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Abstract

Chromatin immunoprecipitation followed by sequencing, i.e. ChIP-Seq, is a widely used

experimental technology for the identification of functional protein-DNA interactions. Nowa-

days, such databases as ENCODE, GTRD, ChIP-Atlas and ReMap systematically collect

and annotate a large number of ChIP-Seq datasets. Comprehensive control of dataset qual-

ity is currently indispensable to select the most reliable data for further analysis. In addition

to existing quality control metrics, we have developed two novel metrics that allow to control

false positives and false negatives in ChIP-Seq datasets. For this purpose, we have adapted

well-known population size estimate for determination of unknown number of genuine tran-

scription factor binding regions. Determination of the proposed metrics was based on over-

lapping distinct binding sites derived from processing one ChIP-Seq experiment by different

peak callers. Moreover, the metrics also can be useful for assessing quality of datasets

obtained from processing distinct ChIP-Seq experiments by a given peak caller. We also

have shown that these metrics appear to be useful not only for dataset selection but also for

comparison of peak callers and identification of site motifs based on ChIP-Seq datasets.

The developed algorithm for determination of the false positive control metric and false neg-

ative control metric for ChIP-Seq datasets was implemented as a plugin for a BioUML plat-

form: https://ict.biouml.org/bioumlweb/chipseq_analysis.html.

Introduction

Understanding the basic mechanisms of transcription regulation remains to be the great chal-

lenge in modern biology. Regulation of transcription is a complex process in which transcrip-

tion factors (TFs) play the key role. As a rule, TFs recognize and bind with corresponding TF

binding sites (TFBSs) in the genome. The in silico recognition of those TFBSs in whole

genomes has been staying one of the most complex problems in bioinformatics. Nowadays,

chromatin immunoprecipitation followed by sequencing (ChIP-Seq) is a widely used experi-

mental technology for the identification of TF binding regions (TFBRs) containing TFBSs. For

now, tens of thousands of ChIP-Seq experiments have been conducted. It is reasonable to

assume that this number will increase rapidly year by year.
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By now, several databases such as ENCODE [1], GTRD [2], ChIP-Atlas [3], and ReMap [4]

have been created. New distinct datasets have been systematically collected, annotated, and

uniformly processed there, including data on TFBRs obtained by application of different peak

callers to primary ChIP-Seq data. It is naturally to assume that increasing number of collected

datasets demands not manual, like before, but automatized assessment of quality to simplify

selection of proper datasets for further analysis. Currently, the common practice to assess the

quality of ChIP-Seq datasets is to apply well-known quality metrics developed within the

ENCODE project. For instance, the metrics such as NRF (Non-redundancy Fraction), PBC1,

PBC2 (PCR Bottlenecking Coefficient 1 and 2), NSC (Normalised Strand Cross-correlation

coefficient), and RSC (Relative Strand Cross-correlation coefficient) are applied to measure

the quality of the read alignments to individual genomes [5]. To estimate directly the quality of

ChIP-Seq datasets produced by distinct peak callers, the FRiP (Fraction of Reads in Peaks)

metrics is commonly used [5].

Up to date, at least three databases such as ENCODE, GTRD and ReMap assess all their

ChIP-Seq datasets with the help of the mentioned metrics. However, it seems likely that such

issue as quality control of ChIP-Seq datasets has been incompletely addressed. In particular,

existing quality metrics do not allow to control the false positive (FP) and false negative (FN)

rates in datasets generated by distinct peak callers. The main goal of our study was to develop

two novel quality control metrics, False Positive Control Metrics (FPCM) and False Negative

Control Metrics (FNCM), which allowed to control FP and FN rates of peak callers. For this

purpose, we used methods for population size estimation in order to estimate unknown num-

ber of genuine TFBRs.

Basically, estimation of population size is intensively utilized in many fields of knowledge,

including ecological sciences [6], medicine [7] and social sciences [8]. In general, a number of

capture-recapture models tend to be applied in a variety of applications including estimation

of population size. However, these models have not been applied for analyses of ChIP-Seq

datasets. Certainly, the main aim of the developed metrics is to serve as a guide for selection of

more reliable datasets as well as for creation of their modified versions. We also have shown

that the proposed metrics appeared to be useful for other applications such as comparison of

peak callers or prediction of TFBSs within TFBRs.

In general, accurate identification of TFBSs is still a big challenge in bioinformatics. Cur-

rently, position weight matrix (PWM) approach is one of the most common and widely used

for computational identification of TFBSs. A number of methods for prediction of the putative

TFBSs has been developed within this approach. In particular, MATCH [9], MEME [10], and

HOCOMOCO weight matrix model [11] are among them. There are several repositories that

accumulate matrices for representation of TFBSs. In particular, HOCOMOCO [11], JASPAR

[12] and UniPROBE [13].

Currently, more than 30 peak calling algorithms have already been published to derive

TFBRs datasets from aligned ChIP-Seq data [14]. At present, various comparative analyses of

such algorithms have already been carried out. One of the first comparative analyses was pub-

lished in 2009 [15]. However, undoubtedly, the best algorithm for peak calling has not been

found so far. As a rule, those comparisons were usually made on a small number of datasets

while using various metrics and comparison criteria. Consequently, some comparative analy-

ses led to conflicting evaluations. For example, in three analyses the conflicting conclusions

were made for algorithms such as MACS, SICER and F-Seq [16, 17, 18]. The current state of

the art unambiguously indicates the high demand to develop more sophisticated metrics and

comparison criteria, as well as to create a single and representative test dataset that can be used

in further comparative analyses.

Population size estimation for quality control of ChIP-Seq datasets
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Materials and methods

Algorithm for determination of FPCM and FNCM

Let D denote meta-set D = {D1, . . .,Dk} consisting of k datasets of TFBRs Di, i = 1, . . .,k. We

considered two following dual settings. In the first case, D1, . . .,Dk are datasets of TFBRs

obtained by independent application of k distinct peak callers to the same ChIP-Seq set of

reads aligned to the reference genome. In particular, we considered the following k = 4 peak

callers available in GTRD: GEM [19], MACS [20], PICS [21], and SISSRs [22]. In the second

case, a meta-set contains TFBRs datasets obtained by application of single peak caller to the

distinct ChIP-Seq sets of reads when the same TF was studied in different ChIP-Seq experi-

ments. We developed our FPCM and FNCM metrics to assess the quality of individual datasets

Di, i = 1, . . .,k as well as the whole meta-set D.

To derive FPCM and FNCM, we initially merged all TFBRs available in meta-set D, see Fig

1. After that, the pivotal frequencies f1, . . .,fk were counted on the basis of all merged TFBRs

where fi was defined as the number of merged TFBRs that were composed by exactly i TFBRs

from meta-set D. In particular, f1 + . . .+ fk = n where n denotes the number of all merged

TFBRs. On the one hand, fk is the frequency of those merged TFBRs that contained initial

TFBRs from each D1, . . .,Dk. On the other hand, f1 is the number of so-called orphans, i.e.

such TFBRs that did not overlap with other initial TFBRs.

Fig 1. The workflow of algorithm for determination of FPCM and FNCMs.

https://doi.org/10.1371/journal.pone.0221760.g001
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To control FP rate, we defined FPCM under the natural assumption that almost all FP

TFBRs must be orphans, i.e. not confirmed by other TFBRs. Additionally, we assumed that

unknown number of genuine TFBRs is a random variable with Poisson distribution. Under

these assumptions, FPCM was defined as the ratio of the observed number of orphans f1 to the

unknown number of genuine orphans f1
gen, i.e.

FPCM ¼
f1
f gen1

: ð1Þ

The estimate f1
e of the unknown f1

gen was derived, in turn, as solution of the system of three

equations

p1 ¼ le
� l; ð2Þ

p2 ¼ l
2 e� l

2
; ð3Þ

p2 ¼ l
3 e� l

6
; ð4Þ

where λ is unknown parameter of Poisson distribution, and pi is a probability that randomly

chosen merged TFBR is composed by exactly i initial TFBRs. As a result, the final version of

FPCM is expressed as

FPCM ¼
f1
f e
1

; ð5Þ

f e
1
¼ 2

f 2
2

3f3
; ð6Þ

where f1
e is the expected number of orphans.

The detailed derivation of FPCM is as follows. According to formulas for p1 and p2, the

ratio p2 / p1 is equal to λ / 2, hence

l ¼ 2
p2

p1

: ð7Þ

According to formulas for p1 and p3, the ratio p3 / p1 is equal to λ2 / 6, hence

p1 ¼ 6
p3

l
2
: ð8Þ

According to formulas (7) and (8), p1 can be estimated as p1
e where p1

e = 2 p2
2 / (3 p3).

Finally, the formula (5) for FPCM = p1 / p1
e was obtained with the help of replacement of

probabilities p1, p2, and p3 by frequencies f1, f2, and f3 respectively.

In general, we can assume that each set of orphans may consist of True Positive Orphans

(TPOs) and False Positive Orphans (FPOs), i.e. number of orphans (f1), can be expressed as

f1 ¼ ðnumber of TPOsÞ þ ðnumber of FPOsÞ: ð9Þ
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The number of TPOs was estimated as f1
e with the help of Poisson distribution. Therefore

the proportion of FPOs (say, pfalse) can be estimated as

pfalse ¼
f1 � f e

1

f1
¼ 1 �

1

FPCM
ð10Þ

and FPCM can be re-expressed as FPCM = 1 / (1—pfalse). If Poisson distribution is not con-

taminated then f1 and f1
e have to approximately coincide. In this case pfalse has to be negligible

and FPCM has to be close to 1. However, if Poisson assumption is seriously violated then pro-

portion pfalse takes large values and FPCM considerably exceeds 1. For example, if pfalse = 1/2,

2/3 or 0.98, then FPCM takes the values 2.0, 3.0 and 50.0 correspondingly. In other words, If

FPCM takes the values 2.0 or 3.0 then a half or more than a half orphans are FPOs.

Basically, FPCM can not only assess the quality of datasets, but also can recommend to

modify them to improve their quality, if necessary. Thus, if FPCM exceeds a prespecified

threshold, such as FPCM0 = 2 or 3, then FPCM recommends to modify dataset by removing

orphans because in these cases, at least, a half (pfalse = 1/2) or a majority (pfalse = 2/3) of them

are falsely generated by peak callers.

To control FN rates in D1, . . .,Dk datasets, we defined FNCMs for each of them. Thus,

FNCM was defined for every Di as the ratio of the observed number of TFBRs in Di to the

unknown number of genuine TFBRs, say, Ngen, i.e.

FNCM Dið Þ ¼
jDij

Ngen
; ð11Þ

where | Di | denotes the size of the Di dataset. If FPCM is less than the prespecified threshold

(FPCM0), then it is not necessary to modify initial datasets, and Ngen is estimated as the aver-

age of the four distinct published estimates EC, ELB, EZ, and EML of the Ngen, i.e.

FNCM Dið Þ ¼
jDij

Ne
1

; ð12Þ

Ne
1
¼
ðEC þ ELB þ EZ þ EMLÞ

4
; ð13Þ

where EC is Chao’s estimate [23], ELB is Lanumteang-Bohling’s estimate [24], EZ is Zelterman’s

estimate [25] and EML is maximum likelihood estimate [26]. The explicit forms of these esti-

mates are as follow:

EC ¼ nþ
f 2
1

2f2
; ð14Þ

ELB ¼ nþ
3f 3

1
f3

4f 3
2

; ð15Þ

EZ ¼
n

1 � expð� 2f2
f1
Þ
; ð16Þ

EML ¼
n

1 � expð� l�Þ
; ð17Þ

where λ� is calculated numerically by maximization of log-likelihood function L(λ) of zero-

Population size estimation for quality control of ChIP-Seq datasets

PLOS ONE | https://doi.org/10.1371/journal.pone.0221760 August 29, 2019 5 / 17

https://doi.org/10.1371/journal.pone.0221760


truncated Poisson distribution,

LðlÞ ¼ constant þ logðlÞ
Pk

i¼1
ði � fiÞ � n logðel � 1Þ: ð18Þ

If FPCM exceeds the prespecified threshold FPCM0, then it is necessary to modify initial

datasets by removing orphans. In this case the estimates EC, ELB, EZ, and EML are degenerated

because f1 is vanished (f1 = 0) due to discarding orphans. To obtain new estimate of unknown

number of genuine TFBRs Ngen, we considered all k(k-1)/2 distinct pairs (Di, Dj)i<j and calcu-

lated for each pair (Di, Dj) the Chapman’s estimate [27] Ei,j by the formula

Ei;j ¼
ðjDij þ 1ÞðjDjj þ 1Þ

jDi \ Djj þ 1
� 1 ð19Þ

Then we checked for outliers in the obtained sample EChap = {Ei,j} and discarded the

detected outliers. An arbitrary element X in sample is classified as outlier, if the following

inequality holds:

jðX � X0Þj > 3s; ð20Þ

where X0 and σ are mean value and standard deviation when X is temporary removed from

the sample EChap. Finally, Ngen is estimated as the average of sample EChap and FNCM(Di) is

expressed as

FNCM Dið Þ ¼
jDij

Ne
2

; ð21Þ

Ne
2
¼ average of sample EChap: ð22Þ

FNCM varies in the range [0.0; 1.0]. The closer the value of FNCM to 1.0, the lower is the

rate of FNs, while values closer to 0.0 indicate that high number of genuine TFBRs was

overlooked.

Results and discussion

FPCM and FNCM: Guidelines for dataset selection and modification

To get the first idea about some particularities of FNCM and FPCM, we applied independently

the proposed algorithm for their calculation to two meta-sets derived from the GTRD database

developed by our team [2]. Meta-sets PEAKS035099 and PEAKS039626 contained TFBRs of

TF CTCF and were generated by the following peak callers in GTRD: GEM, MACS, PICS, and

SISSRs. According to Fig 1, we merged initially four individual datasets PEAKS035099 gener-

ated separately by those four peak callers. Then, the pivotal frequencies fi were computed on

the base of 44699 merged TFBRs: f1 = 5534, f2 = 4542, f3 = 2482, and f4 = 32141. The value

0.998 of FPCM was calculated by formula (5). One can conclude that there are almost no FPs

among TFBRs because FPCM was approximately equal to 1.0. In other words, the observed

number of orphans was approximately equal to the expected one. To estimate the total number

of genuine binding regions N1
e in this case, it is sufficient to calculate the arithmetic mean of

four estimates:

EC;¼ 48070; ELB ¼ 48066; EZ ¼ 55437; and EML ¼ 46525:

Finally, the estimated number N1
e = 49525 of TFBRs was used to compute FNCMs for all

four individual datasets PEAKS035099. Table 1 contains these values.

Population size estimation for quality control of ChIP-Seq datasets
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92436 merged TFBRs were obtained after merging four individual datasets PEAKS039626.

The pivotal frequencies f1 = 46452, f2 = 5797, f3 = 12012, and f4 = 28175 were used for compu-

tation of FPCM = 24.901. Obviously, this value essentially exceeded the threshold 2.0 (or 3.0)

therefore we concluded that there is a large number of FPs among 46452 orphans. In other

words, the majority of orphans were, in fact, falsely generated TFBRs. In this case, we were

forced to discard orphans and obtain the following six Chapman’s estimates for calculation of

FNCMs by using formula (19):

45996 ðGEM; MACSÞ; 46011 ðGEM; PICSÞ; 43591 ðGEM; SISSRsÞ;

45609 ðMACS; PICSÞ; 45783 ðMACS; SISSRsÞ; and 47198 ðPICS; SISSRsÞ:

The value 43591 was classified as an outlier when we used test for outlier detection. There-

fore we excluded it and the final version of the expected number of genuine binding regions

(N2
e = 46119) was computed by averaging five remained Chapman’s estimates. The resulted

values of FPCM and FNCMs for PEAKS039626 meta-set are presented in Table 1. It is interest-

ing to note that some high values of FPCM can be easily explained by abnormal outcome of

one of the peak callers. Thus, GEM, MACS, PICS, and SISSRs generated 41827, 45318, 78011,

and 43215 TFBRs correspondingly in case of PEAKS035099. It seems likely that PICS over-

generated a large number of TFBRs and many of them were classified by FPCM as FPs.

Basically, FPCM recommends to remove or not the orphans while the FNCMs allow to

select more reliable dataset from meta-set. Thus, FPCM recommended to remove orphans

from PEAKS039626, PEAKS038673, PEAKS038812, and PEAKS040149, see FPCM values in

Table 1. FNCM recommended to select MACS-generated datasets PEAKS035099, PEAKS039626,

PEAKS033837, PEAKS039665, PEAKS033184, PEAKS038673, and PEAKS038812 while in cases

of PEAKS038038 and PEAKS040149 FNCMs recommended to select GEM-generated datasets.

Comprehensive quality control of ChIP-Seq datasets in the GTRD database

The first release of GTRD [28] has been prepared without taking into account the quality con-

trol of ChIP-Seq TFBR datasets. For the second release, we have computed the quality metrics

FNCMs and FPCMs for all available datasets in GTRD according to the proposed algorithm.

Then we studied the influence of presence/absence of input control in ChIP-Seq experiments

on quality of TFBRs datasets generated by distinct peak callers. Four classification models: per-

ceptron, Fisher’s discriminant model, logistic regression, and support vector machine (SVM)–

Table 1. FPCMs and FNCMs for several meta-sets of TFBRs.

Meta-set TF (TF-class) FPCM FNCM

GEM MACS PICS SISSRs

PEAKS035099 CTCF (2.3.3.50.1) 0.998 0.776 0.874 0.689 0.702

PEAKS039626 CTCF (2.3.3.50.1) 24.901 0.881 0.929 0.767 0.899

PEAKS033754 CTCF (2.3.3.50.1) 0.782 0.871 0.861 0.483 0.141

PEAKS033837 GATA3 (2.2.1.1.3) 0.995 0.661 0.677 0.267 0.149

PEAKS039665 ESR1 (2.1.1.2.1) 1.004 0.674 0.742 0.36 0.144

PEAKS033184 TAL1 (1.2.3.1.1) 0.991 0.653 0.793 0.446 0.536

PEAKS038038 PR (2.1.1.1.3) 48.883 0.827 0.792 0.625 0.868

PEAKS038673 SIX-1 (3.1.6.1.1) 40.463 0.356 0.909 0.885 0.296

PEAKS038812 ZFP-28 (2.3.3.0.192) 49.214 0.727 0.929 0.77 0.733

PEAKS040149 EHF (3.5.2.4.1) 49.914 0.397 0.53 0.501 0.579

https://doi.org/10.1371/journal.pone.0221760.t001
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were exploited to reveal putative relation between presence/absence of input control and our

metrics FNCMs and FPCM. The strength of putative relation was measured by accuracy of the

classification models, which was defined as the fraction of all correctly classified instances.

We applied the mentioned classification models to all 5084 human datasets in GTRD where

input controls were available for 4033 (79.3%) datasets. To control the overfitting of the classi-

fication models we divided the whole set of datasets into equal-halves: training subset and test

subset. Table 2 contains the computed values of accuracies of classification models. According

to these values, one can conclude that there is a strong relation between presence/absence of

input control and our metrics, FNCMs and FPCM, because each model correctly classified the

majority (81.2%– 90.5%) of the tested subset. This conclusion is quite reliable because it is

invariant with respect to the choice of the classification model, and the differences between

accuracies observed on training and test sets are negligible.

To highlight the explicit form of the revealed relation, we calculated the mean values of

FNCM and FPCM for datasets with and without input control separately. It is important to

note that we calculated two versions of the FPCM average. For the first version, we used all

available 5084 FPCM values, while for the second version we removed 132 (2.6%) FPCM val-

ues that exceeded value 100.0, because these huge values (such as 4079.4 or 12663.4) are abnor-

mal and can result in misleading conclusions. Thus, if all 5078 FPCM values are used, then one

can conclude that mean value of FPCM (namely, 19.918, see 1-st row of Table 3) for datasets

with control is greater than the mean value of FPCM 11.876 for datasets without control. How-

ever, after removing 132 outliers (abnormal values) one can conclude that mean value of

FPCM (namely, 3.923, see 2-nd row of Table 3) for datasets with control is less, than the mean

value of FPCM 8.562 for datasets without control. Empirical densities of FPCM (see Fig 2(A))

confirmed correctness of the second version of FPCM average. On the base of this version and

all FNCM averages in Table 3, we made a conclusion that the absence of input control resulted

in increase of FP rate and in decrease of FN rates of MACS, PICS, and SISSRs. Using Wilcoxon

rank sum test we have found that FPCM and almost all FNCMs (excluding FNCMs for

MACS) made the statistically significant contribution into discrimination between presence/

absence of input control, see the corresponding p-values in Table 3. Fig 2(B) demonstrates the

densities of FNCM(PICS), which is the most significant feature for discrimination.

Table 2. Accuracies of the classification models.

Classification model type Training subset Test subset

Perceptron 0.817 0.814

Fisher’s discriminant model 0.823 0.812

Logistic regression 0.869 0.861

SVM 0.918 0.905

https://doi.org/10.1371/journal.pone.0221760.t002

Table 3. Mean values of the quality control metrics FPCM and FNCMs calculated on 5078 human ChIP-Seq datasets available in the GTRD database.

Quality metrics All datasets Datasets with input control Datasets without input control Wilcoxon test (Z-score) p-value

FPCM(first version) 18.251 19.918 11.876 16.482 < 10−14

FPCM(second version) 5.655 3.923 8.562 17.026 < 10−14

FNCM(GEM) 0.509 0.516 0.484 3.997 6.4 � 10−5

FNCM(MACS) 0.651 0.645 0.672 0.864 0.389

FNCM(PICS) 0.36 0.292 0.62 28.461 < 10−14

FNCM(SISSRs) 0.454 0.398 0.668 24.753 < 10−14

https://doi.org/10.1371/journal.pone.0221760.t003
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Peak caller comparison

Despite the current existence of more than 30 published peak callers, various comparative

analyses of them did not reveal the best one. These comparisons were performed frequently on

a small number of datasets and distinct metrics were exploited for comparison. We also per-

formed comparative analysis of GEM, MACS, SISSRs, and PICS by using 5084 human datasets

and FNCMs. For this purpose, we determined the priority of peak callers in descending order

of FNCMs for each dataset. Then we counted the frequencies of all 4! = 24 distinct priorities.

Expected proportion of each priority was defined as its probability when all distinct priorities

are equally probable, hence expected proportion is equal to 1 / 4! = 0.042. The following prior-

ity appeared to be the most frequent among distinct ones:

MACS > GEM > SISSRs > PICS:

On the one hand, the observed proportion 0.181 of this priority essentially and significantly

(p-value < 10−20) exceeded the expected probability, because the ratio between observed and

expected proportions (say, Ro/e) was equal to 4.3. Statistical significance was estimated with the

help of binomial distribution. Importantly, this excess was invariant with respect to the pres-

ence or absence of input control, see Table 4.

On the other hand, we could not accept this priority as the general tendency among peak

callers, because the majority (namely, 81.8%) of datasets had other priorities. To obtain more

reliable inference, we considered the relaxed arrangements for comparison of pairs of peak

callers. In this case the most frequent priority among 12 distinct ones was

fMACS and GEMg > fSISSRs and PICSg:

Fig 2. Empirical densities of (a) FPCM and (b) FNCM obtained for peak caller PICS.

https://doi.org/10.1371/journal.pone.0221760.g002
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The observed proportion 0.469 of this priority also essentially (Ro/e = 5.6) and significantly

(p-value< 10−20) exceeded the expected proportion 1 / 12 = 0.083, and about a half of datasets

had this priority, see Table 4. Therefore, one can conclude that, in general, MACS and GEM out-

performed SISSRs and PICS. It is important to note that the reliability of this conclusion is

increasing during transition from all datasets to datasets with input control, because the observed

proportion of the corresponding priority increased from 0.469 to 0.568. This conclusion is also

confirmed by FNCM values contained in Table 3. Finally, it is interesting to note that GEM

appeared to produce weaker results when the input control was absent, and the priority

fSISSRs; MACS; and PICSg > GEM

was observed for majority (63.5%) of datasets without input control. Tables 3 and 4 illustrate this

conclusion.

Relationships between the proposed quality metrics and other features of

ChIP-Seq datasets

There are, at least, two types of ChIP-Seq dataset features in addition to the proposed quality

metrics. The first type features are well-known standard quality metrics developed by the

ENCODE consortium. For instance, metrics such as NRF, PBC1, PBC2, NSC, and RSC assess

quality of read alignment to individual genomes. The second type features can be easily deter-

mined on the base of characteristics generated by individual peak callers. For example, MACS

assigned such characteristics as ‘Fold enrichment’, ‘FDR’ (False Discovery Rate), ‘Tags num-

ber’ and ‘–lg(p-value)’ to each generated TFBR. To obtain second type features for the whole

dataset we averaged available characteristics over generated TFBRs in given dataset.

To study relations between the proposed metrics and the features of both types we per-

formed regression analysis. For this purpose, we applied three multiple regression models,

namely, ordinary least squares (OLS), random forest (RF), and SVM to 5084 human datasets

in GTRD. The strength of relationships between the features and the FNCM/FPCM metrics

was measured by application of Pearson’s correlation between observed and predicted values

of the metrics. To avoid the impact of overfitting the regression models we divided the whole

set of 5084 datasets into the following equal-sizes subsets: training and test subsets. The regres-

sion models were fitted to the training subset while the correlation between observed and pre-

dicted values were calculated on the test subset. The maximal values of correlation 0.657 and

0.644 were achieved by RF models, see Table 5. In first case, regression model described the

relation between FNCM (PICS) and the ENCODE quality metrics while the second regression

described the relation between FNCM (GEM) and the peak caller characteristics. In general,

moderate values of correlations indicate that there are no strong relations between the pro-

posed metrics and the existing features, in particular, see Fig 3. In other words, there are no

combinations of known features that can replace FNCM or FPCM.

Table 4. The most frequent arrangements of the peak callers.

Priority Type of datasets Observed proportion Ratio between observed and expected proportions, Ro/e

MACS > GEM > SISSRs > PICS All datasets 0.181 4.3

Datasets with input control 0.195 4.6

Datasets without input control 0.156 3.7

{MACS and GEM} > {SISSRS and PICS} All datasets 0.469 5.6

Datasets with input control 0.544 6.6

Datasets without input control 0.338 4.1

{SISSRs, MACS and PICS} > GEM Datasets without input control 0.635 2.5

https://doi.org/10.1371/journal.pone.0221760.t004
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Despite the absence of strong relations, it is fruitful to interpret the moderate associations

between the individual features and FNCM or FPCM. For this purpose, for each FNCM and

FPCM we determined the relevant features as features with absolute values of individual corre-

lations between them and proposed metrics greater than 0.1. All revealed relevant features rep-

resenting the quality metrics from ENCODE had positive correlations with FNCMs, see

Table 5. In other words, the more qualitative dataset from the point of view of the ENCODE

metrics, the lower FN rates from the point of view of FNCMs. Thus, there is positive associa-

tion between the ENCODE metrics and FNCMs.

When we performed analogous comparison between FNCMs and the peak caller character-

istics, it appeared that, on the one hand, there existed positive association between FNCMs

and the probabilistic characteristics such as–lg(p-value) or–lg(q-value) and, on the other hand,

there was the surprising negative association between FNCMs and the not-probabilistic char-

acteristics such as Fold enrichment and Tags number.

Finally, it was important to demonstrate the usefulness of the proposed quality metrics,

when almost all ENCODE control metrics failed. Thus, Fig 4 demonstrates such cases. On the

one hand, such characteristics as NRF, PBC1, NSC and RSC recommended to exclude these

data from further analysis. On the other hand, in almost all cases FNCM indicated the high

rate of FNs. In other words, peak callers overlooked numerous genuine TFBRs. However,

Table 5. Relationships between the proposed quality metrics and features of both types.

Features type Quality

metric

Regression

model

Correlation between observed and predicted

quality metrics

Relevant

feature

Individual correlation

between quality metric and

relevant feature

Quality metrics

introduced by

ENCODE

FNCM

(GEM)

OLS

RF

SVM

0.472

0.611

0.545

FRiP(GEM)

PBC1

NRF

0.302

0.301

0.293

FNCM

(MACS)

OLS

RF

SVM

0.336

0.413

0.327

NRF

PBC1

0.279

0.275

FNCM

(PICS)

OLS

RF

SVM

0.415

0.657

0.475

FRiP(PICS) 0.392

FNCM

(SISSRs)

OLS

RF

SVM

0.259

0.451

0.295

FRiP(SISSRs) 0.157

FPCM OLS

RF

SVM

0.044

0.104

0.064

- -

Peak caller characteristics FNCM

(GEM)

OLS

RF

SVM

0.233

0.644

0.596

Noise

-lg(p-value)

-lg(q-value)

-0.233

0.181

0.187

FNCM

(MACS)

OLS

RF

SVM

0.371

0.578

0.512

Tags number

-lg(p-value)

-0.172

0.256

FNCM

(PICS)

OLS

RF

SVM

0.031

0.037

0.509

Score -0.267

FNCM

(SISSRs)

OLS

RF

SVM

0.353

0.471

0.442

-lg(p-value)

Fold

enrichment

Tags number

0.355

-0.226

-0.187

FPCM OLS

RF

SVM

0.119

0.464

0.287

- -

https://doi.org/10.1371/journal.pone.0221760.t005
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FPCM indicated the low rate of FPs, therefore it recommended to use whole merged datasets

without removing orphans for applications such as identification of TFBSs within ChIP-Seq

datasets, or comparison of motif prediction methods.

Identification of TFBSs within ChIP-Seq datasets

Accurate identification of TFBSs (or site motifs) is still the big challenge in bioinformatics.

Though comprehensive study of abilities of the existing models for motif prediction is beyond

of our study, we demonstrate below that reasonable application of FPCM can essentially

Fig 3. Relationship between FNCM(PICS) observed and predicted by the random forest regression model.

https://doi.org/10.1371/journal.pone.0221760.g003
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improve the accuracy of TFBS identification within TFBRs. To confirm this, we applied two

PWM models (namely, MATCH and HOCOMOCO) to some datasets of TFBRs when these

models shared the same matrices.

In general, accuracy of TFBS identification within a given dataset of TFBRs depends on, at

least, four following factors: 1) quality of matrix, 2) quality of scoring method, 3) quality of

dataset, and 4) unknown proportion of tethered binding when a given TF bound to DNA frag-

ment not because it recognized its site, but due to protein-protein interaction with another TF

that, in turn, bounds to DNA directly. To demonstrate the influence of dataset quality on

motif identification, we built ROC curves and calculated AUCs on datasets of TFBSs men-

tioned in Table 1. In particular, Fig 5 contains the ROC curves obtained on the whole dataset

PEAKS038038 and the one without orphans. On the base of low values of AUCs (0.633 for the

HOCOMOCO model and 0.565 for the MATCH model, see Table 6) one can conclude that

both models had low predictive abilities. However, according to Table 1, FPCM was equal to

48.883, hence majority of orphans in PEAKS038038 were TFBRs falsely identified by peak call-

ers. After removing orphans, the values of AUCs (0.843 for the HOCOMOCO model and

0.808 for the MATCH model, see Table 6) increased essentially. The analogous effect of signifi-

cant increase of AUCs after removing orphans has been observed for other datasets (such as

PEAKS039626, PEAKS038673, PEAKS038812, and PEAKS040149). According to Table 1, the

FPCM values calculated for these datasets considerably exceeded 1.0. However, exclusion of

orphans did not lead to essential increase of the AUC values for such datasets as PEAKS035099,

PEAKS033754, PEAKS033837, PEAKS039665, and PEAKS033184. This effect was not unex-

pected because the corresponding FPCM values for these datasets were close to 1.0.

It is interesting to note that the HOCOMOCO model outperformed the MATCH model.

This outperformance can be the result of taking into account the background nucleotide

Fig 4. Quality metrics values for some low-quality ChIP-Seq data from GTRD.

https://doi.org/10.1371/journal.pone.0221760.g004
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Fig 5. ROC curves for (a) whole dataset PEAKS038038 and (b) for PEAKS038038 without orphans.

https://doi.org/10.1371/journal.pone.0221760.g005

Table 6. Values of area under ROC curve for datasets mentioned in Table 1.

Dataset Whole dataset Without orphans

MATCH HOCOMOCO MATCH HOCOMOCO

PEAKS035099 0.880 0.888 0.887 0.896

PEAKS039626 0.684 0.691 0.849 0.858

PEAKS033754 0.780 0.794 0.783 0.795

PEAKS033837 0.620 0.655 0.628 0.663

PEAKS039665 0.778 0.817 0.786 0.825

PEAKS033184 0.790 0.824 0.840 0.868

PEAKS038038 0.565 0.633 0.808 0.843

PEAKS038673 0.564 0.556 0.813 0.844

PEAKS038812 0.603 0.640 0.776 0.796

PEAKS040149 0.595 0.578 0.722 0.623

https://doi.org/10.1371/journal.pone.0221760.t006

Table 7. Values of area under ROC curve when peaks from distinct ChIP-Seq studies were merged.

TF name

(TF-class)

Dataset type GEM MACS PICS SISSRs

HOCOMOCO MATCH HOCOMOCO MATCH HOCOMOCO MATCH HOCOMOCO MATCH

ATF-1 (1.1.7.1.2) whole 0.57 0.57 0.51 0.49 0.52 0.51 0.53 0.52

without orphans 0.78 0.78 0.61 0.6 0.91 0.9 0.84 0.83

SRF

(5.1.2.0.1)

whole 0.64 0.61 0.57 0.56 0.57 0.55 0.57 0.56

without orphans 0.77 0.74 0.65 0.63 0.81 0.8 0.82 0.81

NF-E2

(1.1.1.2.1)

whole 0.7 0.69 0.67 0.66 0.59 0.58 0.61 0.6

without orphans 0.78 0.76 0.76 0.75 0.74 0.73 0.89 0.88

https://doi.org/10.1371/journal.pone.0221760.t007
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composition of the motifs by the HOCOMOCO model (unlike the MATCH model) [29].

However, this superiority was not high because of small differences between corresponding

AUCs. Anyway, the differences between AUCs indicated that distinctions between the PWM

models were less considerable than effect of appropriate removing orphans.

Finally, the same relations between removing orphans and essential increase of AUCs have

also been observed when we merged datasets of TFBRs obtained by application of a single

peak caller to the distinct ChIP-Seq sets of reads when the same TF was studied in different

ChIP-Seq experiments. In particular, Table 7 contains AUCs obtained for the following TFs:

ATF-1, SRF and NF-E2. We selected these TFs because the corresponding values of FPCM

exceeded threshold 2.0, hence FPCM actually recommended to remove orphans.

Implementation

The developed algorithm for determination of FPCM and FNCM for ChIP-Seq datasets was

implemented as a plugin for the BioUML platform [30]: https://ict.biouml.org/bioumlweb/

chipseq_analysis.html. BioUML is an open source comprehensive bioinformatics platform,

free for non-commercial use.

Conclusions

In this study we developed two novel metrics: FPCM and FNCM, which allow to control FP

and FN rates of peak callers for assessment of quality of TFBR datasets. The main aim of the

developed metrics is the selection of the most reliable datasets or recommendation of dataset

modification by removing the orphans.

After estimation of FNCM and FPCM metrics for all human ChIP-Seq datasets from

GTRD, we observed strong relations between presence/absence of input control in ChIP-Seq

experiment and the FNCM and FPCM metrics. In particular, the absence of input control

resulted in increase of FP rate and decrease of FN rates of the peak callers MACS, PICS, and

SISSRs. In addition, we performed a comparative analysis of four peak callers: MACS, PICS,

GEM and SISSRs using FNCM metrics. It was revealed that, in general, MACS and GEM out-

performed SISSRs and PICS, especially when input controls were available for ChIP-Seq data-

sets. Moreover, comparative analysis of the existing quality metrics developed by the

ENCODE project, FNCM and FPCM metrics and characteristics generated by individual peak

callers has been performed. No strong relationships between FNCM and FPCM metrics and

existing quality metrics or peak callers’ characteristics have been revealed. In other words,

there are no combinations of known metrics and peak callers’ characteristics that can replace

FNCMs and FPCM metrics. Thus, reasonable application of FPCM can considerably improve

the accuracy of TFBS identification within ChIP-Seq datasets.
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