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Abstract

C-reactive protein (CRP) is an established marker of inflammation with pattern-recognition receptor-like activities. Despite
the close association of the serum level of CRP with the risk and prognosis of several types of cancer, it remains elusive
whether CRP contributes directly to tumorigenesis or just represents a bystander marker. We have recently identified
recurrent mutations at the SNP position -286 (rs3091244) in the promoter of CRP gene in several tumor types, instead
suggesting that locally produced CRP is a potential driver of tumorigenesis. However, it is unknown whether the -286 site is
the sole SNP position of CRP gene targeted for mutation and whether there is any association between CRP SNP mutations
and other frequently mutated genes in tumors. Herein, we have examined the genotypes of three common CRP non-coding
SNPs (rs7553007, rs1205, rs3093077) in tumor/normal sample pairs of 5 cancer types (n = 141). No recurrent somatic
mutations are found at these SNP positions, indicating that the -286 SNP mutations are preferentially selected during the
development of cancer. Further analysis reveals that the -286 SNP mutations of CRP tend to co-occur with mutated APC
particularly in rectal cancer (p= 0.04; n = 67). By contrast, mutations of CRP and p53 or K-ras appear to be unrelated. There
results thus underscore the functional importance of the -286 mutation of CRP in tumorigenesis and imply an interaction
between CRP and Wnt signaling pathway.
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Introduction

Inflammation is essential for the development of cancer [1,2].

As a major human acute phase reactant, C-reactive protein (CRP)

is widely used as a non-specific marker of inflammation [3,4].

However, accumulating evidence has revealed a close association

between the serum level of CRP and the risk and prognosis of

cancer [5]. Given the presumed functions of CRP in host defense

and innate immunity [6,7], it is plausible that CRP may play a

direct role in tumorigenesis. Indeed, CRP has been reported to

prevent the apoptosis of myeloma cells [8] and to facilitate the

invasiveness of breast cancer cells [9]. Moreover, CRP may

contribute to the establishment of a favorable tumor microenvi-

ronment by promoting angiogenesis [10], by inhibiting the

destructive activation of complement [11,12], and by inducing

proinflammatory cytokines from immune and endothelial cells

[3,13,14].

On the other hand, single nucleotide polymorphisms (SNPs)

that associate with genetically elevated concentrations of CRP do

not confer an increased cancer risk to the general population [15].

This suggests that circulating CRP is not causally involved in

tumorigenesis. Intriguingly, in contrast to the aforementioned pro-

cancer activities, early studies have also documented anti-cancer

actions of CRP through activation of macrophage/monocyte [16–

18]. Consequently, it has been difficult to define whether CRP is

solely a passive marker or an active player in cancer, or to dissect

the exact contribution of CRP in tumorigenesis.

Serum CRP is produced by hepatocytes of the liver; however,

accumulating evidence also reveals a local production of CRP by

extra-hepatic cells [3,19]. Interestingly, we have recently found

that the promoter of CRP is specifically mutated at the SNP

position (rs3091244) 286 bp upstream the transcription start site in

109 out of 453 tumor samples but not in the matched normal

controls [19]. These mutations are associated with enhanced local
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CRP induction in tumors likely via disruption of the conserved

CpG methylation motif. Moreover, most of the cancer types

examined harbor the -286 mutation and the fraction of the

mutated allele is high (0.487, 95% CI: 0.477–0.517). These

findings thus support the role of CRP produced in situ as a

potential cancer driver that is probably involved in general

mechanisms favoring tumorigenesis [19].

Besides the -286 SNP, there are several additional common

non-coding SNPs that significantly affect the baseline levels of

serum CRP. The representatives include rs7553007, rs1205, and

rs3093077 [15,20,21]. It is therefore of interest whether these SNP

sites are also targeted for mutation in tumors. We show here by

genotyping of 141 tumor/normal sample pairs that no recurrent

mutations occur at the 3 CRP SNP sites, thus highlighting that the

-286 mutations are highly specific to tumorigenesis. We further

examined whether there is any correlation between the -286

mutations of CRP and other frequently mutated genes in tumors.

The identified association between the -286 and APC mutations

implies an interaction of CRP with Wnt signaling.

Materials and Methods

Frozen tumor/normal tissue sample pairs were obtained from

the tissue bank of Gansu Provincial Tumor Hospital. Genomic

DNA was isolated from tissues or blood samples using DNAiso

Reagent or Blood Genome DNA Extraction Kit (Takara)

according to the manufacturer’s instructions. For the identification

of gene mutations, genomic DNA was amplified with specific

primers (human CRP: forward: 59-AGGGGGGAGGGATAG-

CATTAGAA-39; reverse: 59-CGTCCTGCTGCCAGTGATA-

CAAG-39; human p53: forward: 59-CTGTCCCTTCCCA-

GAAAACCT-39; reverse: 59-CCTGGGCATCCTTGAGTTC-

39; human APC: forward: 59-TAATACCCTGCAAATAGCA-

GAAATA-39; reverse: 59-GTGGCAAAATGTAATAAAGTAT-

CAG-39; human K-ras: forward: 59-ATGACTGAATA-

TAAACTTGTGGTA-39; reverse: 59-

CAACACCCTGTCTTGTCTT-39) followed by sequencing.

Genotyping of 24 SNPs (rs7553007, rs1205, rs3093077, rs4073,

rs1143627, rs720816, rs723504, rs1876054, rs746961, rs2371923,

rs487616, rs953183, rs400328, rs950487, rs759394, rs726402,

Figure 1. Percentage of patients with somatic mutations at the indicated SNP sites in tumors. 3 CRP SNPs (rs7553007, rs1205, and
rs3093077) and 21 additional SNPs of 141 tumor/normal sample pairs were genotyped by Sequenom. These samples were collected from 37 gastric,
12 lung, 27 esophagus, 24 colon and 41 rectal cancer patients. (A) The mutation frequencies at each SNP sites. None of these sites is recurrently
mutated in tumors. The frequency of the CRP-286 SNP (rs3091244) mutation in these samples is shown for comparison. (B) The pooled mutation
frequencies of SNPs with or without associated genes. Gene-associated SNP sites tend to exhibit lower mutation frequencies albeit without reaching
statistical significance (two sample t test, two-tailed, p= 0.47).
doi:10.1371/journal.pone.0102418.g001

Table 1. Clinicopathologic features of 141 cancer patients whose tumor/normal sample pairs were genotyped.

Allele frequencies, %

Number of patients (%) rs3091244 rs7553007 rs1205 rs3093077

N 141

Age ,58 y 66 (47)

$58 y 75 (53)

Gender Female 38 (27)

Male 103 (73) C: 77.0% G: 51.1% C: 52.1% T: 79.1%

Tumor Stage 0–2 57 (40) A: 14.5% A: 48.9% T: 47.9% G: 20.9%

3–4 84 (60) T: 8.5%

Chemotherapy status Naı̈ve 113 (80)

Prior treatment 28 (20)

doi:10.1371/journal.pone.0102418.t001
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rs1568645, rs929689, rs2254896, rs1951096, rs1843026,

rs1543193, rs718015, rs16091) was performed by the mass

spectrometry-based Sequenom service (Genergy Biotechnology,

Shanghai, China). Written informed consent was obtained from

patients. All patients are Chinese. The study was approved by the

Ethic Committee of the Gansu Provincial Tumor Hospital.

Results

No recurrent somatic mutations occur at 3 common CRP
SNP sites in tumors
To see whether other non-coding SNP sites of CRP are mutated

in tumors, we determined the genotypes of 3 CRP common SNPs

(rs7553007, rs1205, and rs3093077) together with 21 additional

SNPs in 141 tumor/normal sample pairs of 5 cancer types, i.e.

Figure 2. Thedistributionof somatic mutations of CRP-286 SNP, p53 and K-ras in tumors. The CRP-286 SNP mutations show no association
with mutated p53 or K-ras in colon (A-B) or esophagus cancers (C) (Fisher’s exact test, two-tailed). Each rectangle represents one tumor sample with
grey color denotes wild type status. The bar graphs on the right show the percentages of patients carrying the indicated mutations in two patient
groups with or without CRP-286 mutations.
doi:10.1371/journal.pone.0102418.g002

Table 2. Clinicopathologic features of 35 colon cancer patients whose tumor/normal sample pairs were examined for p53
mutations.

Number of Patients (%)
Number of patients with
CRP-286 mutation (%) p*

Number of patients with
p53 mutation (%) p*

N 35

Age ,57 y 17 (49) 9 (56) 0.51 9 (53) 0.74

$57 y 18 (51) 7 (44) 8 (47)

Gender Female 13 (37) 6 (37.5) 1 6 (35) 1

Male 22 (63) 10 (62.5) 11 (65)

Tumor Stage 0–2 19 (54) 9 (56) 1 8 (47) 0.51

3–4 16 (46) 7 (44) 9 (53)

Chemotherapy
status

Naı̈ve 30 (86) 13 (81) 0.64 15 (88) 1

Prior treatment 5 (14) 3 (19) 2 (12)

*Fisher’s exact test, two-tailed.
doi:10.1371/journal.pone.0102418.t002
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gastric, lung, esophagus, colon and rectal cancers. The frequencies

of alleles associated with lower CRP levels are 48.9% for A allele of

rs7553007, 47.9% for T allele of rs1205, and 79.1% for T allele of

rs3093077 in normal samples (Table 1), thus providing sufficient

sample sizes for detection of recurrent mutations. Therefore, we

identified only 1 case of G.A mutation at rs7553007, 0 case of

mutation at rs1205, and 2 cases of G.T mutations at rs3093077

in the matched tumor samples. Such a low incidence of somatic

mutation was also found for 21 other examined non-coding SNP

sites distributed across 9 different chromosomes (Figure 1). These

indicate that, in contrast to the highly recurrent CRP-286 SNP

(rs3091244) mutations [19], the 3 CRP SNP sites assayed herein

are only randomly mutated in tumors at the background mutation

frequency.

According to the genotyping results, the mutation frequencies of

SNP sites with and without associated genes are 0.97% (95% CI:

0.35–1.59%) and 1.30% (95% CI: 0.78–1.82%), respectively.

Although not statistically significant, this suggests that gene-

associated SNP sites tend to be less prone to random mutation

than those with unknown association, possibly due to constraints

that limit damages to genomic loci with functional importance. Of

the gene-associated SNPs, rs1143627 and rs4073 are two

promoter SNPs that locate at 31 and 199 bp upstream of the

transcription start sites of IL-1b and IL-8, respectively. Their low

mutation frequencies (0.7–1.4%) argue that the promoter locali-

zation per se is not likely the cause of somatic hypermutation at the

CRP-286 SNP -site in tumors; rather, the high incidence of the -

286 mutation would be the result of functional consequences

related to the enhanced induction of CRP, which may confer host

cell clones sufficient advantage to survive and expand in the

development of cancer.

CRP-286 SNP mutation is associated with mutated APC in
rectal cancer
The CRP-286 SNP mutation is most prevalent in colon cancers

[19], in which p53, K-ras and APC are among the most frequently

mutated genes that promote tumorigenesis via distinct mecha-

nisms [22–24]. We thus sought to examine whether there is any

association between these mutation events. Mutated p53, K-ras and

APC were identified by sequencing of their respective hotspot

mutation regions, i.e. 301–1044 of p53, 24–442 of K-ras, and 3922–

4453 of APC in cDNA sequence ranges, according to the statistics

Table 3. Clinicopathologic features of 35 colon cancer patients whose tumor/normal sample pairs were examined for K-ras
mutations.

Number of Patients (%)
Number of patients with
CRP-286 mutation (%) p*

Number of patients with
K-ras mutation (%) p*

N 35

Age ,56 y 17 (49) 10 (59) 0.32 9 (43) 0.50

$56 y 18 (51) 7 (41) 12 (57)

Gender Female 12 (34) 6 (35) 1 9 (43) 0.28

Male 23 (66) 11 (65) 12 (57)

Tumor Stage 0–2 20 (57) 10 (59) 1 13 (62) 0.51

3–4 15 (43) 7 (41) 8 (38)

Chemotherapy status Naı̈ve 29 (83) 13 (76) 0.40 20 (95) 0.03

Prior treatment 6 (17) 4 (24) 1 (5)

*Fisher’s exact test, two-tailed.
doi:10.1371/journal.pone.0102418.t003

Table 4. Clinicopathologic features of 36 esophagus cancer patients whose tumor/normal sample pairs were examined for p53
mutations.

Number of
Patients (%)

Number of patients
with
CRP-286
mutation (%) p*

Number of patients
with
p53 mutation
(%) p*

N 36

Age ,61 y 16 (44) 8 (57) 0.31 10 (59) 0.18

$61 y 20 (56) 6 (43) 7 (41)

Gender Female 4 (11) 2 (14) 0.63 3 (18) 0.33

Male 32 (89) 12 (86) 14 (82)

Tumor Stage 0–2 21 (58) 5 (36) 0.04 10 (59) 1

3–4 15 (42) 9 (64) 7 (41)

Chemotherapy status Naı̈ve 32 (89) 10 (71) 0.02 16 (94) 0.61

Prior treatment 4 (11) 4 (29) 1 (6)

*Fisher’s exact test, two-tailed.
doi:10.1371/journal.pone.0102418.t004
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of the COSMIC database. Despite their high incidences (about

50%), the CRP-286 SNP mutation shows no apparent association

with mutated p53 (n = 35; Table 2 and Fig. 2A) or K-ras (n = 35;

Table 3 and Fig. 2B). The lack of association between p53 and the

CRP-286 SNP mutations was also confirmed in esophagus cancer

(n = 36; Table 4 and Fig. 2C), wherein p53 represents the most

frequently mutated gene.

By contrast, a two-fold enrichment of mutant APC were

observed in colon tumors with the concurrent CRP-286 SNP

mutations (n = 38; Table 5 and Figure 3A). However, such a

correlation did not reach the statistical significance probably owing

to the limited sample size that we could obtain. We thus further

examined 67 tumor/normal sample pairs of rectal cancer (Table 6

and Figure 3B), which is very similar to colon cancer in both the

cell type origin and genomic alterations [25] showing high

incidence of both APC [25] and the CRP-286 SNP mutations

[19]. Indeed, the co-occurrence of these two mutations in this

sample set became more evident (odds ratio: 5.56, 95% CI: 1.17–

26.36) and significant (p=0.04). These results thus suggest that

CRP and APC may cooperate in overlapping pathways during the

development of colorectal cancer.

Discussion

The in vitro activities of CRP [3,4,6,11,13,14], including the

recognition of endogenous or exogenous danger signals, regulation

of complement activation, induction of proinflammatory cell

responses, lead to the idea that CRP may function as a soluble

pattern recognition receptor in the innate immunity and host

defense [6,7]. However, the lack of consistent support by research

on animal models [26–34], human subjects [35,36] and genetic

epidemiology [15,20,21,37] makes it uncertain whether CRP plays

any significant role in chronic inflammation in vivo or simply

represents a nonspecific marker as hinted by its acute phase

expression pattern. In this regard, the identification of the highly

recurrent CRP-286 SNP mutations in multiple types of human

cancer [19] provides a compelling evidence that this protein is a

Figure 3. Thedistributionof somatic mutations of CRP-286 SNP and APC in tumors. The CRP-286 SNP mutations tend to co-occur with APC
mutations in colon (A) (Fisher’s exact test, two-tailed, p= 0.47) and rectal cancers (B) (Fisher’s exact test, two-tailed, p= 0.04). Each rectangle
represents one tumor sample with grey color denotes wild type status. The bar graphs on the right indicate the percentages of patients carrying APC
mutations in two patient groups with or without CRP-286 mutations.
doi:10.1371/journal.pone.0102418.g003

Table 5. Clinicopathologic features of 38 colon cancer patients whose tumor/normal sample pairs were examined for APC
mutations.

Number
of Patients (%)

Number of patients
with CRP-286 mutation (%) p*

Number of
patients with
PC mutation
(%) p*

N 38

Age ,56 y 19 (50) 11 (61) 0.33 2 (20) 0.06

$56 y 19 (50) 7 (39) 8 (80)

Gender Female 13 (34) 7 (39) 0.73 3 (30) 1

Male 25 (66) 11 (61) 7 (70)

Tumor Stage 0–2 23 (61) 11 (61) 1 8 (80) 0.26

3–4 15 (39) 7 (39) 2 (20)

Chemotherapy
status

Naı̈ve 31 (82) 14 (78) 0.69 7 (70) 0.35

Prior
treatment

7 (18) 4 (22) 3 (30)

*Fisher’s exact test, two-tailed.
doi:10.1371/journal.pone.0102418.t005
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potential driver of tumorigenesis and a core component of the

regulatory network of inflammation.

Promoter mutations in TERT [38,39] and CRP [19] constitute

the first examples that non-coding regulatory regions can also be

targeted to promote tumorigenesis by modulating the expression

instead of the activities of key genes. However, it is somewhat

unique in case of CRP that the mutation occurs at a common SNP

site. This raises the concern whether SNP sites are generally more

vulnerable to genetic alterations, leading to the high incidence of

passenger mutations. To address this concern, we genotyped 24

SNPs of 141 tumor/normal sample pairs. These SNPs are located

on 9 distinct chromosomes, and consist of 3 SNPs of CRP, 2

promoter SNPs of inflammatory cytokines, 1 SNP of a non-coding

gene, 18 SNPs with unknown association. Despite that, all of the

SNP sites were found to be mutated in tumors with only low

background frequency. Therefore, the highly recurrent mutation

at the CRP-286 SNP site is most likely the result of the selection by

cancer development, but not simply due to general properties

associated with SNP site or genomic location. It is, however, still

possible that the -286 mutation is just a consequence of

tumorigenesis and further functional assays are required to clarify

this point.

Nonetheless, it is intriguing that although the 4 examined CRP

SNPs all affect the serum level of CRP, only the -286 SNP is

targeted by tumorigenesis. This would suggest that the effects of

the other 3 SNPs are secondary to the -286 SNP, which may in

part be explained by the dependence of CRP expression on

promoter CpG methylation, an essential epigenetic mechanism in

gene silencing [40]. Indeed, we have recently shown that high

CRP expression is correlated with low promoter methylation, and

vice versa [19]. Of the 5 CpG motifs in CRP promoter, the

evolutionarily conserved -286 CpG appears to be the key,

particularly for extrahepatic cell types, in determining the basal

level of CRP expression [19]. As the majority of the -286 mutations

are C.A/T transitions that disrupt the methylation motif, it is

conceivable that such genetic alterations will in turn contribute to

switching on the promoter activity of CRP likely via lowering the

inhibitory methylation signal and facilitating the binding of

transcription factors to the underlying E-box sequence [41].

These may eventually allow the subsequent participation of distal

regulatory elements containing the other CRP SNPs.

The high recurrence and pervasiveness of the CRP-286 SNP

mutations in tumors suggest that locally produced CRP, instead of

circulating CRP, drives the development of cancer. This paradox

may be explained by the tight dependence of the actions of CRP

on inflammatory microenvironments [3,13,14,36]. Circulating

CRP is produced by the liver as a pentamer primarily showing

anti-inflammatory activities [7,42,43]. Besides hepatocytes, extra-

hepatic cells are also able to secrete CRP locally in response to

inflammatory stimuli. Moreover, triggers enriched in inflammato-

ry loci will induce prompt conformation changes in the pentameric

CRP post its in situ production [44–49], to release the full potential

in ligand binding [47,48,50], complement regulation [46,48,51–

54] and stimulation of proinflammatory and angiogenic cell

responses [48,49,55–61]. As such, the local abundance of CRP

and its interactions with the stressful microenvironment should be

more relevant to disease progression; while circulating CRP levels

mainly mirror the underlying inflammatory status.

The dysregulation of Wnt signaling pathway is the most

frequent event observed in colorectal cancer, which is usually

manifested by inactivating mutations of APC or activating

mutations of b-catenin [25]. One direct consequence of APC

inactivation is the stabilization of b-catenin and the aberrant

activation of the downstream target genes [62]. It is therefore of

interest that CRP has been shown to be a target of b-catenin [63].

Moreover, our results reveal that the CRP-286 SNP mutations

tend to co-occur with mutant APC in colon and rectal tumors.

These would imply that the two secretory molecules, i.e. CRP and

Wnt, may act in feed-back and cooperative manners to promote

tumorigenesis, which deserves further investigations. Given the

aberrantly activated Wnt signaling and highly induced CRP

expression in tumors, topical targeting both molecules may be a

potential option for colorectal cancer therapy.
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