_ruminantium_group, Roseburia, 
and Ruminococcaceae_ UCG-002 in the GY group (Figure 2D).

At the family level, Family_XI, Peptostreptococcaceae, and 
Enterococcaceae were enriched in the GY group, but 
Flavobacteriaceae, Peptococcaceae, and Desulfovibrionaceae were 
decreased. Bacillales and Micrococcales were enriched at the 
order level, whereas Flavobacteriales and Desulfovibrionales were 
decreased. Flavobacteriia and Deltaproteobacteria were decreased 
at the class level, and Saccharibacteria was enriched at the 
phylum level (Figure  2C).

Comparison of Intestinal Microbes 
Between the Two Groups of Patients
To identify microbes related to noninfectious scleritis, 
we  compared the three groups and divided microorganisms 
into four types (Figure  3).

Type A
Four microbes were enriched in both Groups G and GY, 
including Coprobacillus (both p < 0.05), Romboutsia (both 

A C

B D

FIGURE 2 | (A) Relative abundance of microbes in 16 patients with active noninfectious anterior scleritis (G) and 11 healthy controls (N); (B) Linear discrimination 
analysis (LDA) effect size (LEfSe) analysis results comparing active noninfectious anterior scleritis patients (G) and 11 healthy controls (N); (C) Relative abundance of 
microbes in seven patients with active noninfectious anterior scleritis combined with active rheumatoid arthritis (GY) and 11 healthy controls (N); (D) LDA LEfSe 
analysis results comparing patients with active noninfectious anterior scleritis combined with active rheumatoid arthritis (GY) and 11 healthy controls (N). The content 
of microbes (A,C) was increased by 106-fold; the logarithm was taken, and the base number was 10. LDA scores (B,D) (log10) > 2 are listed.
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p < 0.01), Atopobium (both p < 0.05), and Turicibacter (both 
p < 0.01). The abundances of these microbes were significantly 
different between Groups N and G or GY, but there was no 
significant difference between Groups G and GY. We  consider 
these microbes to be  related to the pathogenesis of scleritis.

Type B
Microbes were enriched or decreased only in the G group, 
and not in the GY group, including Candidatus_Stoquefichus, 
Anaeroplasma, and Lactococcus. We consider that these microbes 
may be  specifically related to scleritis pathogenesis.

Type C
Microbes were enriched or decreased only in the GY group, 
and not in Group G, including Eubacterium_eligens_group, 
Odoribacter, Family_XIII_UCG-001, Ruminiclostridium_9, 
Ruminococcaceae_UCG-003, Ruminococcaceae_UCG-009, 
Eubacterium_rectale_group, Roseburia, and Catabacter. 

We  consider these microbes to be  related to the pathogenesis 
of RA or the shared pathogenesis pathway of scleritis and RA.

Type D
Two microbes (Lachnospiraceae_ND3007_group, Eggerthella) 
that exhibited similar abundances in both the G and GY groups. 
The abundance of Lachnospiraceae_ND3007_group was decreased 
and that of Eggerthella enriched. The changes in both the G 
and GY groups were significant compared with those in the 
N group, but the Eggerthella content was higher and the 
Lachnospiraceae_ND3007_group content lower in the GY group 
than in the G group. Interestingly, these two microbes also 
exhibited similar changes between patients with active VKH 
and patients with scleritis (Li et  al., 2022). This result suggests 
that these two microbes may be  nonspecifically involved in 
various immune-related eye diseases. Whether the content of 
these two microbes in each disease correlates with the severity 
of eye disease needs to be  further studied.

FIGURE 3 | Relative abundance of microbes from 16 patients with active noninfectious anterior scleritis (G), seven patients with active noninfectious anterior 
scleritis combined with active rheumatoid arthritis (GY), and 11 healthy controls (N). The content of microbes is presented based on the row scale.

https://www.frontiersin.org/journals/microbiology
www.frontiersin.org
https://www.frontiersin.org/journals/microbiology#articles


Li et al. Microbes in Noninfectious Anterior Scleritis

Frontiers in Microbiology | www.frontiersin.org 7 June 2022 | Volume 13 | Article 925929

Interactions Between Microbes
To better understand the role of these microbes, we  analyzed 
the interaction of these significantly changed microbes using 
the personalbio platform and identified three modules. The 
first is the module associated with active anterior scleritis, 
which included Intestinibacter, Romboutsia, and Turicibacter; 
all were enriched in both the G and GY groups and correlated 
positively with each other. This suggests that these microbes 
participate in the pathogenesis of noninfectious scleritis by 
promoting each other (Figure  4A).

The second module is associated with RA or the shared 
pathogenesis pathway of scleritis and RA, including the following 
nine microbes with decreased contents: Family_XIII_UCG-001, 
Eubacterium_ruminantium_group, Ruminococcus_UCG-002, 
Ruminococcus_UCG-003, Ruminococcus_UCG-005, Ruminococcus_
UCG-009, Lachnospiraceae_NK4A136_group, Lachnospiraceae_
ND3007_group, and Ruminiclostridium_9. These microbes were 
decreased in both the GY and G groups; however, the difference 
was significant only in the former. Hence, these microbes may 
play a protective role in the pathogenesis of RA or the shared 
pathogenesis pathway of scleritis and RA. In addition, 
Ruminococcace_UCG-005 and Family_XIII_UCG-001 were at the 

center of the association network and closely associated with 
other microbes. Therefore, we consider that these two microbes 
may play a key role in the whole mechanism of action (Figure 4B).

The third module included two microbes (Eubacterium_
eligens_group, Roseburia), which only exhibited significantly 
decreased contents in the GY group and were negatively related 
to each other. The final consequence of the mutual negative 
regulation between the two microbes appears to be  related to 
the pathogenesis of RA or the shared pathogenesis pathway 
of scleritis and RA (Figure  4B).

DISCUSSION

At the genus level, compared with healthy controls, noninfectious 
anterior scleritis patients without rheumatoid arthritis showed 
14 enriched and 10 decreased microbes, whereas noninfectious 
anterior scleritis patients with rheumatoid arthritis showed 13 
enriched microbes and 18 decreased microbes. Among them, 
four bacterial genera exhibited the same changes between the 
G and GY groups. This result suggests that these four genera 
may be  related to noninfectious anterior scleritis. 

A

B

FIGURE 4 | Interaction network diagram of microbes related to Group G (A) and Group GY (B). Red represents a positive correlation. The thicker the line is, the 
stronger the correlation is. The group with a larger sector area has a higher content of this microbe.
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Lachnospiraceae_ND3007_group and Eggerthella are detected in 
both anterior scleritis and active-onset VKH patients, indicating 
that they may be  nonspecifically involved in various immune-
related eye diseases. The biomarkers of each group were analyzed 
by LEFse, and the interaction between these microbes was explored 
by a correlation diagram.

By analyzing α- and β-diversity, we  found a significant 
decrease in species richness in the GY group compared with 
the G and N groups, indicating more severe intestinal dysbiosis 
in the GY group. This finding suggests that such changes in 
intestinal microbes may be  closely related to the pathogenesis 
of active anterior scleritis with RA. However, whether the 
change in intestinal microbes is associated with the severity 
of scleritis needs to be  further evaluated.

To explore microbes related to scleritis, we  referred to a 
series of studies on changes in intestinal microbes in patients 
with RA (Figure 5; de Oliveira et al., 2017; Maeda and Takeda, 
2017, 2019; Forbes et  al., 2018; Xu et  al., 2020; Chu et  al., 
2021; Reyes-Castillo et  al., 2021). Comparing these reported 
microbes with our results, Turicibacter and Eggerthella enrichment 
and Lachnospiraceae reduction were found in Groups G and 
GY and patients with RA. Therefore, these microbes may 
be involved in the pathogenesis of both scleritis and RA. Increases 
in Romboutsia, Atopobium and Coprobacillus were found in 
both Groups G and GY but not in patients with RA, indicating 
that these microbes may be  closely related to the pathogenesis 
of scleritis. As decreased abundances of Eubacterium, Odoribacter, 
Roseburia, and Ruminococcaceae were observed in GY group 

and RA patients, these microbes may be  closely related to the 
pathogenesis of RA.

The mechanisms of these microbes involved in the occurrence 
of scleritis are not completely clear. It has been proven that 
increases in IL-1β, TNF-α and IL-6 play a key role in the 
pathogenesis of scleritis and that biological agents such as 
antitumor necrosis factor agents and interleukin-1 and 
interleukin-6 inhibitors control scleral inflammation either in 
an idiopathic manner or in a background of immune-mediated 
systemic disorders (Sota et al., 2021). Romboutsia and Turicibacter 
are positively related to IL-6, IL-1β, TNF-α, IL-23 and IFN-γ 
(Bosshard et  al., 2002; Munyaka et  al., 2016; Li et  al., 2020). 
These cytokines can lead to an increase in macrophages and 
B cells, which are important in the pathogenesis of scleritis 
(Nishio et  al., 2021). In addition, TNF-α elevates the level of 
MMPs, which may disrupt the balance between MMPs (MMP3 
and MMP9) and TIMPs and induce scleritis (Wakefield et  al., 
2013; Vergouwen et  al., 2020). Our results show Romboutsia 
and Turicibacter to be  enriched and promote each other in 
active anterior scleritis patients with and without RA. Hence, 
these two microbes may participate in the pathogenesis of 
scleritis by increasing inflammatory cytokines, which in turn 
induce a subsequent immune response. Lactococcus lactis is 
also related to inflammatory cytokines. Simčič et  al. found that 
L. lactis effectively downregulates the TNF-α response (Simcic 
et  al., 2019). In patients with active anterior scleritis, decreased 
Lactococcus indicates reduced ability to downregulate TNF-α, 
which in turn causes disease via relatively elevated TNF-α 

FIGURE 5 | Changes in the gut microbiome in the G and GY groups and patients with rheumatoid arthritis. Underlined intestinal microbes exhibited increased 
abundances, and microbes without underlining exhibited decreased abundances.
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levels. Enriched Atopobium was found in both the G and GY 
groups. It has been reported that Atopobium is an H2S-producing 
bacterium (Yang and Jobin, 2017), and an increase in H2S 
can exacerbate intestinal epithelial barrier damage (Ye et  al., 
2018). In our patients, enriched Atopobium may be  involved 
in the pathogenesis of scleritis through this mechanism.

The mechanism by which these microbes became decreased 
only in Group GY, and not in Group G (Type C), is related 
to SCFAs. Previous studies have shown that a decrease in 
SCFA levels is closely related to the pathogenesis of RA (Yang 
and Cong, 2021). Odoribacter (Turna et  al., 2020), Roseburia 
(Tamanai-Shacoori et al., 2017), and Ruminiclostridium_9 (Hsiao 
et  al., 2021) are butyrate producers (butyrate is a type of 
SCFA); Ruminococcaceae (Kang et  al., 2017) and Eubacterium 
(Li et  al., 2022) are short-chain fatty acid (SCFA) producers. 
In our patients, the abundances of all these microbes were 
decreased, as was SCFA production. However, whether the 
decrease in SCFA also promotes the occurrence of scleritis 
needs to be  further explored.

An increase in Eggerthella and a decrease in Lachnospiraceae 
were found in both the G and GY groups, with the changes 
in the latter being more severe. Lachnospiraceae is an SCFA 
producer, and the decreased abundance of Lachnospiraceae_
ND3007_group may have decreased SCFA production (Kang 
et al., 2017). Eggerthella enrichment might induce inflammatory 
cytokines, including TNF-α, IL-1β, and IL-6 (Li et  al., 2022). 
An increase in Eggerthella and a decrease in Lachnospiraceae 
have also been found in other immune-mediated diseases, 
including Vogt–Koyanagi–Harada (VKH; Li et al., 2022) Crohn’s 
disease (CD), ulcerative colitis (UC) and multiple sclerosis 
(MS; Forbes et  al., 2018). This result suggests that the roles 
of Eggerthella and Lachnospiraceae are not specific. The content 
of Lachnospiraceae_ND3007_group was lower and that of 
Eggerthella higher in the GY group. Whether the levels of 
these two microbes are related to the severity of eye disease 
needs to be  further studied.

Our study suggests the existence of a gut-eye axis. Intestinal 
dysbiosis may be  a crucial factor influencing ocular diseases. 
Dysbiosis of the intestinal microbiota causes upregulated 
expression of inflammatory cytokines in peripheral blood, which 
in turn causes ocular inflammation. In addition, the gut microbiota 
may cause extraintestinal diseases, including RA, through antigenic 
mimicry (Pianta et  al., 2017). These are potential pathways or 
mechanisms by which dysbiosis induces autoimmunity and the 
link with scleritis or RA-associated physiopathology.

In conclusion, our study indicates that intestinal microbes 
are involved in the pathogenesis of noninfectious anterior 
scleritis in patients with and without rheumatoid arthritis. The 
roles of these microbes are both pathogenic and protective. 

They may participate in the pathogenesis of anterior scleritis 
by interacting with each other and altering immunity.

LIMITATION

This is a descriptive study about changes in intestinal microbes 
in noninfectious anterior scleritis patients with and without 
RA, and there is a lack of research on the mechanisms by 
which these altered intestinal microbes cause scleritis. As there 
is currently no accepted animal model of anterior scleritis, it 
is not feasible to validate the mechanisms of these intestinal 
microbes. In vitro studies of the effects of these intestinal microbes 
on patient’s immune cells might provide some clues. Additionally, 
whether the extent of these changed microbes correlates with 
the severity of scleritis requires further investigation.
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