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Abstract

A major tenet in theoretical neuroscience is that cognitive and behavioral processes are ulti-

mately implemented in terms of the neural system dynamics. Accordingly, a major aim for

the analysis of neurophysiological measurements should lie in the identification of the

computational dynamics underlying task processing. Here we advance a state space model

(SSM) based on generative piecewise-linear recurrent neural networks (PLRNN) to assess

dynamics from neuroimaging data. In contrast to many other nonlinear time series models

which have been proposed for reconstructing latent dynamics, our model is easily interpret-

able in neural terms, amenable to systematic dynamical systems analysis of the resulting

set of equations, and can straightforwardly be transformed into an equivalent continuous-

time dynamical system. The major contributions of this paper are the introduction of a new

observation model suitable for functional magnetic resonance imaging (fMRI) coupled to the

latent PLRNN, an efficient stepwise training procedure that forces the latent model to cap-

ture the ‘true’ underlying dynamics rather than just fitting (or predicting) the observations,

and of an empirical measure based on the Kullback-Leibler divergence to evaluate from

empirical time series how well this goal of approximating the underlying dynamics has been

achieved. We validate and illustrate the power of our approach on simulated ‘ground-truth’

dynamical systems as well as on experimental fMRI time series, and demonstrate that the

learnt dynamics harbors task-related nonlinear structure that a linear dynamical model fails

to capture. Given that fMRI is one of the most common techniques for measuring brain activ-

ity non-invasively in human subjects, this approach may provide a novel step toward analyz-

ing aberrant (nonlinear) dynamics for clinical assessment or neuroscientific research.
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Author summary

Computational processes in the brain are often assumed to be implemented in terms of

nonlinear neural network dynamics. However, experimentally we usually do not have

direct access to this underlying dynamical process that generated the observed time series,

but have to infer it from a sample of noisy and mixed measurements like fMRI data. Here

we combine a dynamically universal recurrent neural network (RNN) model for approxi-

mating the unknown system dynamics with an observation model that links this dynamics

to experimental measurements, taking fMRI data as an example. We develop a new step-

wise optimization algorithm, within the statistical framework of state space models, that

forces the latent RNN model toward the true data-generating dynamical process, and

demonstrate its power on benchmark systems like the chaotic Lorenz attractor. We also

introduce a novel, fast-to-compute measure for assessing how well this worked out in any

empirical situation for which the ground truth dynamical system is not known. RNN

models trained on human fMRI data this way can generate new data with the same tem-

poral structure and properties, and exhibit interesting nonlinear dynamical phenomena

related to experimental task conditions and behavioral performance. This approach can

easily be generalized to many other recording modalities.

Introduction

A central tenet in computational neuroscience is that computational processes in the brain are

ultimately implemented through (stochastic) nonlinear neural system dynamics [1–3]. This

idea reaches from Hopfield’s [4] early proposal on memory patterns as fixed point attractors in

recurrent neural networks, working memory as rate attractors [5,6], decision making as sto-

chastic transitions among competing attractor states [7], motor or thought sequences as limit

cycles or heteroclinic chains of saddle nodes [8,9], to the role of line attractors in parametric

working memory [10–12], neural integration [13], interval timing [14], and more recent

thoughts on the role of transient dynamics in cognitive processing [15]. To test and further

develop such theories, methods for directly assessing system dynamics from neural measure-

ments would be of great value.

Traditionally, mostly linear approaches like linear (Gaussian or Gaussian-Poisson) state

space models [16–19], Gaussian Process Factor Analysis [GPFA; 20], Dynamic Causal Model-

ing [DCM; 21], or (nonlinear, but model-free) delay embedding techniques [22,23], have been

used for reconstructing state space trajectories from experimental recordings. While these are

powerful visualization tools that may also give some insight into system parameters, like con-

nectivity [21], linear dynamical systems (DS) are inherently very limited with regards to the

range of dynamical phenomena they can produce [e.g. 24]. The representation of smoothed

trajectories in the latent space may still inform the researcher about interesting aspects of the

dynamics, but the inferred latent model on its own is not powerful enough to reproduce many

interesting and computationally important phenomena like multi-stability, complex limit

cycles, or chaos [24,25]. More formally, given experimental observations X = {xt} supposedly

generated by some underlying latent dynamical process Z = {zt} (Fig 1), linear state space mod-

els may yield a useful approximation to the posterior p(Z|X), but–due to their linear limita-

tions–they will not produce an adequate mathematical model of the prior dynamics p(Z) that

could generate the actual observations via p(X|Z).

In contrast, recurrent neural networks (RNNs) represent a class of nonlinear DS models

which are universal in the sense that they can approximate arbitrarily closely the flow of any
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other dynamical system [26–28]. Hence, RNNs are, in theory, sufficiently powerful to emulate

any type of brain dynamics. Based on previous work embedding RNNs into a statistical infer-

ence framework [29,30], we have recently developed a nonlinear state space model utilizing

piecewise-linear RNNs (PLRNNs) for the latent dynamical process [31]. In state space models,

similar to sequential variational auto-encoders (VAE) [32–34], one attempts to infer the sys-

tem parameters θ by maximizing a lower bound on the log-likelihood log p(X|θ). In contrast

to many other RNN-based approaches [30,35], including current sequential VAE implementa-

tions [36], our method returns a set of neuronally interpretable and partly analytically tractable

dynamical equations that could be used to gain further insight into the generating system.

The present work further advances this powerful methodology along three major direc-

tions: First, we develop a stepwise initialization and training scheme that forces the latent

PLRNN model toward the correct underlying dynamics: Good prediction of the time series

observations and informative smooth latent trajectories may be achieved even without recreat-

ing a sufficiently good approximation to the underlying DS (as evidenced by the success of lin-

ear state space models). Through a kind of annealing protocol that places increasingly more

burden of predicting the observations onto the latent process model, we enforce the correct

dynamics. Second, we show that a Kullback-Leibler divergence defined across state space

between the prior generative model dynamics p(Z) (independent of the observations) and the

inferred latent states given the observations, p(Z|X), provides a good measure for how well the

Fig 1. Analysis pipeline. Top: Analysis pipeline for simulated data. From the two benchmark systems (van der Pol and Lorenz systems), noisy trajectories were drawn

and handed over to the PLRNN-SSM inference algorithm. With the inferred model parameters, completely new trajectories were generated and compared to the state

space distribution over true trajectories via the Kullback-Leibler divergence KLx (see Eq 9). Bottom: analysis pipeline for experimental data. We used preprocessed fMRI

data from human subjects undergoing a classic working memory n-back paradigm. First, nuisance variables, in this case related to movement, were collected. Then, time

series obtained from regions of interest (ROI) were extracted, standardized, and filtered (in agreement with the study design). From these preprocessed time series, we

derived the first principle components and handed them to the inference algorithm (once including and once excluding variables indicating external stimulus

presentations during the experiment). With the inferred parameters, the system was then run freely to produce new trajectories which were compared to the state space

distribution from the inferred trajectories via the Kullback-Leibler divergence KLz (see Eq 11).

https://doi.org/10.1371/journal.pcbi.1007263.g001
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reconstructed DS (emulated by the PLRNN) can be expected to have captured the correct

underlying system. Hence, our approach, rather than just inferring the latent space underlying

the observations, attempts to force the system to capture the correct dynamics in its governing

equations, and provides a quantitative sense of how well this worked for any empirically

observed system for which the ground truth is not known. Third, given that fMRI is likely the

most important non-invasive technique for gaining insight into human brain function in

healthy subjects and psychiatric illness, we provide an observation (‘decoder’) model for the

PLRNN that takes the hemodynamic response filtering into account.

Results

PLRNN-based state space model (PLRNN-SSM)

We start by introducing our nonlinear state space model (SSM) and statistical inference frame-

work [originally developed in 31]. Within a SSM, one aims to predict observed experimental

time series xt 2 R
N

from a set of latent variables zt 2 R
M

(where usually M6¼N) and their tem-

poral dynamics. Here we use a piecewise-linear (or, strictly, piecewise-affine) recurrent neural

network (PLRNN) (i.e., a RNN composed of rectified-linear units [ReLUs]) for modeling the

unknown latent dynamics:

zt ¼ Azt� 1 þWφðzt� 1Þ þ hþ Cst þ εt; εt � Nð0;ΣÞ ð1Þ

z1 � Nðμ0 þ Cs1;ΣÞ

where zt is the latent state vector at time t = 1. . .T, A 2 RMxM is a diagonal matrix of (linear)

auto-regression weights, W 2 RMxM
an off-diagonal matrix of connection weights, and φ(zt) =

max(zt,0) is an (element-wise) ReLU transfer function. st 2 R
K

denotes time-dependent exter-

nal inputs that influence latent states through coefficient matrix C 2 RMxK
, and εt is a Gaussian

white noise process with diagonal covariance matrix S. (The basic model was modified from

Durstewitz [31] to enable efficient estimation of bias parameters h and speeding up the infer-

ence algorithm by orders of magnitude.) The diagonal and off-diagonal structure of A and W,

respectively, help to ensure that system parameters remain identifiable. Although here we

advance model (Eq 1) mainly as a tool for approximating unknown dynamical systems, it may

be interpreted as a neural rate model [e.g. 37,38], with A the units’ passive time constants, W

the synaptic coupling matrix, and φ(z) a current/voltage to spike rate transfer function which

for cortical pyramidal cells is often non-saturating and close to a ReLU within the physiologi-

cally relevant regime [e.g. 39].

The observed time series are generated from the ReLU-transformed latent states (Eq 1)

through a linear-Gaussian model:

xt ¼ BφðztÞ þ ηt; ηt � Nð0;ΓÞ ð2Þ

where xt are the observed N-dimensional measurements at time t generated from zt, B 2 RNxM

is a matrix of regression weights (factor loadings), and ηt denotes a Gaussian white observation

noise process with diagonal covariance matrix Γ.

Thus, the model is specified by the set of parameters θ = {μ0,A,W,C,h,B,Γ,S}, and we are

interested in recovering θ as well as the posterior distribution p(Z|X) over the latent state path

Z = {z1:T} from the experimentally observed time series X = {x1:T} and experimental inputs S =

{s1:T}. In the following, we will sometimes use the notation θlat = {μ0,A,W,C,h,S} and θobs = {B,

Γ} to exclusively refer to parameters in the evolution or observation equation, respectively.
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Observation model for BOLD time series

An appealing feature of the SSM framework is that different measurement modalities and

properties can be accommodated by connecting different observation models to the same

latent model. In order to apply our model to fMRI time series, we need only to adapt observa-

tion Eq 2 to meet the distributional assumptions and temporal filtering of the blood-oxygen-

level dependent (BOLD) signal, while retaining process Eq 1 with its universal approximation

capabilities. In contrast to electrophysiological measurements, BOLD time-series are a strongly

filtered, highly smoothed version of some underlying neural process, only accessible through

the hemodynamic response function (HRF) [e.g. 40]. Hence, we modified the observation

model (Eq 2) such that the observed BOLD signal is generated from the latent states (Eq 1)

through a linear-Gaussian model with HRF convolution:

xt ¼ Bðhrf � zt:tÞ þ Jrt þ ηt; ηt � Nð0;ΓÞ ð3Þ

where xt are the observed BOLD responses in N voxels at time t generated from zτ:t

(concatenated into one vector and convolved with the hemodynamic response function). We

also added nuisance predictors rt 2 R
P
, which account for artifacts caused, e.g., by movements.

J 2 RNxP is the coefficient matrix of these nuisance variables, and B,Γ and ηt are the same as in

Eq 2. Hence, the observation model takes the typical form of a General Linear Model for

BOLD signal analysis as, e.g., implemented in the statistical parametric mapping (SPM) frame-

work [40]. Note that while nuisance variables are assumed to directly blur into the observed

signals (they do not affect the neural dynamics but rather the recording process), external sti-

muli presented to the subjects are, in contrast, assumed to exert their effects through the

underlying neuronal dynamics (Eq 1). Thus, the fMRI PLRNN-SSM (termed

‘PLRNN-BOLD-SSM’) is now specified by the set of parameters θ = {μ0,A,W,C,h,B,J,Γ,S}.

Model inference is performed through a type of Expectation-Maximization (EM) algorithm

(see Methods and full derivations in supporting file S1 Text).

One complication here is that the observations in Eq 3 do not just depend on the current

state zt as in a conventional SSM, but on a set of states zτ:t across several previous time steps.

This severely complicates standard solution techniques for the E-step like extended or

unscented Kalman filtering [41]. Our E-step procedure [cf. 31], however, combines a global

Laplace approximation with an efficient iterative (fixed point-type) mode search algorithm

that exploits the sparse, block-banded structure of the involved covariance (inverse Hessian)

matrices, which is more easily adapted for the current situation with longer-term temporal

dependencies (see Methods sect. ‘Model specification and inference’ & S1 Text for further

details).

Stepwise initialization and training protocol

The EM-algorithm aims to compute (in the linear case) or approximate the posterior distribu-

tion p(Z|X) of the latent states given the observations in the E-step, in order to maximize the

expected joint log-likelihood Eq(Z|X)[log pθ(Z,X)] with respect to the unknown model parameters

θ under this approximate posterior q(Z|X)�p(Z|X) in the M-step (by doing so, a lower bound of

the log-likelihood log p(X|θ)�Eq[log p(Z,X)]−Eq[log q(Z|X)] is maximized, see Methods sect.

‘Parameter estimation’ & S1 Text). This does not by itself guarantee that the latent system on its

own, as represented by the prior distribution pθlatðZÞ, provides a good incarnation of the true but

unobserved DS that generated the observations X. As for any nonlinear neural network model,

the log-likelihood landscape for our model is complicated and usually contains many local

modes, very flat and saddle regions [42–45]. Since Eq[log p(Z,X)] = Eq[log p(X|Z)]+ Eq[log p(Z)],
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with the expectation taken across q(Z|X)�p(Z|X)/p(X|Z)p(Z), the inference procedure may

easily get stuck in local maxima in which high likelihood values are attained by finding parame-

ter and state configurations which overemphasize fitting the observations, p(X|Z), rather than

capturing the underlying dynamics in p(Z) (Eq 1; see Methods for more details). To address this

issue, we here propose a step-wise training by annealing protocol (termed ‘PLRNN-SSM-anneal’,

Algorithm-1 in Methods) which systematically varies the trade-off between fitting the observa-

tions (maximizing p(X|Z); Eqs 2 and 3) as compared to fitting the dynamics (p(Z); Eq 1) in suc-

cessive optimization steps [see also 46]. In brief, while early steps of the training scheme

prioritize the fit to the observed measurements through the observation (or ‘decoder’) model p
(X|Z) (Eqs 2 and 3), subsequent annealing steps shift the burden of reproducing the observations

onto the latent model p(Z) (Eq 1) by, at some point, fixing the observation parameters θobs, and

then enforcing the temporal consistency within the latent model equations (as demanded by Eq

1) by gradually boosting the contribution of this term to the log-likelihood (see Methods).

Fig 2. Illustration of DS reconstruction measures defined in state space (fKLx) vs. on the time series (mean squared error; MSE). A. Two noise-free time series from

the Lorenz equations started from slightly different initial conditions. Although initially the two time series (blue and yellow) stay closely together (low MSE), they then

quickly diverge yielding a very large discrepancy in terms of the MSE, although truly they come from the very same system with the very same parameters. These problems

will be aggravated once noise is added to the system and initial conditions are not tightly matched (as almost impossible for systems observed empirically), rendering any

measure based on direct matching between time series a relatively poor choice for assessing dynamical systems reconstruction except for a couple of initial time steps. B.

Example time series and state spaces from trained PLRNN-SSMs which capture the chaotic structure of the Lorenz attractor quite well (left) or produce rather a simple

limit cycle but not chaos (right). The dynamical reconstruction quality is correctly indicated by fKLx (low on the left but high on the right), while the MSE between true

(grey) and generated (orange) time series, on the contrary, would wrongly suggest that the right reconstruction (MSE = 1.4) is better than the one on the left (MSE = 2.48).

https://doi.org/10.1371/journal.pcbi.1007263.g002
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Evaluation of training protocol

We examined the performance of this annealing protocol in terms of how well the inferred

model was capable of recovering the true underlying dynamics of the Lorenz system. This

3-dimensional benchmark system (equations and parameter values used given in Fig 4 legend),

conceived by Edward Lorenz in 1963 to describe atmospheric convection [47], exhibits chaotic

behavior in certain regimes (see, e.g., Fig 4A). We measured the quality of DS reconstruction

by the Kullback-Leibler divergence KLx(ptrue(x),pgen(x|z)) between the spatial probability dis-

tributions ptrue(x) over observed system states in x-space from trajectories produced by the

(true) Lorenz system and pgen(x|z) from trajectories generated by the trained PLRNN-SSM

(KLx, in the following refers to this divergence evaluated in observation space, see (Eq 9) in

Methods, where fKLx denotes a normalized version of this measure; see Fig 1 and Methods

sect. ‘Reconstruction of benchmark dynamical systems’ for details). Hence, importantly, our

measure compares the dynamical behavior in state space, i.e. focuses on the agreement

between attractor (or, more generally trajectory) geometries, similar in spirit to the delay

embedding theorems (which ensure topological equivalence) [48–50], instead of comparing

the fit directly on the time series themselves which can be highly misleading for chaotic

Fig 3. Evaluation of stepwise training protocol on chaotic Lorenz attractor. A. Relative frequency of normalized KL divergences evaluated on the observation space

(fKLx) after running the EM algorithm with the PLRNN-SSM-anneal (blue) and PLRNN-SSM-random (red) protocols on 100 distinct trajectories drawn from the Lorenz

system (with T = 1000, and M = 8, 10, 12, 14). B. Same as A for normalized expected joint log-likelihood Eq(z|x)[log p(X,Z|θ)] (see S1 Text Eq 1). C. Decrease in KLx over

the distinct training steps of ‘PLRNN-SSM-anneal’ (see Algorithm-1; the first step refers to a LDS initialization and was removed). D. Increase in (rescaled) expected joint

log-likelihood across training steps 2−31−3 in ‘PLRNN-SSM-anneal’. Since the protocol partly works by systematically scaling down S, for comparability the log-likelihood

after each step was recomputed (rescaled) by setting S to the identity matrix. E. Representative example of joint log-likelihood increase during the EM iterations of the

individual training steps 2−31−3 for a single Lorenz trajectory. Unstable system estimates and likelihood values<-103 were removed from all figures for visualization

purposes.

https://doi.org/10.1371/journal.pcbi.1007263.g003
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Fig 4. Evaluation of training protocol and KL measure on dynamical systems benchmarks. A. True trajectory from chaotic Lorenz attractor (with parameters s = 10,

r = 28, b = 8/3). B. Distribution of fKLx (Eq 9) across all samples, binned at .05, for PLRNN-SSM (black) and LDS-SSM (red). For the PLRNN-SSM, around 26% of these

samples (grey shaded area, pooled across different numbers of latent states M) captured the butterfly structure of the Lorenz attractor well (see also D). Unsurprisingly, the

LDS completely failed to reconstruct the Lorenz attractor. C. Estimated Lyapunov exponents for reconstructed Lorenz systems for PLRNN-SSM (black) and LDS-SSM

(red) (estimated exponent for true Lorenz system�.9, cyan line). A significant positive correlation between the absolute deviation in Lyapunov exponents for true and

reconstructed systems with fKLx (r = .27, p< .001) further supports that the latter measures salient aspects of the nonlinear dynamics in the PLRNN-SSM (for the

LDS-SSM, all of these empirically determined Lyapunov exponents were either< 0, as indicative of convergence to a fixed point, or at least very close to 0, light-gray line).
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systems because of the exponential divergence of nearby trajectories [e.g. 51], as illustrated in

Fig 2A. Note that for a (deterministic, autonomous) dynamical system the flow at each point

in state space is uniquely determined [e.g. 24] and induces a specific spatial distribution of

states, in this sense translates aspects of the temporal dynamics into a specific spatial geometry.

Fig 2B gives examples where our measure fKLx correctly indicates whether the Lorenz attractor

geometry was properly mapped by a trained PLRNN, while a direct evaluation of the time

series fit (incorrectly) indicated the contrary.

For evaluating our specific training protocol (termed ‘PLRNN-SSM-anneal’, Algorithm-1

in Methods), trajectories of length T = 1000 were drawn with process noise (σ2 = .3) from the

Lorenz system and handed to the inference algorithm (for statistics, a total of 100 such trajec-

tories were simulated and model fits carried out on each, and a range of different numbers of

latent states, M = {8, 10, 12, 14}, was explored). Models were trained through ‘PLRNN-SSM-

anneal’ and compared to models trained from random initial conditions (termed

‘PLRNN-SSM-random’) in which parameters were randomly initialized (see Fig 3).

In general, the PLRNN-SSM-anneal protocol significantly decreased the normalized KL

divergence fKLx (Eq 9) and increased the joint log-likelihood when compared to the

PLRNN-SSM-random initialization scheme (see Fig 3A and 3B, independent t-test on fKLx: t
(686) = -16.3, p< .001, and on the expected joint log-likelihood: t(640) = 11.32, p< .001).

More importantly though, the PLRNN-SSM-anneal protocol produced more estimates for

which fKLx was in a regime in which the chaotic attractor could be well reconstructed (see Fig

4, grey shaded area indicates KLx values for which the chaotic attractor was reproduced). Fur-

thermore, the expected joint log-likelihood increased (Fig 3D) while KLx decreased (Fig 3C)

over the distinct training steps of the PLRNN-SSM-anneal protocol, indicating that each step

further enhances the solution quality. KLx and the normalized log-likelihood were, however,

only moderately correlated (r = -.27, p< .001), as expected based on the formal considerations

above (sect. ‘Stepwise initialization and training protocol’).

Reconstruction of benchmark dynamical systems

After establishing an efficient training procedure designed to enforce recovery of the underly-

ing DS by the prior model (Eq 1), we more formally evaluated dynamical reconstructions on

the chaotic Lorenz system and on the van der Pol (vdP) nonlinear oscillator. The vdP oscillator

with nonlinear dampening is a simple 2-dimensional model for electrical circuits consisting of

vacuum tubes [52] (equations given in Fig 4). Fig 4 illustrates its flow field in the plane,

together with several trajectories converging to the system’s limit cycle (note that training was

always performed on samples of the time series, not on the generally unknown flow field!).

As for the Lorenz system, we drew 100 time series samples of length T = 1000 with process

noise (σ2 = .1) using Runge-Kutta numerical integration, and handed each of those over to a

separate PLRNN-SSM inference run, testing with a range M = {8, 10, 12, 14} of latent states

(see below and Discussion for how to determine a suitable latent space dimensionality M). As

D. Samples of PLRNN-generated trajectories for different fKLx values. The grey shaded area indicates successful estimates. E. True van der Pol system trajectories (with μ =

2 and ω = 1). F. Same as in B but for van der Pol system. G. Correlation of the spectral density between true and reconstructed van der Pol systems for the PLRNN-SSM

(black) and LDS-SSM (red). A significant negative correlation for the PLRNN-SSM between the agreement in the power spectrum (high values on y-axis) and fKLx again

supports that the normalized KL divergence defined across state space (Eq 9) captures the dynamics (we note that measuring the correlation between power spectra comes

with its own problems, however). For the LDS-SSM, in contrast, all power-spectra correlations and fKLx measures were poor. H. Same as in D for van der Pol system. Note

that even reconstructed systems with high fKLx values may capture the limit cycle behavior and thus the basic topological structure of the underlying true system (in

general, the 2-dimensional vdP system is likely easier to reconstruct than the chaotic Lorenz system; vice versa, low fKLx values do not ascertain that the reconstructed

system exhibits the same frequencies).

https://doi.org/10.1371/journal.pcbi.1007263.g004
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above, reconstruction performance was assessed in terms of the (normalized) KL divergence

fKLx (Eq 9) between the distributions over true and generated states in state space. In addition,

for the chaotic attractor, the absolute difference between Lyapunov exponents [e.g. 50] from

the true vs. the PLRNN-SSM-generated trajectories was assessed, as another measure of how

well hallmark dynamical characteristics of the chaotic Lorenz system had been captured. For

the vdP (non-chaotic) oscillator, we instead assessed the correlation between the power spec-

trum of the true and the generated trajectories (see Methods sect. ‘Reconstruction of bench-

mark dynamical systems’).

Overall, our PLRNN-SSM-anneal algorithm managed to recover the nonlinear dynamics of

these two benchmark systems (see Fig 4). The inferred PLRNN-SSM equations reproduced the

‘butterfly’ structure of the somewhat challenging chaotic attractor very well (Fig 4D). The fKLx

measure effectively captured this reconstruction quality, with PLRNN reconstructions achiev-

ing values below fKLx � :4 agreeing well with the Lorenz attractor’s ‘butterfly’ structure as

assessed by visual inspection (see Fig 4B). At the same time, for this range of fKLx values the

deviation between Lyapunov exponents of the true and generated Lorenz system was generally

very low (see Fig 4C, grey shaded area). If we accept this value as an indicator for successful

reconstruction, our algorithm was successful in 15%, 24%, 35%, and 28% of all samples for

M = 8, 10, 12, and 14 states, respectively. Note that our algorithm had access only to rather

short time series of T = 1000, to create a situation comparable to that for fMRI data. When

examining the dependence of fKLx on the number of latent states across a larger range in more

detail, M� 16 turned out to be optimal for this setting (S1 Fig), as for M> 16 no further

decrease in fKLx (hence no further improvement in approximating the true attractor geometry)

was observed.

Importantly and in contrast to most previous studies, note we requested full independent

generation of the original attractor object from the once trained PLRNN. That is, we neither

‘just’ evaluated the posterior p(Z|X) conditioned on the actual observations (as e.g. in [53], or

[36]) , nor did we ‘just’ assess predictions a couple of time steps ahead (as, e.g., in [31]), but

rather defined a much more ambitious goal for our algorithm.

For the vdP system, our inference procedure yielded agreeable results in 20%, 31%, 25%,

and 35% of all samples for M = 8, 10, 12, and 14 states, respectively (grey shaded area in Fig

4F), with M = 14 about optimal for this setting (S1 Fig). Furthermore, around 50% of all esti-

mates generated stable limit cycles and hence a topologically equivalent attractor object in

state space, although these limit cycles varied a lot in frequency and amplitude compared to

the true oscillator. Like for the Lorenz system, the fKLx measure generally served as a good indi-

cator of reconstruction quality (see Fig 4H), particularly when combined with the power spec-

trum correlation (Fig 4G), although low fKLx values did not always guarantee and high values

did not exclude the retrieval of a stable limit cycle.

As noted in the Introduction, a linear dynamical system (LDS) is inherently (mathemati-

cally) incapable of producing more complex dynamical phenomena like limit cycles or chaos.

To explicitly illustrate this, we ran the same training procedure (Algorithm-1) on a linear state

space model (LDS-SSM) which we created by simply swapping the ReLU nonlinearity φ(z) =

max(z,0) with the linear function φ(z) = z in Eq 1 and 2. As expected, this had a dramatic effect

on the system’s capability to capture the true underlying dynamics, with fKLx close to 1 in most

cases for both the Lorenz (Fig 4B and 4C) and the vdP (Fig 4F and 4G) equations. Even for the

simpler (but nonlinear) oscillatory vdP system, LDS-SSM would at most produce damped

(and linear, harmonic) oscillations which decay to a fixed point over time (Fig 5A).
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Reconstruction of experimental data

We next tested our PLRNN inference scheme, with a modified observation model that takes

the hemodynamic response filtering into account (PLRNN-BOLD-SSM; see sect. ‘Observation

model for BOLD time series’), on a previously published experimental fMRI data set [54]. In

brief, the experimental paradigm assessed three cognitive tasks presented within repeated

blocks, two variants of the well-established working memory (WM) n-back task: a 1-back con-

tinuous delayed response task (CDRT), a 1-back continuous matching task (CMT), and a

(0-back control) choice reaction task (CRT). Exact details on the experimental paradigm,

fMRI data acquisition, preprocessing, and sample information can be found in [54]. From

these data obtained from 26 subjects, we preselected as time series the first principle compo-

nent from each of 10 bilateral regions identified as relevant to the n-back task in a previous

meta-analysis [55]. These time series along with the individual movement vectors obtained

from the SPM realignment procedure (see also Methods sect. ‘Data acquisition and prepro-

cessing’) were given to the inference algorithm for each subject: Models with M = {1,. . .,10}

latent states were inferred twice: once explicitly including, and once excluding external (exper-

imental) inputs (i.e., in the latter analysis, the model had to account for fluctuations in the

BOLD signal all by itself, without information about changes in the environment).

For experimentally observed time series, unlike for the benchmark systems, we do not

know the ground truth (i.e., the true data generating process), and generally do not have access

to the complete true state space either (but only to some possibly incomplete, nonlinear projec-

tion of it). Thus, we cannot determine the agreement between generated and true distributions

directly in the space of observables, as we could for the benchmark systems. Therefore we use a

proxy: If the prior dynamics is close to the true system which generated the experimental

observations, and those represent the true dynamics well (at the very least, they are the best

information we have), then the distribution of latent states constrained by the data, i.e. p(Z|X),

should be a good representative of the distribution over latent states generated by the prior

model on its own, i.e. p(Z). Hence, our proxy for the reconstruction quality is the KL diver-

gence KLz(pinf(z|x),pgen(z)) (KLz for short, or, when normalized, fKLz; see (Eq 11) in Methods)

between the posterior (inferred) distribution pinf(z|x) over latent states z conditioned on the

experimental data x, and the spatial distribution pgen(z) over latent states as generated by the

model’s prior (governing the free-running model dynamics; we use capital letters, Z, and low-

ercase letters, z, to distinguish between full trajectories and single vector points in state space,

respectively). Note that the latent space defines a complete state space as we have that complete

model available (also note that our measure, as before, assesses the agreement in state space,
not the agreement between time series).

For the benchmark systems, our proposed proxy KLz was well correlated with the KL diver-

gence KLx assessed directly in the complete observation space, i.e., between true and generated

distributions (Fig 6A, r = .72 on a logarithmic scale, p< .001; likewise, KLz(pinf(z|x),pgen(z))

and KLz(pgen(z),pinf(z|x)) were generally correlated highly; r>.9, p< .001). Moreover, although

especially for chaotic systems we would not necessarily expect a good fit between observed or

inferred and generated time series [c.f. 51], fKLz on the latent space turned out to be signifi-

cantly related to the correlation between inferred and generated latent state series in our case

(on a logarithmic scale, see Fig 6B). That is, lower fKLz values were associated with a better

match of inferred and generated state trajectories.

This tight relation was particularly pronounced in models including external inputs (Fig 6B

blue, top). This is expected, as in this case the internal dynamics are reset or partly driven by the

external inputs, which will therefore induce correlations between directly inferred and freely

generated trajectories. Thus, overall, KLz was slightly lower for models including external
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inputs as compared to autonomous models (see also Fig 6C). One simple but important conclu-

sion from this is that knowledge about additional external inputs and the experimental task

structure may (strongly) help to recover the true underlying DS. This was also evident in the

mean squared error on n-step ahead predictions of generated as compared to true data (Fig

6D), i.e. when comparing predicted observations from the PLRNN-BOLD-SSM run freely for n
time steps to the true observations (once again we stress, however, that a measure evaluated

directly on the time series may not necessarily give a good intuition about whether the underly-

ing DS has been captured well; see also Fig 2). Accuracy of n-step-ahead predictions also gener-

ally improved with increasing number of latent state dimensions, that is, adding latent states to

the model appeared to enhance the dynamical reconstruction within the range studied here.

In contrast to the PLRNN-BOLD-SSM, the performance of the LDS-SSM with the same

BOLD observation model (termed LDS-BOLD-SSM), and trained according to the same pro-

tocol (Algorithm-1, see also previous section), quickly decayed after about only three predic-

tion time steps (Fig 6D), clearly below the prediction accuracy achieved by the PLRNN-

BOLD-SSM for which the decay was much more linear. Interestingly, this comparatively sharp

Fig 5. Example time series from an LDS-SSM and a PLRNN-SSM trained on the vdP system. A. Example time graph (left) and state

space (right) for a trajectory generated by an LDS-SSM (red) trained on the vdP system (true vdP trajectories in green). Trajectories from a

LDS will almost inevitably decay toward a fixed point over time (or diverge). B. Trajectories generated by a trained PLRNN-SSM, in

contrast, closely follow the vdP-system’s original limit cycle.

https://doi.org/10.1371/journal.pcbi.1007263.g005
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drop in prediction accuracy for the LDS-BOLD-SSM, unlike the PLRNN-BOLD-SSM, was

accompanied by a similarly sharp rise in the discrepancy between generated and inferred latent

state trajectories (Fig 6E), which was not apparent for the PLRNN-BOLD-SSM. This suggests

that the rise in LDS-BOLD-SSM prediction errors is directly related to the model’s inability to

capture the underlying system in its generative dynamics (while the inferred latent states may

still provide reasonable fits), and–moreover–that the agreement between inferred and gener-

ated latent states is indeed a good indicator of how well this goal of reconstructing dynamics

has been achieved. The linear model’s failure to capture the underlying dynamics was also evi-

dent from the fact that its generated trajectories often quickly converged to fixed points (Fig

7C), while the trained PLRNNs often mimicked the oscillatory activity found in the real data

in their generative behavior (Fig 7B, see also S1 Video).

Moreover, we observed that a PLRNN-BOLD model fit directly to the observations (as one

would, e.g., do for an ARMA model; see Methods), i.e. essentially lacking latent states, was

much worse in forecasting the time series than either the PLRNN-BOLD-SSM or the LDS-

BOLD-SSM, with predictions errors on average above 3.28 even for just a single time step

ahead, either when external inputs were absent (MSE > 2.79 for 1-step) or present (MSE

> 3.77 for 1-step), as compared to the results for the latent variable models in Fig 6D. On top,

they produced a large number of globally unstable solutions (35% and 46%, respectively). This

suggests that the latent state structure is absolutely necessary for reconstructing the dynamics,

perhaps not surprisingly so given that the whole motivation behind delay embedding tech-

niques in nonlinear dynamics is that the true attractor geometries are almost never accessible

directly in the observation space [50].

To ensure that the retrieved dynamics did not simply capture data variation related to back-

ground fluctuations in blood flow (or other systematic effects of no interest), we examined

whether the generated trajectories carried task-specific information. For this purpose, we

assessed how well we could classify the three experimental tasks (which demanded distinct

cognitive processes) via linear discriminant analysis (LDA) based on the generated (through

the prior model) latent state trajectories. (We exclusively focused on classifying task phases,

as these were pseudo-randomized across subjects, while ‘resting’ and ‘instruction’ phases

occurred at fixed times, and we wanted to prevent significant classification differences which

may occur either due to a fixed temporal order, or due to differences in presentation of experi-

mental inputs during resting/instruction vs. proper task phases.) Fig 7A shows the relative clas-

sification error obtained when classifying the three tasks by the generated trajectories (bottom)

as compared to that from the directly inferred trajectories (top), and to bootstrap permutations

of these trajectories (black solid lines).

Overall, for M>2 latent states, generated trajectories significantly reduced the relative clas-

sification error, even in the absence of any external stimulus information, suggesting that dis-

tinct cognitive processes were associated with distinct regions in the latent space, and that this

cognitive aspect was captured by the PLRNN-BOLD-SSM prior model (see also Fig 7B for an

example of a generated state space for a sample subject, and Fig 8). As observed for the ahead-

prediction error above, performance improved with increasing latent state dimensionality.

While adding dimensions will boost LDA classifications in general, as it becomes easier to find

well separating linear discriminant surfaces in higher dimensions, we did not observe as strong

a reduction in classification error for the permutation bootstraps, suggesting that at least part

of the observed improvement was related to better reconstruction of the underlying dynamics.

Of note, models which included external inputs enabled almost perfect classifications with as

few as M = 8 states. These results are not solely attributable to the model receiving external

inputs, as these did not differentiate between cognitive tasks (i.e., number and type of inputs

were the same for all tasks, see Methods sect. ‘Experimental paradigm’).
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This is further supported by the observation that the LDS-BOLD-SSM produced much

higher classification errors than the PLRNN-BOLD-SSM when either external inputs were pres-

ent or absent (Fig 7A, dashed lines). Hence, not only does the LDS fail to capture the underlying

dynamics and fares worse in ahead predictions (cf. Fig 6D and 6E), but it also seems to contain

less information about the actual task structure, even in the inferred trajectories. This was par-

ticularly evident in the situation where trajectories were simulated (generated) and information

Fig 6. Model evaluation on experimental data. A. Association between KL divergence measures on observation (KLx) vs. latent space (KLz) for the Lorenz system; y-

axis displayed in log-scale. B. Association between fKLz (Eq 11; in log scale) and correlation between generated and inferred state series for models with inputs (top,

displayed in shades of blue for M = 1. . .10), and models without inputs (bottom, displayed in shades of red for M = 1. . .10). C. Distributions of fKLz (y-axis) in an

experimental sample of n = 26 subjects for different latent state dimensions (x-axis), for models including (top) or excluding (bottom) external inputs. D. Mean squared

error (MSE) between generated and true observations for the PLRNN-BOLD-SSM (squares) and the LDS-BOLD-SSM (triangles) as a function of ahead-prediction step

for models including (left) or excluding (right) external inputs. The PLRNN-BOLD-SSM starts to robustly outperform the LDS-BOLD-SSM for predictions of

observations more than about 3 time steps ahead, the latter in contrast to the former exhibiting a strongly nonlinear rise in prediction errors from that time step onward.

The LDS-BOLD-SSM also does not seem to profit as much from increasing the latent state dimensionality. E. Same as D for the MSE between generated and inferred

states as a function of ahead-prediction step, showing that the comparatively sharp rise in prediction errors for the LDS-BOLD-SSM in contrast to the

PLRNN-BOLD-SSM is accompanied by a sharp increase in the discrepancy between generated and inferred state trajectories after the 3rd prediction step. Globally

unstable system estimates were removed from D and E.

https://doi.org/10.1371/journal.pcbi.1007263.g006
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about external stimuli was not provided to the models, where LDS-BOLD-SSM-based classifica-

tion performance was close to chance level across all latent state dimensionalities (Fig 7A bot-

tom, red dashed line), consistent with the fact that simulated LDS quickly converged to fixed

points (cf. Fig 7C).

Lastly, we observed that trained PLRNN-BOLD-SSMs in many cases produced interesting

nonlinear dynamics, including stable limit cycles, chaotic attractors, and multi-stability

between various attractor objects (Fig 9). This indicates that the fMRI data may indeed harbor

interesting dynamical structure that one would not have been able to reveal with linear state

space models like classical DCMs, at least not within the retrieved system of equations (as

Fig 7. Decoding task conditions from model trajectories. A. Relative LDA classification error on different task phases based on the inferred states (top) and freely

generated states (bottom) from the PLRNN-BOLD-SSM (solid lines) and LDS-BOLD-SSM (dashed lines), for models including (blue) or excluding (red) stimulus inputs.

Black lines indicate classification results for random state permutations. Except for M = 2, the classification error for the PLRNN-BOLD-SSM based on generated states,

drawn from the prior model pgen(Z), is significantly lower than for the permutation bootstraps (all p< .01), indicating that the prior dynamics contains task-related

information. In contrast, the LDS-BOLD-SSM produced substantially higher discrimination errors for the generated trajectories (which were close to chance level when

stimulus information was excluded), and even on the inferred trajectories. Globally unstable system estimates were removed from analysis. B. Typical example of inferred

(left) and generated (right) state space trajectories from a PLRNN-BOLD-SSM, projected down to the first 3 principle components for visualization purposes, color-coded

according to task phases (see legend). C. Same as in B for example from trained LDS-BOLD-SSM. The simulated (generated) states usually converged to a fixed point in

this case.

https://doi.org/10.1371/journal.pcbi.1007263.g007
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argued above, the inferred posterior p(Z|X) may still reflect this structure, but the model itself

would not reproduce it).

Furthermore, some of this structure clearly appeared to be linked to task properties: A

power spectral analysis of time series generated by the trained PLRNNs revealed that the oscil-

lations exhibited by these models had dominant periods in the same range as the durations of

different task phases, as well as periods on the order of the duration of all three different tasks

which were delivered in a repetitive manner (Fig 10A). Hence the PLRNN-BOLD-SSM has

captured the periodic nature of the experimental design and associated cognitive demands

within its limit cycle behavior, even when it was provided with no other source of information

than the recorded BOLD activity itself (Fig 10A, left). Moreover, it appeared that the total

number of stable objects and unstable fixed points in state space was related to task perfor-

mance, with better performance (in terms of % correct choices) associated with a larger differ-

ence in the number of unstable relative to that of stable objects in the CMT (Fig 10B). From a

dynamical systems perspective, one may speculate that these changes in state space structure

are associated with a richer and more complex system dynamics [e.g. 8,9,56], which in turn

Fig 8. Exemplary DS reconstruction in a sample subject. A. Top: Latent trajectories generated by the prior model projected down to the first 3 principle components for

visualization purposes in a model including external inputs and M= 6 latent states. Task separation is clearly visible in the generated state space (color-coded as in the

legend), i.e. different cognitive demands are associated with different regions of state space (hard step-like changes in state are caused by the external inputs). Bottom:

Observed time series (black) and their predictions based on the generated trajectories (red, with 90% CI in grey) for the same subject. See also S1 Video. B. Same as A for

the same subject in a PLRNN without external inputs. �BA = Brodmann area, Le/Re = left/right, CRT = choice reaction task, CDRT = continuous delayed response task,

CMT = continuous matching task.

https://doi.org/10.1371/journal.pcbi.1007263.g008

Identifying nonlinear dynamical systems via generative RNNs with applications to fMRI

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1007263 August 21, 2019 16 / 35

https://doi.org/10.1371/journal.pcbi.1007263.g008
https://doi.org/10.1371/journal.pcbi.1007263


may imply better and more flexible cognitive performance (note that by ‘unstable objects’ we

are referring to unstable fixed points of the system dynamics, not to single latent states; unsta-

ble fixed points are as physiological as stable fixed points, only that they are hardly accessible

experimentally since activity diverges from them, while our method by inferring the generat-

ing equations makes them ‘visible’).

While these observations serve to illustrate the new possibilities for analyzing links between

system dynamics and computational properties provided by our approach, and the new types

of questions about neural systems one may be able to ask, we caution that more detailed analy-

ses (and possibly purpose-tailored task designs), beyond the scope of the present study, would

be required to establish a stronger link. For instance, unstable limit cycles or chaotic objects

were not considered here (for reasons of computational tractability), ceiling effects in percent

Fig 9. Examples of highly nonlinear phenomena extracted from fMRI data (in systems with M= 10 states, no external inputs). A. PLRNN-BOLD-SSM with 3 stable

limit cycles (LC) estimated from one subject (top: subspace of state space for 3 selected states; bottom: time graphs). B. PLRNN with 2 stable limit cycles and one chaotic

attractor, estimated from another subject. C. PLRNN with one stable limit cycle and one stable fixed point. D. Increase in average (log Euclidean) distance between

initially infinitesimally close trajectories with time for chaotic attractor in B. (In A and B states diverging towards–1were removed, as by virtue of the ReLU

transformation they would not affect the other states and hence overall dynamics).

https://doi.org/10.1371/journal.pcbi.1007263.g009
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of correct choices, and an increase in the proportion of globally unstable system estimates for

M>9 (partly possibly due to the limited length of the time series) made a more systematic eval-

uation difficult in the present experimental data set.

Discussion

Theories about neural computation and information processing are often formulated in terms

of nonlinear DS models, i.e. in terms of attractor states, transitions among these, or transient

dynamics still under the influence of attractors or other salient geometrical properties of the

state space [4,9,57]. Given the success of DS theory in neuroscience, and the recent surge in

interest in reconstructing trajectory flows and state spaces from experimental recordings

[23,58–61], methodological tools which would return not only state space representations, but

actually a model of the governing equations, would be of great benefit. Here we suggested a

novel algorithm within an SSM framework that specifically forces the latent model, represented

by a PLRNN, to capture the underlying dynamics in its intrinsic behavior, such that it can pro-

duce on its own time series of ‘fake observations’ that closely match the real ones (see also S1

Video). We also evaluated a measure, the KL divergence defined across state space (not time)

between the inferred (posterior) and intrinsically generated (prior) distribution of latent states,

which would give us a quantitative sense of how well the underlying state space geometry has

been captured in empirical situations where no ground truth is available. Finally, given that

fMRI is the most common non-invasive technique to study human cognition in health and psy-

chiatric illness, we derived a new observation model specifically for fMRI data that takes the

HRF into account. Using this, we demonstrated that our approach could recover nonlinear

dynamics and trajectory flows from human fMRI recordings that were related to task structure

and behavioral performance in a working memory paradigm. This, to our knowledge, has not

been shown before.

Fig 10. Links between properties of system dynamics captured by the PLRNN-BOLD-SSM and behavioral task performance. A. Average power spectra for

PLRNN-generated time series when external inputs were excluded (left) and included (right), and for the original BOLD traces (yellow). M = 9 latent states were

used in this analysis, as at this M the number of stable and unstable objects appeared to roughly plateau (S2A Fig). The left grey line marks the frequency of one

entire task sequence cycle (3�72s = 216s = .0046Hz) and the right grey line the frequency of one task and resting block (36s+36s = 72s = .0139 Hz). The peaks in the

power spectra of the model-generated time series at these points indicate that the PLRNN has captured the periodic reoccurrence of single task blocks as well as that

of the whole task block sequence in its limit cycle activity. B. Relation of the number of stable and unstable dynamical objects (see Methods) to behavioral

performance for models without external inputs (M = 9; see S2B Fig for data pooled across M = 2. . .10). Low and high performance groups were formed according

to median splits over correct responses during the CMT. A repeated measures ANOVA with between-subject factor ‘performance’ (‘low’ vs. ‘high’ percentage of

correct responses) and within-subject factor ‘stability’ (‘stable’ vs. ‘unstable’ objects) revealed a significant 2-way ‘performance x stability’ interaction (F(1,24) = 5.28,

p = .031). We focused on the CMT for this analysis since for the other two tasks performance was close to a ceiling effect (although results still hold when averaging

across tasks, p = .012).

https://doi.org/10.1371/journal.pcbi.1007263.g010
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Choice of model formalism and latent space dimensionality

Our major goal here was to establish an efficient methodological approach for recovering

dynamical systems from empirical data in a truly generative sense, i.e. such that the trained

models exhibit an intrinsic, standalone dynamics that mimics the underlying dynamics of the

unknown real system, and to provide a specific measure based on attractor geometries for how

well this aim has been achieved. We chose RNNs for the latent model because they are univer-

sal approximators of dynamical systems [26–28] and can emulate any Turing machine [62].

Just like the computations performed by a Turing machine can be implemented in many dif-

ferent substrates and algorithmic environments [see, e.g., discussion in 63], the same nonlinear

dynamical system and behavior can be implemented in numerous different ways [e.g. 62].

Note, for instance, that the PLRNN can reproduce the chaotic Lorenz attractor although its set

of equations is quite different from the original Lorenz equations. Hence, from a pure dynam-

ical systems perspective, the functional form of the nonlinear model, and how close it is to biol-

ogy, may be largely irrelevant as long as it is powerful enough to approximate any kind of

dynamics sufficiently well, i.e. has the required representational expressiveness.

Nevertheless, we would like to repeat that our PLRNN does in fact have the mathematical

form of a typical neural rate model as indicated in the first Results section [e.g. 37,38], and that

its ReLU nonlinearity compares quite well to I/O functions of cortical pyramidal cells within

the physiologically relevant regime [39,64,65], making the model neuronally directly interpret-

able in principle.

The major reason for settling on a ReLU nonlinearity was, however, that it allows for highly

efficient optimization approaches, which also made ReLUs the de-facto standard in modern

deep learning applications [44]. In our case, the ReLUs are centerpiece to an efficient fixed-

point-iteration-type algorithm for the E-step and enable to compute most expectations analyti-

cally and fast (see Methods ‘State Estimation’). We believe that this efficiency of optimization,

assuring that, in probability, we achieve better approximations to the underlying (biological or

physical) system, is more important for capturing biology than the precise functional form of

the latent model.

Although this was not a goal here, we further would like to point out that of course also

task-specific coupling matrices W could be estimated, with subsets of latent states strictly

assigned to only certain brain regions (via restrictions on B, Eqs 2 and 3). From a DS perspec-

tive, however, one might rather want to think about the same DS (with same parameters) pro-

ducing different types of tasks (e.g., [38]), 2019), where the different tasks are more reflected

by different local dynamics in possibly different regions of state space (cf. Fig 7B) rather than

by differences in coupling parameters.

Finally, so far we have touched only briefly on the important question of how to determine

the latent space dimensionality M in any practical setting. In our presentation we have deliber-

ately explored a larger range of M values for testing and illustrating our algorithm, and mostly

demonstrated that results were consistent across this larger range. While one may hope that

reconstructing the underlying dynamical system involves a dimensionality reduction (M< N),

i.e. that the effective dynamics lives in a lower-dimensional space than occupied by the

observed measurements, the delay embedding theorems [48,49] as well as the universal

approximation theorems for RNN [26,27] imply that we may instead have to move to (much)

higher-dimensional spaces for achieving a good approximation to the underlying system and

disentanglement of trajectories (an RNN approximates the underlying system through a type

of basis expansion, and for, e.g., the Lorenz attractor, a set of just M = 3 piecewise linear func-

tions cannot be expected to yield a reasonable representation). This implies that M should not

be too low, but on other hand, for obtaining a well tractable and parsimonious system, we
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would not want to increase the latent space dimensionality more than absolutely necessary.

Based on S1 Fig we had suggested that M�14 and 16 may be optimal for the vdP and Lorenz

systems, respectively, based on the observation that from these points onwards no further

improvement in geometry reconstruction according to fKLx was observed. For Fig 10B, which

analyzes the number of stable and unstable dynamical objects, M�9 was chosen based on the

fact that the number of retrieved dynamical objects roughly plateau-ed at this level (S2A Fig).

Moreover, the finite length of the time series (which are very short in fMRI) will also place an

upper bound on the system size for which reliable estimates could still be achieved. In our

case, for M>9 we obtained more globally unstable model estimates which curtails the possibil-

ities for analysis. More generally, in practice, one could try to devise a type of cross-validation

procedure [25,66,67] based on fKLz, but cross-validation for latent-variable time series models

is notoriously difficult [68] and for M�4 a clear dip in the fKLz curve (see Fig 6C, bottom) was

hard to discern in our case. Hence, beyond the empirical guidelines given here, this certainly

remains a topic for future investigation.

Comparison to other approaches for identifying dynamical systems

The ‘classical’ technique for reconstructing attractor dynamics from experimental time series

is delay embedding, based on the delay embedding theorems by Takens [48] and Sauer et al.

[49]. It has been used to disentangle task-related trajectory flows and attractor-like properties

in experimentally assessed neuronal time series [22,23]. However, as a completely non-

parametric technique, delay embedding will not give a complete picture of the system’s flow

field, nor access to the governing equations. Linear dynamical systems, coupled to Gaussian or

Poisson observation equations [16,18,19], and related approaches like GPFA [20], are quite

popular in neurophysiology for obtaining smoothed trajectories and state spaces, but–due to

their linear latent dynamics–are inherently unsuitable for reconstructing the underlying DS

itself in most cases (as explained above, they may still yield a good approximation to the poste-

rior p(Z|X), thus still useful, but they would fail to capture the generative dynamics itself as

explicitly shown in Fig 5 and Fig 7). In consequence, unlike the PLRNN-based models, LDS

models were not able to pick up the nonlinear structure present in the BOLD signals in their

generative dynamics (but mostly converged to simple fixed points), and probably as a result

thereof produced worse forward predictions and contained less information about the cogni-

tive tasks than the PLRNN.

To our knowledge, Roweis and Ghahramani [30], and somewhat later Yu et al. [29], were

among the first to suggest an RNN for the latent model in order to reconstruct dynamics.

These earlier contributions still focused more on in the inferred space p(Z|X), rather than on

the fully generative capabilities of their models (at least were these not systematically analyzed),

perhaps partly due to the fact that numerically less stable and efficient inference methods like

the extended Kalman filter were employed at the time. Very recent work by Zhao and Park

[35] built on the radial basis function networks suggested by Roweis and Ghahramani [30] for

the latent model, and combined it with variational inference. They showed ahead predictions

of their model for up to 1000 time steps. Similarly, Pandarinath et al. [36] recently proposed a

sequential variational auto-encoder framework for inferring dynamics from neural recordings

(although here as well the focus was more on the posterior encoding in the latent states, and

on inference of initial conditions and perturbations). Both these models, however, are fairly

complex and not directly interpretable in neural terms, and, moreover, hard to analyze with

respect to their intrinsic dynamics.

The PLRNN framework offers several distinct advantages compared to other approaches:

The equations have a fairly direct neural interpretation [31], in fact have the general form of
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neural rate equations that have been used to model various neural and cognitive phenomena

[37,38], and–due to their piecewise-linear structure–can also be easily translated into an equiv-

alent continuous-time neural rate model [see 69]. Dynamical phenomena can be analyzed

more easily in PLRNNs than in other frameworks, e.g. fixed points and their stability can be

determined analytically [31]. Furthermore, ReLU-type activation functions appear to be a

quite good approximation to the I/O-functions of many neocortical cell types [39,64], and,

besides, are almost the default now in deep networks due to their favorable properties in opti-

mization [44], a feature our iterative state inference algorithm exploits as well. Finally, in con-

trast to most previous approaches, here we demonstrated that the prior PLRNN model on its

own, after training, can produce the same attractor dynamics in state space as the true DS.

In the physics literature, several other methods based on reservoir computing [70], RNNs

formed from feedforward networks trained directly on the flow field [see also 26,28], or

LASSO regression combined with polynomial basis expansions [71], have recently been dis-

cussed for identifying DS. Process noise is usually not included in these models, i.e. the latent

dynamics is deterministic, which entails the risk that noise in the process is wrongly attributed

to deterministic aspects of the dynamics. While some of these methods required hundreds of

hidden states and millions of samples to reconstruct the van der Pol or Lorenz attractors [28],

we found that as few as just eight latent states and a single time series of length 1000, within

the range of typical fMRI data, can be sufficient for the PLRNN-SSM to rebuild the chaotic

Lorenz attractor, another tremendous advantage in empirical settings.

Applications in fMRI research and beyond

In this contribution, we have derived a new observation model for fMRI that accounts for the

HRF filtering of the BOLD signal. The HRF implies that current observations do not depend

only on the system’s current state (the common assumption in SSMs), but on a sequence of

previous states, a situation handled relatively seamlessly by our PLRNN-SSM inference algo-

rithm. fMRI is still the most common recording technique for monitoring brain function dur-

ing cognitive and emotional processing in healthy and psychiatric subjects. Huge data bases

have been compiled in large cohort studies over the past decade or so (e.g., the German

National Cohort Study initiated by the Helmholtz association: https://www.helmholtz.de/en/

research_infrastructures/national_cohort_study/; see also Collins and Varmus [72]) as a refer-

ence for monitoring and assessing neurological and psychiatric dysfunction. Although other

noninvasive recording techniques with finer temporal resolution, like MEG/ EEG, may be

more suitable for addressing questions about the DS basis of cognition, clinical research can-

not afford to discard this large body of medically relevant data.

On the other hand, important hypotheses about the neural underpinnings of psychiatric

conditions like schizophrenia, attention deficit hyperactivity disorder, or depression, have

been formulated in terms of altered system dynamics [see 73 for a recent review]. For instance,

based on physiological single unit and synapse data combined with biophysical network mod-

els on dopamine modulation in prefrontal cortex, it has been suggested that a dysregulated

dopamine system by overly ‘deepening’ cortical attractor landscapes may inhibit transitions

among states, and thereby cause some of the (cognitive) symptoms in schizophrenia [74]. This

proposal has been supported by a number of neurophysiological and neuropsychological

observations [e.g. 23,75], but a direct experimental evaluation of the specific changes in

attractor basins in schizophrenia is still lacking. Tools like the one proposed here could be

applied to directly test these types of hypotheses in human subjects recorded with fMRI. More

generally, however, an extensive literature suggests that dynamical properties assessed from

fMRI predict psychopathological conditions [e.g. 76,77,78], where the methodological
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framework proposed here could help to better understand the underlying dynamics and define

targets for intervention (e.g. in the context of neurofeedback).

Beyond fMRI, most neuroimaging techniques, including, e.g., calcium imaging [79] or

imaging by voltage-sensitive dyes [80] in neural tissue, involve some form of filtering that has

to be taken into account when the goal is to capture underlying dynamical processes (like neu-

ral interactions) that evolve at a faster time scale. Through introduction of a filtering observa-

tion model (Eq 3), the present paper establishes a framework for inferring nonlinear dynamics

in such situations where the measurement technique involves low- or band-pass-filtering of

the process of interest. More generally, while we chose fMRI data here as our applicational

example, we emphasize that our methodological framework is generic and could ultimately be

applied to any other recording modality, like EEG, MEG, multiple single-unit data, or time

series from mobile sensors, ecological momentary assessments [81], or electronic health rec-

ords, for instance, by simply swapping the observation model (Eqs 2 and 3).

Open issues and outlook

There is room for improvement in both our training algorithm and the measures used to eval-

uate its success in empirical situations. Our stepwise training algorithm was devised based on

an intuitive heuristic, namely that by shifting the workload for fitting the observations onto

the latent model and gradually increasing the requirements for its temporal consistency, a bet-

ter representation of the unobserved system dynamics could be achieved. We could show that

this was indeed the case when compared to a bootstrap (random) sample of models trained in

the ‘standard’ way, and that our procedure seemed to work in general, but a more systematic

theoretical derivation and testing of alternative schemes and explicitly designed optimization

criteria (directly utilizing Eq 10, or combining our geometric measure with a time series mea-

sure) would certainly be desirable in future work.

We also find it important that in testing the performance of different reconstruction algo-

rithms not only ‘good examples’ that prove the basic concept (‘my algorithm works’) are

shown, but a more thorough quantitative statistical evaluation of precisely how well it per-

formed in what percentage of cases is provided, like the one attempted here (Fig 4). For appli-

cations to empirical data, for which we do not know the ground truth, an open issue is how we

could best quantify how much confidence we could have in the reconstructed stochastic equa-

tions of motion. Cross-validation and out-of-sample prediction errors provide a guidance, but

for DS it is less clear in terms of what these should be measured: It is known that for nonlinear

systems with complex or chaotic dynamics standard squared-error or likelihood-based mea-

sures evaluated along time series are not too useful [e.g. 51], since miniscule differences in ini-

tial conditions or noise perturbations may cause quick decorrelation of trajectories even if they

come from the very same DS. We therefore decided to compare true and simulated data in

terms of probability distributions across state space, arguing that if the observations come

from the same attractor or system dynamics they should fill roughly the same volume of state

space–this is more along the lines of a DS view which compares dynamical objects in terms of

their geometrical or topological equivalence in state space [48–50,82], rather than the literal

overlap among time series. Another corollary of this view is that to establish the equivalence

between two DS, it is neither sufficient nor potentially even useful to predict observations just

a couple of time steps ahead: In a chaotic noisy system, the prediction horizon is inherently

limited to begin with (because of exponential divergence of trajectories). One also has to dem-

onstrate that the ‘general type’ of long-term behavior in the limit is the same (e.g. a limit cycle

of a certain periodicity and order), potentially in combination with other measures that quan-

tify temporal aspects in the form of summary statistics (e.g., power spectrum). Here we
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therefore suggested to evaluate performance in terms of completely newly generated (‘faked’)

trajectories that the trained system produces when no longer guided by the actual observations

(i.e., the prior pgen(Z) rather than the posterior pinf(Z|X)).

Especially in fMRI, however, the data space is often very high-dimensional (>103) while at

the same time often only a single time series sample of limited length (T�1000) is available, i.e.

the x-space is very sparse. In these cases we cannot obtain a good approximation of the distri-

bution p(x), as we could for the benchmarks, and hence our original measure is not directly

applicable. Hence we reverted to performing the comparison in latent space, between two dis-

tributions we do have in principle available, the one constrained by the observations, pinf(z|x),

and the other, pgen(z), obtained from the completely freely running (simulated) system. We

argued that if our actual observations X reflect the true dynamics well, then states obtained

under pinf(z|x) should be highly likely a priori, i.e. under pgen(z), and hence these distributions

should highly overlap. As direct sampling from pinf(z|x) is difficult and time-consuming, due

to degeneracy problems, and the latent space dimensionality may also be prohibitively high,

we approximated it by a mixture of Gaussians, which is a reasonable assumption for our

ReLU-based RNN model and allows for an efficient analytical approximation to KLz [83].

More generally, if we are only interested in topological equivalence [48,49], we may also want

to accept translations, rotations, rescaling, and potentially other deformations of the true state

space that do not change topological aspects. Procrustes analysis [84] could be performed to

(partly) allow for such transformations (on the other hand, since pgen(Z) and pinf(Z|X) come

from the same underlying model, in our specific case such transformations may neither be

necessary, nor necessarily desired).

Methods

Model specification and inference

The formulation of the state space model for BOLD time series (PLRNN-BOLD-SSM) is given

in the Results section. To infer the parameters and latent variables of the model, we used

Expectation-Maximization (EM) [41,85]. The EM algorithm maximizes a lower bound Lðθ; qÞ
(also called the evidence lower bound, ELBO) of the log-likelihood log p(X|θ) given by (see S1

Text sect. ‘PLRNN-BOLD-SSM model inference’ for full details):

log pðXjθÞ � Eq½log pðX;ZjθÞ� þ HðqðZjXÞÞ ¼ log pðXjθÞ � KLðqðZjXÞ; pθðZjXÞÞ ¼

: Lðθ; qÞ; ð4Þ

with q(Z|X) some proposal density over latent states, and KL(q(Z|X), p(Z|X)) the Kullback-

Leibler divergence between proposal density q(Z|X) and true posterior p(Z|X). This expression

can be derived by, e.g., using Jensen’s inequality [e.g. 30]. From this we see that the bound

becomes exact when proposal density q(Z|X) exactly matches the true posterior density p(Z|X)

(defined through the latent state model here) which we aim to determine in the E-step (in con-

trast to variational inference where we assume q(Z|X) to come from some parameterized fam-

ily of density functions, in EM we usually try to compute [in the linear case] or approximate

p(Z|X) directly).

State estimation (E-Step). In the E-step we seek q�≔arg maxqLðθ
�
; qÞ given a current

parameter estimate θ�. Since θ� is assumed to be given, this amounts to minimizing the Kull-

back-Leibler divergence KL(q(Z|X), p(Z|X)). The common procedure for linear-Gaussian mod-

els [e.g., Kalman filter-smoother; 86,87] is equating q(Z|X) = p(Z|X), and then determining the

first two moments of the latter for performing the M-step. For the present model p(Z|X) is a

high-dimensional mixture of piecewise Gaussians for which ‘explicit’ integration (i.e., using
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tabulated Gaussian integrals) becomes unfeasible for large T and M. Typically, however, the

piecewise Gaussians will have centers close to the origin [S3 Fig; cf. 31], and hence we resort to

solving for the maximum a-posteriori (MAP) estimate of p(Z|X), expected to be close to E[Z|X]

(which is exactly so for a single Gaussian), and instantiate the state covariance matrix with the

negative inverse Hessian around this maximizer (e.g. [16]). Essentially, this is a global Gaussian

approximation, or a Laplace approximation of the log-likelihood where we approximate

log pðXjθÞ � log pθðXjZ
maxÞ þ log pθðZ

maxÞ � 1

2
logj � Lmaxj þ const: using the maximizer Zmax

of log pθ(X,Z) (note that the Hessian Lmax is constant around the maximizer) [17,88].

Taking this approach, letting O(t)�{1. . .M} refer to the set of all indices of units for which

zm,t�0 and WO(t) to the matrix W that has all columns corresponding to indices in O(t) set to

0, the optimization objective in the E-Step may be formulated as:

maxfQ�
O
Zð Þ≔ �

1

2
ðz1 � μ0 � Cs1Þ

TΣ� 1 z1 � μ0 � Cs1ð Þ ð5Þ

�
1

2

XT

t¼2

ðzt � ðAþWOðt� 1ÞÞzt� 1 � h � CstÞ
TΣ� 1ðzt � ðAþWOðt� 1ÞÞzt� 1 � h � CstÞ

�
1

2

PT
t¼1
ðxt � Bðhrf � zt:tÞ � JrtÞ

TΓ� 1ðxt � Bðhrf � zt:tÞ � JrtÞ þ constg

w.r.t. (O,Z) subject to zi,t� 0 8 i 2 O (t) ^ zi,t> 0 8 i =2 O (t) 8 t.
Let us concatenate all state variables across m and t into one long column vector

z¼ ðz11; . . . ; zM1; . . . ; z1T; . . . ; zMTÞ
T
2 RMT

, and likewise arrange all matrices A, WO(t), and so

on, into large MTxMT block tri-diagonal matrices, and let us further collect all terms quadratic

in z, linear in z, or constant (see S1 Text for exact composition of these matrices). Defining H

as the HRF convolution matrix, dO≔(I(z11>0),I(z21>0),. . .,I(zMT>0))T as an indicator vector

with a 1 for all states zm,t>0 and zeros otherwise, and DO≔diag(dO) as the diagonal matrix

formed from this vector, one can rewrite the optimization criterion (Eq 5) compactly as

Q�
O
Zð Þ ¼ �

1

2
zTðU0 þDOU1 þ UT

1
DO þDOU2DO þHTU3HÞz � zTðv0 þDOv1 þHTv2Þ � ðv0 þDOv1 þHTv2Þ

Tz
� �

þ const; ð6Þ

which is a piecewise quadratic function in z with solution vectors

z� ¼ ½U0 þDOU1 þ UT
1
DO þDOU2DO þ

1

2
ðHTU3Hþ ðH

TU3HÞ
T
Þ�
� 1 v0 þDOv1 þHTv2�;½

provided this solution is consistent with the current set O, i.e. is a true solution of Eq 6. For

solving this set of piecewise linear equations, we use a simple Newton-type iteration scheme,

similar to the one suggested in [89], where we iterate between (1) solving Eq 6 for fixed dO and

(2) flipping the bits in dO inconsistent with the obtained solution to Eq 6, until convergence.

Care is taken to avoid getting trapped in cyclic behavior, and a quadratic programming step

may be added at the end to obtain the maximum given a fixed index set O [which seemed

rarely necessary from our experience; see 31 for details].
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Once a solution z� with high posterior density has been obtained, the state covariance

matrix is approximated locally around this estimate as the inverse negative Hessian

V ¼ ½U0 þDOU1 þ UT
1
DO þDOU2DO þ

1

2
ðHTU3Hþ ðH

TU3HÞ
T
Þ�
� 1
:

These state covariance estimates are then used to compute, mostly analytically, the expecta-

tions E[φ(z)], E[zφ(z)T], and E[φ(z)φ(z)T] required in the M-Step [please see S1 Text and 31

for more details]. This global iterative E-Step scheme is particularly suitable for fMRI applica-

tions in which the HRF invokes temporal dependencies between current observations and

latent states that reach back in time by several lags (i.e. xt does not only depend on zt, but on a

set of previous states zτ:t). This implies that p(Z|X) does not factorize as required for the com-

mon (unscented or extended) Kalman filter. Although our approach is global, as pointed out

by Paninski et al. [17], efficient schemes for inverting block-tridiagonal matrices still scale line-

arly in T (but not in M).

Parameter estimation (M-Step). In the M-step, parameters are updated by seeking

θ�≔arg maxθLðθ; q�Þ given q� from the E-step (since q� is assumed fixed and known in the E-

step, note that the entropy over q becomes a constant in Eq 4 and drops out from the maximi-

zation). This boils down to a simple linear regression problem given that the ReLU nonlineari-

ties have been resolved within the expectations E[φ(z)], E[zφ(z)T], and E[φ(z)φ(z)T], and

hence criterion Eq 5 becomes simply quadratic.

We can (analytically) solve for the parameters θobs of the observation model and θlat of the

latent model separately. Because of the off-diagonal structure of W, it is most efficient to obtain

parameter solutions row-wise for the latent model parameters (i.e., separately for each state

m = 1. . .M), as spelled out in S1 Text. For the observation model parameters, concatenating

matrices B and J as Y ¼ ½B J� 2 RNxðMþPÞ
, and concatenating convolved states and nuisance

variables in yt 2 R
MþP, one can rewrite the observation equation term in Q(θ,Z)≔Eq[log p(X,

Z|θ)] as

Qobs θobs;Zð Þ ¼ �
1

2

PT
t¼1

E½ðxt � YytÞ
TΓ� 1ðxt � YytÞ� �

T
2
logjΓj ð7Þ

Differentiating w.r.t. to Y and setting to 0 yields

Y ¼
XT

t¼1

E½xtyt
T�

 !
XT

t¼1

E½ytyt
T�

 !� 1

:

Defining the sums of cross-products

F2≔
PT

t¼1
xtxt

T; F7≔
PT

t¼1
xtrt

T; F8≔
PT

t¼1
rtrt

T; H1≔
PT

t¼1
xtE½ðhrf � zt:tÞ

T
�;

H2≔
PT

t¼1
rtE½ðhrf � zt:tÞ

T
�;H3≔

PT
t¼1

E½ðhrf � zt:tÞðhrf � zt:tÞ
T
�

we can equivalently express the solution as

Y ¼ ½H1 F7�½
H3 H2

T

H2 F8

�
� 1
; B ¼ Y1:N;1:M; J ¼ Y1:N;Mþ1:MþP:

With these definitions, differentiating Eq 7 w.r.t Γ yields

Γ ¼
1

T
F2 � H1B

T � BHT
1
þ BHT

3
BT � F7J

T � JFT
7
þ BHT

2
JT þ JHT

2
BT þ JF8J

T
� �

� Ι
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where I denotes an NxN identity matrix. Solutions for the latent state parameters θlat are given

in S1 Text. E- and M-steps are then iterated until convergence of the expected joint log-

likelihood.

Stepwise model training procedure

We introduce here an efficient approach for pushing the latent model to capture the underly-

ing DS that generated the observations. Our approach rests on a step-wise procedure in which

we gradually increase the importance of fitting the latent state dynamics as compared to fitting

the observations. Since the latent state process and the observation process account for additive

terms in the joint log-likelihood (Eq 5), the tradeoff between fitting the dynamics and fitting

the observations is regulated by the ratio of the two covariance matrices S and Γ (Eqs 1–3 and

5). Hence, the idea of our training scheme is to begin with fitting the observation model and

putting milder constraints on the latent process, using a linear latent model for initialization in

a first step [or even factor analysis which places no constraints on the temporal relationship

among latent states; cf. 30], and then gradually decreasing “S:Γ” during training to enforce the

temporal consistency of the latent model. Furthermore, one may force all burden of fitting the

observations completely onto the latent model by fixing θobs from some step onwards. The

complete training protocol is outlined in Algorithm-1. For inferring a linear model (LDS-SSM,

LDS-BOLD-SSM), the exact same algorithm was used with φ(z) = max(z,0) just replaced by φ
(z) = z in Eqs 1 and 2.

Algorithm-1

0) Draw initial parameter estimates θ(0)~p(θ) from some suitable prior,
constraint to max|eig(A+W)|<1 for biasing toward stable models [see
also 18].
1) Fix Σ = I and run linear dynamical system (LDS) SSM for initializa-
tion ! θ(1)

2) Fix Σ = I and run PLRNN-SSM inference ! θ(2)

3) for i = 1:3
- Fix Σ = diag(10−i), B = B(2); fix Γ = Γ(2) (for fMRI data)
- Initialize PLRNN-SSM training with previous estimate θ(i+1)

- Run PLRNN-SSM inference ! θ(i+2)

4) Re-estimate state covariance matrix Var(zt|x1:T) with Σ = I fixed.

Reconstruction of benchmark dynamical systems

We evaluated the performance of our PLRNN-SSM approach (and an LDS-SSM for compari-

son), on two popular benchmark DS, the Lorenz equations and the van der Pol nonlinear oscil-

lator (vdP). Within some parameter range, the 3-dimensional Lorenz system exhibits a chaotic

attractor and the 2-dimensional vdP-system exhibits a limit cycle (see Fig 4 for parameter set-

tings used, system equations, and sample trajectories of the systems). We were interested in

solutions where the true system dynamics is not just reflected in the directly inferred posterior

distribution p(Z|X) over the PLRNN states {z1:T} given the actual observations {x1:T}, but also

in the model’s generative or prior distribution p(Z), i.e. whether the once estimated PLRNN

when run on its own would produce similar trajectories with the same dynamical properties as

the ground truth system.

For evaluation, n = 100 samples of (standardized) trajectories of length T = 1000 were

drawn from the ground truth systems using Runge-Kutta numerical integration and random

initial conditions. PLRNN-SSMs were trained on these sample sets as described above for

M = 5. . .20 latent states, using Eq 2 for the observations (see also Fig 1). To probe our stepwise
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training protocol (Algorithm-1), PLRNN-SSM training under this protocol (termed

‘PLRNN-SSM-anneal’) was compared to simple EM training of the PLRNN-SSM started from

random initializations of parameters (termed ‘PLRNN-SSM-random’; essentially just step 1 of

Algorithm-1 with S directly fixed to 10−3) for M = {8, 10, 12, 14}.

To quantify how well the true system dynamics was captured by the ‘free-running’ PLRNN

(after training, but unconstrained by the observations), we used the Kullback-Leibler divergence

defined across state space, i.e. integrating across space, not across time. Similar in spirit to the

criteria defined for the classical delay embedding theorems [48–50], our measure therefore

assessed the agreement between the original and reconstructed attractor geometries. Integrating

across time (i.e., computing divergence between time series) is problematic for nonlinear DS,

since two time series from the very same chaotic DS usually cannot be expected to overlap very

well with even miniscule differences in initial conditions [cf. 51]. For the ground truth bench-

mark systems, for which we have access to the true distribution ptrue(x) and the complete state

space, this KL divergence can be computed directly in observation space and was defined as

KLxðptrueðxÞ; pgenðxjzÞÞ≔
Z

x2RN
ptrueðxÞlog

ptrueðxÞ
pgenðxjzÞ

dx; ð8Þ

where the integration is performed across x-space, and pgen(x|z) is the distribution across observa-

tions generated from PLRNN simulations (i.e., after PLRNN-SSM training, but discarding the

original set of time series observations Xobs = {x1:T} used for training). Hence, this measure assesses

whether PLRNN-SSM-simulated trajectories in the limit fill the same volume of state space as the

true DS trajectories, and in this sense whether the systems’ attractor objects are topologically and

geometrically ‘equivalent’. (As a terminological remark, in the machine learning literature pgen(x|

z) is often called the ‘generative’ or ‘decoding’ model, while p(z|x) or q(z|x) is sometimes referred

to as the ‘encoder’ or ‘recognition’ model [e.g. 32,90]. Here we will, more generally, refer with

pgen(z) to the (prior) distribution of latent states generated by the PLRNN independent of the train-
ing observations Xobs = {x1:T}, and with pgen(x|z) to the distribution of simulated observations pro-

duced from samples zgen~pgen(z) according to the observation model [Eq 2]).

Practically, we discretized the x-space into K bins of width Δx and evaluated the probabili-

ties ‘empirically’ as relative frequencies p̂ðkÞ ¼ nðkÞ
T by filling the space with trajectories

(T = 100,000) sampled from the true DS and trained PLRNNs (here we used Δx = 1 across a

range xn2[−4 4] for standardized variables, but smaller bin sizes yielded qualitatively similar

results, see S4 Fig). To avoid p̂kðxjzÞ ¼ 0 for the generative model, where the KL divergence is

not defined, we further adjusted this relative frequency to p̂ðkÞ ¼ nðkÞþa
TþaK , with α = 10−6, also

known as Laplace or additive smoothing [91] such that Eq 8 becomes

KLxðptrueðxÞ; pgenðxjzÞÞ �
PK

k¼1
p̂ðkÞtrueðxÞlog

p̂ðkÞtrueðxÞ
p̂ðkÞgenðxjzÞ

 !

: ð9Þ

Lastly, to obtain an interpretable measure between 0 and 1, we normalized the KL diver-

gence (termed fKLx) by dividing it by the expected maximum deviation. fKLx and the expected

joint log-likelihood were compared between PLRNN-SSM-anneal and PLRNN-SSM-random

via independent t-tests. For these analyses, all unstable system estimates were removed

(�14%). Furthermore, strong outliers with joint log-likelihood values< -1000 (which

occurred only for PLRNN-SSM-random in�3.8% of cases) were removed.

A standard measure of chaoticity in nonlinear DS is the maximal Lyapunov exponent [24].

We thus also assessed how well our KL measure correlated with the deviation in Lyapunov

exponents between true and estimated systems. The Lyapunov exponent was assessed
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numerically by a linear regression fit to the initial slope of the log-Euclidean distance log

dΔt(X(1),X(2)) between initially close (d0<10−10) trajectories X(1) and X(2) as a function of time

lag Δt, up to the point in the curve where a plateau indicating the full extent of the attractor

object has been reached. For the van der Pol nonlinear (non-chaotic) oscillator, the agreement

in the power spectra between the true and generated systems is more informative as a measure

of how well the system dynamics has been captured (the maximum Lyapunov exponent for a

stable limit cycle is 0), which was simply assessed by the average Pearson correlation.

Reconstruction of dynamical systems from experimental data

Ethics statement. The human data analyzed here has been collected within a study

approved by the local ethics committee of the University of Giessen, School of Medicine, and

written informed consent was obtained from each participant prior to enrollment (AZ 63/08).

Experimental paradigm. The experimental paradigm assessed three cognitive tasks, two

working memory (WM) n-back tasks—the continuous delayed response task (CDRT), and the

continuous matching task (CMT)—and a choice reaction task (CRT), which served as 0-back

control task. In all tasks, subjects were presented with a sequence of stimuli, and they had to

respond to each stimulus (a triangle or a square) according to the task instruction. While in

the CDRT participants were asked to indicate which stimulus was presented last, the CMT

required participants to compare the current to the last stimulus and indicate whether they

were the same or different [92]. In the CRT, participants had to simply indicate the current

stimulus, and WM was not required. The paradigm is known to robustly activate the WM net-

work. Each task was preceded by a resting period and an instruction phase. Tasks only differed

w.r.t. the instruction phase, otherwise participants were faced with the same stimulus

sequence, presented on a central screen at variable inter-stimulus intervals.

Data acquisition and preprocessing. Exact details on fMRI data acquisition and prepro-

cessing, as well as information on the sample and consent of study participation can be found

in [54]. In brief, 26 healthy subjects participated in the study, undergoing the experimental

paradigm in a 1.5 GE Scanner. From these data, we chose to preselect voxel time series known

to be relevant to the n-back task, as identified by a previous meta-analysis [55]. This included

the following Brodmann areas (BA): BA6 (supplementary motor), BA32 (anterior cingulate),

BA46, BA9 (dorsolateral prefrontal cortices), BA45, BA47 (ventrolateral prefrontal cortices),

BA10 (orbitofrontal cortex), BA7, BA40 (parietal cortices), as well as the medial cerebellum.

From each of these areas we extracted the first principle component. Given 10 bilateral regions,

this amounted to extracting 20 voxel time series from each participant. Time series were mean

centered, and mildly temporally smoothed by convolution with a Gaussian filter (σ2 = 1).

For each individual, the 20 extracted time series were entered as experimental observations

X along with 6 nuisance predictors R (related to movement vectors obtained from the SPM

realignment preprocessing procedure) [54] to the PLRNN-BOLD-SSM inference procedure.

The LDS-BOLD-SSM was set up the same way (see above), while for the PLRNN fit directly on

the observations we set M = N and restricted B (Eq 3) to be a diagonal matrix, thus creating a

strict 1:1 mapping between ‘latent states’ and observations. This essentially converts the model

into a nonlinear auto-regressive-type model formulated directly on the observations and elimi-

nates the degrees of freedom associated with true latent states.

All models were estimated both including and excluding experimental inputs. For the

inclusion condition, experimental inputs S were defined as binary ‘design’ vectors of length

K = 5. The first two entries contained 1’s for the presentation of the two stimulus types (‘trian-

gle’ or ‘square’), and the last 3 entries indicated by 1’s the instruction phases of the three tasks;

all other entries were set to 0. Note that during the actual task phases (following the instruction
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phases) the inference algorithm therefore (like the real subjects) received only information

about the presented stimuli but not about the task phase itself. Models were estimated with L2

regularization and regularization factor λ = 50.

Assessment of dynamical objects. For the PLRNN as formulated in Eq 1, fixed points z�

can be determined analytically by assessing the solutions z� = (IM−A−WDO)−1h for all 2M con-

figurations of the matrix DO as defined above. A fixed point z�
O

for which the maximum abso-

lute eigenvalue of the corresponding matrix A+WDO is larger than 1 is unstable, and

(neutrally) stable otherwise. Limit cycles and chaotic attractors were assessed by running each

system from 100 random initial conditions for T = 5000 time steps. If the system converged to

a stable pattern in this limit, it was considered a chaotic attractor if the log-Euclidean distance

between two trajectories started from infinitesimally close initial conditions was growing over

time (i.e. had a positive slope, see last section on Lyapunov exponents), and a stable limit cycle

otherwise (although for the results presented here this distinction does not play a role). The

number of stable objects was then determined as the total number of stable fixed points, limit

cycles, and chaotic attractors counted this way.

Reconstruction measures. In the case of experimental data, in which the ground truth DS

is not known, we do not have access to the data generating distribution ptrue(X), nor to the

complete state space in general. We therefore used as a proxy for Eq 9 the Kullback-Leibler

divergence between the distribution over latent states obtained by sampling from the data-

unconstrained prior pgen(z) and the data-constrained (i.e., inferred) posterior distribution

pinf(z|x), arguing that the former should match closely with the latter if the actually observed x

represent the underlying DS well (see Results section; also note that the z-space is always com-

plete by model definition, at least in the autonomous case). We again take the KL divergence

across the system’s state space (not time):

KLzðpinf ðzjxÞ; pgenðzÞÞ ¼
R

z2RMpinf ðzjxÞlog
pinf ðzjxÞ
pgenðzÞ

dz: ð10Þ

To evaluate this integral, sampling from pinf(z|x), however, is difficult because of the known

degeneracy problems with particle filters or other numerical samplers in high dimensions

[93,94]. We therefore approximated both pinf(z|x) and pgen(z) as Gaussian mixtures across tra-

jectory times, i.e. with pinf zjxð Þ � 1

T

PT
t¼1

pðztjx1:TÞ and pgen zð Þ � 1

T

PT
t¼1

pðztjzt� 1Þ, which is rea-

sonable given that the PLRNN distribution is a mixture of piecewise Gaussians (see above). Just

as in Eqs 8 and 9 above, probabilities are therefore evaluated in space across all time points. The

mean and covariance of p(zt|x1:T) and p(zt|zt−1) were obtained by marginalizing over the multi-

variate distributions p(Z|X) and pgen(Z), respectively, yielding E[zt|x1:T],E[zt|zt−1], and covari-

ance matrices Var(zt|x1:T) and Var(zt|zt−1). Note that the covariance matrix of p(Z|X) was re-

estimated at the end of the full training procedure with the process noise matrix S set to the

identity (i.e., to the last value it had before Γ was fixed qua Algorithm-1). Diagonal elements of

the covariance matrix of p(Z|X) were further restricted to a minimum value of 1 (some lower

bound on the variance turned out to be necessary to make KLz well defined almost everywhere).

Finally, the integral in Eq 10 was numerically approximated through Monte Carlo (MC)

sampling [83] using n = 500,000 samples:

KLzðpinf ðzjxÞ; pgenðzÞÞ �
1

n
Pn

i¼1
log
PT

t¼1
pðzðiÞjx1:TÞ=T

PL
l¼1

pðzðiÞjzl� 1Þ=L
: ð11Þ

For high-dimensional latent spaces, (asymptotically unbiased) approximation through MC

sampling becomes computationally inefficient or unfeasible. For these cases, Hershey and
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Olson (2007) [83] suggest a variational approximation to the integral in Eq 10 which we found

to be in almost exact agreement with the results obtained through MC sampling:

KLz
ðvariationalÞðpinf ðzjxÞ; pgenðzÞÞ �

1

T
PT

t¼1
log

PT
j¼1

e� KLðpinf ðzt jx1:T Þ;pinf ðzj jx1:T ÞÞ

PT
k¼1

e� KLðpinf ðzt jx1:T Þ;pgenðzkjzk� 1ÞÞ
; ð12Þ

where the terms in the exponentials refer to KL divergences between pairs of Gaussians, for

which an analytical expression exists.

We normalized this measure by dividing by the KL divergence between pinf(z|x) and a refer-

ence distribution pref(z) which was simply given by the temporal average across state expecta-

tions and variances along trajectories of the prior pgen(Z) (i.e., by one big Gaussian in an, on

average, similar location as the Gaussian mixture components, but eliminating information

about spatial trajectory flows). (Note that we may rewrite the evidence lower bound as

Lðθ; qÞ ¼ Eq½log pðXjZÞ� � KLðqðZjXÞ; pðZÞÞ with KL(q(Z|X),p(Z))�KL(p(Z|X),p(Z)), which

has a similar form as Eq 10 above, but computes the divergence across trajectories (time), not

across space).

Supporting information

S1 Text. Model specification and inference.

(DOCX)

S1 Fig. Dependence of fKLx on number of latent states (M) for the vdP (red) and Lorenz

(blue) systems. M = 14 seems to be about optimal for vdP, while M�16 may be about optimal

for the Lorenz system.

(TIF)

S2 Fig. Links between properties of system dynamics captured by the PLRNN-BOLD-SSM

and behavioral task performance. A. Number of stable (fixed points [FPs], limit cycles [LCs])

and unstable (fixed points) dynamical objects as a function of latent space dimensionality M.

B. Same as Fig 10B for data pooled across M = 2. . .10 (repeated measures ANOVA for ‘perfor-

mance x stability’ interaction: F(1,24) = 2.49, p = .128).

(TIF)

S3 Fig. Likelihood landscape. Illustration of the model’s likelihood landscape as a function of

a single latent state across two consecutive time steps, z1 and z2. The joint likelihood p(X,Z)

consists of piecewise Gaussians which cut off at the zeros of the states; often they will cluster

near the origin and give rise to a strongly elevated plateau of high-likelihood solutions, close to

one full Gaussian. Red cross indicates MAP estimate.

(TIF)

S4 Fig. Agreement in Kullback Leibler divergence KLx (Eq 9) on discretized observation

space for different bin sizes (assessed for the Lorenz system). A. KLx for bin size Δx = 1 (x-

axis) against bin size Δx = .5 (y-axis). B. Same as A for bin size Δx = .5 (x-axis) against Δx = .2

(y-axis). C. Same as A. for bin size Δx = .2 (x-axis) against Δx = .1 (y-axis). Measures at differ-

ent bin sizes are nearly monotonically related such that rank information on the quality of DS

retrieval is conserved. However, the KLx spread is largest for Δx = 1 such that qualitative differ-

ences in DS retrieval are differentiated more easily for this bin size, and hence this bin size was

chosen for the evaluation in the main manuscript.

(TIF)
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S1 Video. True and generated BOLD activity for one subject performing the n-back task.

Top graphs show the spatio-temporal evolution of the first eigenvariates extracted from Brod-

mann areas 7, 40, 46, and 9 (top left), and the model generated time-series (top right) projected

back onto a brain template provided by the statistical parametric mapping software. A PLRNN-

BOLD-SSM with M = 9 latent states, including external stimulus information, was used (see

Methods for details). The bottom graphs are the corresponding time series for Brodmann area

40 (blue = true data, yellow = model).

(AVI)
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