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Genomes are composed of a wide variety of elements with distinct roles and characteristics. Some of these
elements are well-characterised functional components such as protein-coding exons. Other elements play
regulatory or structural roles, encode functional non-protein-coding RNAs, or perform some other function yet
to be characterised. Still others may have no functional importance, though they may nevertheless be of interest
to biologists. One technique for investigating the composition of genomes is to segment sequences into compo-
sitionally homogenous blocks. This technique, known as ‘sequence segmentation’ or ‘change-point analysis’, is
used to identify patterns of variation across genomes such as GC-rich and GC-poor regions, coding and non-
coding regions, slowly evolving and rapidly evolving regions and many other types of variation. In this mini-
reviewwe outline many of the genome segmentation methods currently available and then focus on a Bayesian
DNA segmentation algorithm, with examples of its various applications.
© 2014 Algama and Keith. Published by Elsevier B.V. on behalf of the Research Network of Computational

and Structural Biotechnology. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
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1. Role of genome segmentation

Identifying the distinct components of the human and other
genomes is a core task in current bioinformatics, and a necessary
pre-requisite to a full understanding of the connections between
genomes and phenotypes. Yet the annotation of complex eukaryotic
genomes is still far from complete. Even the proportion of the genome
that performs biological functions is still hotly debated, with estimates
varying from 5% [1] to 80% [2]. Whatever the true figure may be, it is
clear that a vast amount of the biology underlying the structure of
genomes remains to be discovered. Bioinformatics has an important
role to play in this endeavour, and one of its tasks is to identify segments
of the genome representing elements that require annotation.

2. Segmentation methods

Several techniques have been developed to analyse variation in
properties of interest across a genome and to provide clues to the nature
of its components. In this article we review some of the most widely
used segmentation methods and discuss the main ideas behind each
technique.

2.1. Sliding window analysis

Although not technically a segmentation method, ‘sliding window
analysis’ is the most commonly used way to profile variation in a prop-
erty of interest across a genome. This technique involves averaging the
property of interest over a sliding window of a predetermined length
along the sequence. For example if the window size is 10, the first
point is obtained by averaging the property of interest over nucleotides
1–10, the second point is the average over nucleotides 2–11, and so on.
Determining the window size can be crucial: a smaller window allows
for a more precise localisation of changes, however this can increase
the noise. Tajima in 1991 has proposed an algorithm to determine
window size [3]. The main drawback of the sliding window analysis is
that it does not identify boundaries where statistically significant
changes to the property in question occur. To avoid some of the disad-
vantages of the sliding window approach, a windowless technique
based on the Z curve was introduced to analyse GC content of genomic
sequences [4]. This method enables calculation of GC content at any
resolution, even at a base position. Some applications of the sliding
window analysis can be found in papers [5–16].

2.2. Hidden Markov models

More precise segmentation methods have been developed to
identify homogenous segments aswell as the locations (change-points)
at which sharp changes in a particular property of interest occurs.
Hidden Markov models (HMMs) are one approach capable of inferring
segment boundaries. TheHMMmethodology iswell-established, dating
from the 1950s [17]. In these models, the observed sequence is consid-
ered to be composed of segments, with the sequence of each segment
generated by a Markov process. The transition probabilities for each
segment are determined by a hidden state, and transitions between
hidden states occur at segment boundaries. The sequence of hidden
states is also modelled as a Markov process. A key parameter of an
HMM is the order of the Markov chain, that is, the number of preceding
sequence positions required to condition the transition probabilities of
the observed sequence. This is unknown a priori, and usually needs to
be specified, although some approaches are able to infer the order, or
determine it adaptively.

HMMs were first used in biological sequence analysis by Churchill
[18,19]. The parameters of the model, including segment boundaries,
were estimated by using the maximum likelihood method based on
the expectation–maximisation (EM) algorithm [20]. HMMs have since
been widely used for sequence analysis problems in bioinformatics,
and an extensive literature now exists. Two important developments
were the 1998 GeneMark.hmm algorithm which used an HMM to find
exact gene boundaries [21] and an HMM developed by Peshkin and
Gelfand in 1999 to segment yeast DNA sequences [22]. Some other im-
portant examples are included in [23–29]. The Sarment package of Py-
thon modules built by Gueguen for easy building and manipulation of
sequence segmentations uses both sliding window and HMM methods
[30].

HMMmodels have also been implemented from a Bayesian perspec-
tive. One advantage of adopting a Bayesian approach is that it provides
quantification of the uncertainties in parameter estimates in the form of
probability distributions. In fact, one can dispense with point estimates
of parameters altogether, instead reporting marginal distributions for
key parameters, such as the locations of change-points. Boys et al. in
2000 presented a Bayesian method of segmentation using HMMs
when the number of segments is known [31] and later generalised
this method for an unknown number of segments [32]. In 2006, the
segmentation method developed by Kedzierska and Husmeier was a
combination of the sliding window analysis and the Bayesian HMM
[33]. Nur and co-workers in 2009 performed sensitivity analysis on
priors used in the Bayesian HMM to show the impact of prior choice on
posterior inference [34]. One challenge for Bayesian HMM approaches
is that they are computationally intensive and are typically infeasible
for segmenting large-scale sequences, without simplifying heuristics.

2.3. Multiple change-point analysis

This approach arose independently of HMMs, and has an exten-
sive literature dating back to the 1970s [35,36]. Change-point analy-
sis differs from HMMs in that it typically assumes no Markov
dependence in either the observed sequence or the underlying se-
quence of hidden states. In this sense change-pointmodels are simpler
than HMMs, and have fewer parameters. However, the two types of
analysis are clearly related, and it may be useful to think of change-
point models as zeroth order HMMs. A key advantage of change-point
models, due to their simplicity, is their reduced computational burden,
a pointwhich is of particular relevancewhen implementing themwith-
in a Bayesian framework.

The use of multiple change-point models in bioinformatics was
pioneered by Liu and Lawrence in 1999, using a Bayesian framework
[37]. In 2000, Ramensky et al. developed a similar method which uses
a Bayesian estimator tomeasure the degree of homogeneity in segmen-
tation [38]. In this method, optimal segmentation is obtained by
maximising the likelihood function using the dynamic programming
technique presented in [39]. After completion, the partition function
approach is used to obtain segmentation with longer segments by
filtering theboundaries. In contrast to the approach of Liu and Lawrence,
this method does not use probability distributions for segment bound-
aries and does not use sampling. A related method is presented in
[40], which uses reversible jump Markov chain Monte Carlo (RJMCMC)
sampling method to estimate posterior probabilities [41]. In contrast
to Liu and Lawrence, they have used Poisson intensity models as the
underlying model (as opposed to multinomial likelihood). The method
has been tested by applying to modelling the occurrence of ORFs along
the human genome. Another Bayesian model can be found in [42].

Themethod onwhichwe focus in themain part of this article [43,44]
is also of this type. The method can be described as a segmentation–
classificationmodel as it not only detects change-points but also groups
segments based on their sequence characteristics. The group to which a
segment belongs is essentially a hidden state, in the terminology of
HMMs, and the classification is unsupervised, in the terminology of
machine learning. There are two main innovations in this method. The
first is that the character frequencies (emission probabilities) for a
given segment are not constant for all segments in a group. Instead,
the character frequencies are drawn from a Dirichlet distribution
specific to the group to which that segment belongs, and it is the
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parameters of this distribution that characterise the group. There is
thus an additional layer to this hierarchical model, and this layer is
another characteristic distinguishing the model from HMMs.
Allowing variation in the character frequencies for segments in a
group means that this model can be used to dissect multi-modal dis-
tributions of properties of interest, a central feature in recent appli-
cations [45,46]. The second innovation in this method is the use of
the Generalised Gibbs Sampler (GGS) [47], a new technique in Mar-
kov chain Monte Carlo simulation. The GGS provides highly efficient
sampling from a varying dimensional space (important here as the
number of change points is variable).

2.4. Recursive segmentation method

The recursive segmentation method finds segment boundaries that
maximise the difference in base compositions between adjacent
segments with respect to some predefined compositional measure
(Jensen–Shannon divergence — DJS). The process is repeated until
further segmentation of sequence segments produces no statistically
significant improvements. The recursive segmentation method has
been widely applied to segmentation problems such as isochore detec-
tion or detection of CpG islands [48–52]. More recent applications
include locating borders between coding and non-coding regions of
bacteria genomes [53] and in developing IsoPlotter: a tool for studying
the compositional architecture of genomes [54].

The recursive segmentation method presented in [55] is significant
in that it does not require specification of the number of segment classes
(something most of the other methods require). This method has been
successfully used to identify alien DNAs in bacterial genomes, detect
structural variants in cancer cell lines and perform alignment-free
genome comparisons.

2.5. Other segmentation methods

Methods based on least squares estimation [56] andwavelet analysis
[57] have also been used. Sequential importance sampling (SIS) [58],
the cross-entropymethod [59] and the Bayesian adaptive independence
sampler [60] have also been used to find segment boundaries and
parameters of the process in each segment.

Olshen et al. developed the circular binary segmentation method
(CBS) in 2004 for the analysis of array-based comparative genomic
hybridisation (array-CGH) data [61]. CGH (comparative genomic
hybridization) is a technique for measuring DNA copy numbers at
thousands of locations on a genome. The modification of conventional
CGH to obtain high resolution data is called array-CGH. The variation
in DNA copy number is often used to identify cancer progression. The
CBS algorithm divides the genome into regions of equal DNA copy
number and identifies the genomic locations of copynumber transitions
(change-points). In 2007, changes were made to the original CBS
algorithm to enhance the speed by introducing, (1) a hybrid approach
for the computation of the p-value and (2) a stopping rule for early
identification of change-points [62].

In 1996, Tibshirani proposed a new method called ‘lasso’ (least
absolute shrinkage and selection operator) for estimation in regression
models, which involves constraining the sum of the absolute values of
the regression coefficients [63]. This produces some coefficients that
are exactly zero and hence gives interpretable models. In 2006 ‘fused
lasso’ — a generalisation of ‘lasso’ —was introduced to handle problems
with features that can be ordered in some meaningful way [64]. The
fused lasso penalises the sum of the absolute values of the coefficients
and their successive differences. The method was applied along with
the CBS method to estimate the copy number alterations in breast
tumour data (CGH data of breast cancer cell line MDA157) [65]. CBS
had difficulties in detecting change points whose alteration signals are
weak (chromosome 7 and 15 of the selected cell line), but the fused
lasso successfully recognised various copy number alterations. Besides
identifying gains and losses in CGH data, the fused lasso can also be
generalised to other analysis; for example, understanding the interac-
tions between copy number alternations and mRNA expression levels.

Determining the number of change-points is an important aspect
of change-point analysis. In 2007, Zhang et al. proposed the modified
Bayes Information Criterion (BIC) as a model selection procedure for
array-CGHdata analysis [66]. The first term of themodified BIC is similar
to the classic BIC (consisting of the log likelihood), but it differs in the
terms that penalise for model dimension. One of the advantages of
using themodified BIC is that it does not require a specific prior or tuning
parameters, but it can only be applied to normally distributed, uncorre-
lated and homoscedastic data. However the modified BIC is not limited
to the analysis of array-CGH data. Some other methods that adaptively
determine the number of change-points can be found in [41,46,67].

The multi-scale segmentation method developed by Futschik and
co-workers also estimates the number of segments and their bound-
aries simultaneously [68]. One advantage of this method is that it does
not require distributional assumptions regarding the lengths of
segments. Another feature is that this method is able to choose an
appropriate number of segments with user specified probability 1 − α.

Many early statistical segmentationmethods were reviewed in [69].
Elhaik et al. reviewed the performance of seven recent algorithms by
segmenting human chromosome 1 based on variability of GC content
[70].

3. Changept analysis

In the remainder of this mini-review, we focus on the changept
program developed by Keith et al. [43,44]. This is a Bayesian multiple
change-point algorithm capable of simultaneously segmenting a
genomic alignment and classifying segments into one of a predefined
number of segment classes. Segments can be classified according to
multiple properties including level of evolutionary conservation
between species, GC content and transition/transversion ratio. Pro-
gram readcp is a part of the changept package that takes the outputs
produced by changept and estimates, for each genomic position, the
probability that genomic position belongs to each segment class.
The package uses a highly efficient sampling technique known as
the Generalised Gibbs Sampler [47] resulting in a highly efficient al-
gorithm that enables chromosome or even genome-wide analysis.
The algorithm can be used to segment a genomic alignment based
on a single property of interest or multiple properties. There is no
limit on number of aligned species.

4. Method

4.1. Transforming alignment

4.1.1. Segmentation based on a single property of interest (e.g.: conservation
level)

Supposewewant to segment a pairwise alignment of size L based on
the degree of conservation between two species. The first step is to
convert the alignment into a binary sequence by replacing the
alignment columns in which two DNA sequences match with a ‘1’ and
replacing columns inwhich theymismatchwith a ‘0’. The gaps between
alignment blocks are marked by a ‘#’ symbol and these are considered
as fixed change-points by the model. The indels (alignment gaps) in
the reference species are not encoded while indels in other species are
encoded using letter ‘I’ which will be excluded from the final analysis
of the sequence. The binary sequence generated in this way is used as
the input for the program changept.

4.1.2. Segmentation based on multiple properties (e.g.: conservation level,
GC content and transition/transversion ratio)

In segmenting apairwise alignment based onmore than oneproperty
of interest, one possibility is to use a 16-character representation



Table 1
16-character representation used to encode a pairwise alignment.

Species 1 A A A A C C C C G G G G T T T T
Species 2 A C G T A C G T A C G T A C G T
Symbol a b c d e f g h i j k l m n o p

Fig. 1. Parameters of the changept model and their conditional dependencies. The
parameter at the headof the arrow is conditionally dependent on the parameter at the tail.
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(A = (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p) to encode the alignment
(Table 1).

In the case of a 3-way alignment, a 32-character representation (A=
(a, b, c, d, e, f, g, h, i, j, k, l,m, n, o, p, q, r, s, t, u, v,w, x, y, z, U, V,W, X, Y, Z) is
used to transform the alignment into the changept input sequence.
Table 2 depicts the possible encoding. Indel positions in Species 2 and
Species 3 are encoded using letter ‘I’ which will be excluded from the
final analysis.

In the 3-way alignment, alignment columns with complementary
bases were encoded using the same characters.

For example:

Species 1 ‘A’, Species 2 ‘A’, Species 3 ‘A’= Species 1 ‘T’, Species 2 ‘T’,
Species 3 ‘T’ = ‘a’
Species 1 ‘A’, Species 2 ‘A’, Species 3 ‘C’= Species 1 ‘T’, Species 2 ‘T’,
Species 3 ‘G’ = ‘b’.

In the 16-character representation, the symbols ‘a’, ‘f’, ‘k’ and ‘p’
represent the conserved bases in the alignment. Similar information is
represented by symbols ‘a’ and ‘v’ in the 32-character representation.
Both input sequences also contain other biologically significant infor-
mation such as GC content in species and transition/transversion ratio.
For example in the 16-character representation, symbols from ‘e’ to ‘l’
correspond to ‘C’ or ‘G’ content in Species 1 and similar information
is represented by symbols from ‘q’ to ‘Z’ in the 32-character
representation.

In the case of more than 3 aligned species, we have proposed two
methods that can be used to transform an alignment. The first method
is known as ‘maximum frequency transformation’ in which a score
is assigned for each alignment column equivalent to the maximum
number of nucleotides that are identical. The second method uses
Fitch's algorithm [71] to compute Parsimony score — the smallest
number of mutations along the evolutionary tree. See [45] which uses
both methods in transforming a 4-way alignment into the changept
input sequence.

4.2. Modelling

The complete model is presented in [43,44]. Here we only present
the main idea behind the model.

The process of Bayesian modelling consists of 3 main steps [72]:
(1) set up a joint probability distribution for all the variables in a prob-
lem; (2) calculate posterior distribution — the conditional probability
distribution of the unobserved parameters of interest, given the
observed data; (3) evaluate the model. Step (1) starts with writing
down the likelihood function of the model, i.e. probability of the
observed quantities given unknown parameters. This describes the
stochastic process bywhich sequences are generated, and consequently
it quantifies the probability of generating the observed sequence for any
given parameter values.

In writing down the likelihood function of ourmodel, we denote the
probability of starting a new segment by ϕ, the number of fixed change-
Table 2
32-character representation used to encode a 3-way alignment.

Species 1 A A A A A A A A A A A A A A A
Species 2 A A A A C C C C G G G G T T T
Species 3 A C G T A C G T A C G T A C G
Symbol a b c d e f g h i j k l m n o
points by k′ and the total number of change-points (including fixed
change-points) by k. The positions of change-points are denoted by
C = (c1, c2, …, ck). We set c0 = 1. For each position in the sequence,
except for the first position and those immediately following a fixed
change-point (marked by ‘#’s), a decision has to be made whether to
start a new segment. Thus the probability of generating a segmentation
with k change-points at C = (c1, c2, …, ck) positions is given by:

p k; Cjϕð Þ ¼ ϕk−k0 1−ϕð ÞL−1−k

where L is the length of the sequence S.
Each segment is then assigned to one of ω conservation classes. Let

πt denotes the probability of assigning a segment to class t. We denote
the class to which segment i is assigned by gi ∈ {0, 1, …, ω − 1} and
let g = (g0, g1, …, gk). The probability that x0 segments are assigned to
class 0, x1 segments are assigned to class 1, …, xω − 1 segments are
assigned to class ω − 1 is:

p gjk;πð Þ ¼ π x0
0 � π x1

1 �… …:� πxω−1
ω−1 ¼ ∏

k

i¼0
πgi

:

In the case of the binary representation of the sequence S, let θi
represent the probability of generating a ‘1’ in each position of segment
i in class t. Each θi is independently drawn from the following beta
distribution with unknown parameters α0

(t) and α1
(t).

p θijα tð Þ
0 ;α tð Þ

1

� �
¼

Γ α tð Þ
0 þ α tð Þ

1

� �

Γ α tð Þ
0

� �
Γ α tð Þ

1

� � θ
α tð Þ
1 −1

i 1−θið Þα
tð Þ
0 −1

:

Here θ = (θ0, θ1, …, θk), α(t) = (α0
(t), α1

(t)) and α = (α(0), α(1), …,
α(ω − 1)).

This can be generalised when S represents the alignment formed
using a finite alphabet {1, …, D} (D-character representation). Let θij
represent the probability of generating character j in segment i =
0, …, k. We denote Θi = (θi1, …, θiD). Then for each segment i in class
A C C C C C C C C C C C C C C C C
T A A A A C C C C G G G G T T T T
T A C G T A C G T A C G T A C G T
p q r s t u v w x y z U V W X Y Z



Table 3
8-character representation used to encode a pairwise alignment.

Species 1 A T A T A T A T C G C G C G C G
Species 2 A T C G G C T A A T C G G C T A
Symbol a a b b c c d d e e f f g g h h
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gi,Θis are drawn from a Dirichlet distribution p(Θi|α, gi) with parameter
vector α = (α1

(t), …, αD
(t)) for each class.

The binary sequence within each segment i is generated by
independent Bernoulli trials at each position in the segment. Thus the
probability that segment i contains specific sequence Si including mi

number of ‘0’s and ni number of ‘1’s is given by:

p SijLi; θið Þ ¼ θnii 1−θið Þmi

where Li = ci + 1 − ci is the length of segment i.
In using the D-character representation, we assume that within

each segment, the sequence is generated by independent trials with D
possible outcomes. Let mij be the number of times character j appears
in segment i. Thus the likelihood of an observed DNA sequence can be
written as:

p Sjk;C;Θð Þ ¼ ∏
k

i¼0
∏
D

j¼1
Θ
mij

ij :

The final sequence is obtained by concatenating sequences S0,…., Sk.
Therefore the joint distribution of parameters k, c, g, θ and S is given
Fig. 2. The changeptworkflow. Thisfigure illustrates the sequence of steps generally followed in
number of segment classes specified by the user.
by:

k; c; g; θ; Sjϕ;π;αð Þ ¼ p k; cjϕð Þ p gjk;πð Þ∏
k

i¼o
B θijα gið Þ� �

p SijLi; θið Þ:

The prior probabilities assigned to parametersϕ, π andα are given in
[44]. Using Bayes theorem, integrating over ϕ and θ, and summing over
g, the following posterior distribution is obtained:

p k; c;π;αjSð Þ ¼ Γ L−kð ÞΓ k−k0 þ 1
� �

∏
k

i¼0
f mi;nijπ;αð Þ

where

f m;njπ;αð Þ ¼
X
t

πt

Γ α tð Þ
0 þ α tð Þ

1

� �

Γ α tð Þ
0

� �
Γ α tð Þ

1

� �
Γ mþ α tð Þ

0

� �
Γ nþ α tð Þ

1

� �

Γ mþ α tð Þ
0 þ nþ α tð Þ

1

� � :
analysing a set of DNA sequences by using the program changept. In step 3, T represents the

image of Fig.�2


Fig. 3. GC content versus conservation level for selected models. GC content (in the first
named species of each pair) versus the proportion of alignment matches, for each model
is shown. The different colours represent different classes, and each class is plotted for
the post burn-in samples; A) 15-class model for the D. melanogaster versus D. simulans
3′UTR alignment, B) 12-class model for the D. melanogaster versusD. simulans first coding
sequence (coding 1) alignment, C) 16-classmodel for theD.melanogaster versusD. yakuba
3′UTR alignment and D) 15-class model for the D. simulans versus D. yakuba 3′UTR
alignment.
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In the case of the D-character representation, the posterior distribu-
tion is given by:

p k;C;Θ;ϕ;α; g;πjSð Þ∝p ϕð Þp k;Cjϕð Þp αð Þp πð Þ p gjk;πð Þ∏
kþ1

i¼1
p Θijα; gið Þp Sjk;C;Θð Þ:

Here p(ϕ), p(α) and p(π) denote the prior probabilities assigned
to parameters ϕ, α and π [43]. In simplifying further, it is possible to
integrate the above equation over ϕ and Θ and to take sum over g to
obtain the posterior distribution of p(k, C, α, π|S).

Fig. 1 shows the parameter dependencies of the model.

4.3. Sampling

The posterior distribution is sampled using the Generalised Gibbs
Sampler (GGS), a Markov chain Monte Carlo technique [47]. Unlike
the conventional Gibbs sampler, the GGS takes into account the fact
that the number of change-points is varying and thus provides an
alternative to the reversible-jump sampler [41]. It cycles through each
segment and either inserts a change-point, deletes a change-point or
updates the change-point positions. These different types of updates
Table 4
Segmentation characteristics of two genomic regions.

Alignment Component Model No. of alignment
columns

Dmea vs Dsib 3′UTR 15 2,678,635
Dme vs Dyac 3′UTR 16 2,486,711
Dsi vs Dya 3′UTR 15 2,481,568
Dme vs Dsi Coding 1d 12 2,680,987
Dme vs Dsi Coding 2d 12 2,681,121
Dme vs Dsi Coding 3d 14 2,681,284

a Dme: D. melanogaster.
b Dsi: D. simulans.
c Dya: D. yakuba.
d Coding 1, 2, 3: three different randomly selected protein-coding sequences.
are referred as ‘move-types’ which are analogous to the coordinate
updates of the conventional Gibbs sampler.

Once the alignment is transformed into the changept input sequence,
it is then run through the program changept (source code is available
upon request) to produce a user specified number of samples.

The next step of changept analysis is to check if convergence to the
limiting distribution has occurred. This is most commonly assessed by
inspecting a time-series plot of the log-likelihood against the sample
number. The same plot is used to decide the length of the ‘burn-in’
period. Changept currently requires the user to specify the number of
segment classes (T). Selecting the model with the most appropriate
number of classes can be done by using either of the followingmethods:
(1) investigating AIC, BIC and DICV plots [67]; and (2) investigating the
stability of each segment class [46]. The final model is then run through
the program readcp to calculate profile values. The profile shows
the probability that each position in the input sequence belongs to
one of the segment classes in the selected model. These posterior
probabilities are estimated using Monte Carlo integration. These out-
puts (a profile file for each segment class in the final model) are used
to generate WIG/BED files that can be uploaded to a genome browser
(e.g. http://genome.ucsc.edu/) for viewing gene-related information.

This workflow is illustrated in Fig. 2 and a full description of how to
use changept and readcp can be found in [73].

4.4. Applications of changept

In this section we discuss several applications of program changept.
These can be categorised into sub-headings:

• Investigate segmentation patterns of genomic regions
• Identify alternatively spliced exons
• Identify putative transcription factor binding sites (TFBS)
• Identify putative non-coding RNAs
• Identify rapidly evolving genomic regions.

In each sub-heading we provide examples to illustrate the perfor-
mance of the program changept.

4.4.1. Investigate segmentation patterns of genomic regions
This section summarises the results of [46]. The program changept

was applied to three possible pairwise alignments of 3′UTR among
three closely related Drosophila species: Drosophila melanogaster,
Drosophila simulans and Drosophila yakuba. We also segmented three
randomly selected portions of the alignment of D. melanogaster to
D. simulans protein-coding sequences of the same length as the 3′UTR
alignment of that pair. This was required as the number of segment
classes detectable is sensitive to the length of the changept input
sequence. These alignments were obtained from http://genomics.
princeton.edu/AndolfattoLab/Andolfatto_Lab.html. Each pairwise align-
ment is encoded using an 8-character representation (Table 3) that
No. of fixed
change-points

Posterior average no.
of change-points

Posterior average
length of segments

9112 50,001 54
8622 53,051 47
8607 51,547 48
6760 11,086 242
6626 10,190 263
6463 9982 268

http://genome.ucsc.edu/
http://genomics.princeton.edu/AndolfattoLab/Andolfatto_Lab.html
http://genomics.princeton.edu/AndolfattoLab/Andolfatto_Lab.html
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Fig. 4. Conserved features across exon 6/7/7a of GFAP. This profile corresponds to themost conserved segment class of the 4-class model. The profile value shows the probability that the
base at each position of the GFAP gene belongs to the most conserved class. Exons (wide bars), UTRs (narrow bars) and introns (arrowed lines) are shown for three genes in the UCSC
collection and one in RefSeq. HSF1 and HSF2 mark the actual and possible acceptor sites identified by Human Splice Finder (scores 93.19 and 76.63 respectively).
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captures degree of conservation between two species, GC content and
transition/transversion ratio.

In order to select the optimal number of segment classes for each
alignment, we performed separate segmentation analysis usingmodels
with 1–20 segment classes (T = 1,.., 20). After assessing stability of
segment classes in each model of 3'UTRs, we selected the 15-class
model for the D. melanogaster versus D. simulans alignment, the
16-class model for the D. melanogaster versus D. yakuba alignment and
the 15-class model for the D. simulans versus D. yakuba alignment.
Further we selected the 12-class model for the D. melanogaster versus
D. simulans two protein-coding sequences (coding 1 and coding 2)
and the 14-classmodel for the third protein-coding sequence (coding 3).

The figure (Fig. 3) shows the segmentation patterns of each of the
alignments based on the conservation levels between two species and
the GC content of the first species in each pair. It can be seen that seg-
ment classes identified in D. melanogaster versus D.yakuba (Fig. 3C)
and D. simulans versus D. yakuba (Fig. 3D) 3'UTR alignments have very
similar characteristics. Although classes detected in the 3′UTR align-
ment of D. melanogaster versus D. simulans (Fig. 3A) show a similar pat-
tern, corresponding classes appear to be compressed towards the right
of the figure (i.e. higher conservation levels). This must be due to the
shorter evolutionary distance between D. melanogaster and
D. simulans. By contrast, the classes shown in Fig. 3B, representing the
first coding sequence alignment of D. melanogaster versus D. simulans,
exhibit a pattern distinct from the other three, making it difficult to
identify class correspondences.

Table 4 summarises further evidence of distinct segmentation
patterns of two genomic regions; 3′UTR and protein-coding.

According to these segmentation results (Table 4) it is clear that a
greater number of segment classes is identified in Drosophila 3′UTR
components compared to protein-coding regions. The number of
change-points estimated in 3′ UTRs is nearly five times that estimated
for coding sequence, and consequently the average segment length in
Fig. 5.WIGprofiles of the twomost conserved segment classes of the SHH gene. Thefigure show
and 85% conservation levels), as identified by the program changept applied to the 2-way align
class profile display the exons (wide bars), the UTRs (narrow bars) and the introns (thin lines) o
lines with value −1 represent the gaps (insertions and deletions) in the original alignment as
3′UTRs is about one fifth of that in the coding sequence. This evidence
suggests that Drosophila 3′UTRs contain more numerous sub-units
than protein-coding sequences.

4.4.2. Identify alternatively spliced exons
This example was extracted from work presented by Boyd SE and

co-workers in segmenting a 3-way alignment (human, mouse and rat
DNA sequences) of the GFAP gene [74].

Fig. 4 shows a section of theWIG file (uploaded to the UCSC genome
browser) of the segment class that corresponds to regions of high con-
servation among human, mouse and rat of the GFAP gene. In general,
the start and end points of the conserved features occur at or very
close to the boundaries of the exons (e.g. exon 6 in right of the screen).
In the case of exons 7 and 7a (as labelled), the conserved features do not
terminate immediately after the end of the annotated exon boundaries.
The conserved feature corresponding to exon 7 extends for 30 nucleo-
tides into intron 7 and the feature corresponding to exon 7a begins 50
nucleotides upstream of the start of exon 7a.

To find the possible novel splicing sites associated with exon 7a,
the human DNA sequence of the extended region has been submitted
to the Human Splicing Finder server (http://www.umd.be/HSF/HSF.
html). The HSF predicts a potential acceptor splice site located 40 nt
upstreamof the conserved region (markedbyHSF2 in Fig. 4), supporting
the hypothesis of a new splice variant of the GFAP gene.

4.4.3. Predict transcription factor binding sites (TFBS)
Identifying putative TFBS is yet another interesting application of the

program changept. To test this, we selected the pairwise alignment
(human versus mouse) of the SHH genewhich contains experimentally
identified regulatory elements within the upstream regulatory region
[75]. We used LAGAN (http://lagan.stanford.edu/lagan_web/index.
shtml) [76] to align the two DNA sequences. The alignment was
encoded using the 16-character representation. Based on the
s the profiles (uploaded to UCSC genome browser) of the twomost conserved classes (90%
ment of human and mouse DNA sequences. The two rows below the 2nd most conserved
f the SHH gene recorded in the UCSC and RefSeq collections respectively. The grey vertical
assigned by program readcp.

http://www.umd.be/HSF/HSF.html
http://www.umd.be/HSF/HSF.html
http://lagan.stanford.edu/lagan_web/index.shtml
http://lagan.stanford.edu/lagan_web/index.shtml
image of Fig.�4
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Fig. 6.Conserved regions correspond to TFBS in SHH identifiedbyprogram changept. The profile shows the conserved features predicted byprogram changept in theupstreamof SHHgene,
genomic coordinates— chr7:155,604,884–155,605,370. The locations of TFBS are marked by red arrows.
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investigation of DICV values, the 6-class model was selected for human
andmouse 2-way alignment. Interestingly, for SHH, the positions of an-
notated exons were not identified as belonging to the most conserved
segment class (90% conservation), rather theywere identified to belong
to the second most conserved class (85% conservation). Fig. 5 depicts
the WIG profiles of these two most conserved segment classes.

Features A and B (Fig. 6) are regions identified as belonging to the
most conserved class. These regions have been experimentally identi-
fied as regulatory elements [75].

This result confirms that regions predicted by changept (features A
and B) are in appropriate locations for transcription factor binding.
We are currently investigating the potential of changept for genome-
wide detection of TFBS.

4.4.4. Identify putative non-coding RNAs
Non-coding RNA (ncRNA) is an RNA molecule that is not translated

into a protein. It has been estimated that 98% of human genomic output
is ncRNAs, however what proportion of ncRNAs are functional and the
functions ofmanyncRNAs remain unknown [77]. The program changept
can beused to identify highly conserved non-coding regions in genomes
that are likely to be functional. To provide an example, we can use the
WIG profiles of the two most conserved segment classes of SHH gene
(Fig. 5). The top profile shows features that are even more conserved
than the annotated protein-coding regions. Further, changept has pre-
dicted conserved features in the 2nd most conserved class that are
equally conserved as exons. These highly conserved elements could
contain either ncRNAs or regulatory sequences. In a recent project, we
are working with biologists to investigate these and other putative
ncRNAs identified using changept in a number of genomes.

4.4.5. Identify rapidly evolving genomic regions
The work presented in [44] provides an example for this changept

application. To summarise the main findings, program changept has
been applied on three whole-genome and three partial-genome
pairwise alignments of eight Drosophila species. Three main classes of
conservation level have been identified, comprising slowly evolving,
rapidly evolving and intermediate segments. In a recent project, we
are applying changept to three malaria species to identify genomic
regions likely to be involved in the ability of the malaria parasite to
infect their host species.

5. Summary

In this mini-review, we discussed various algorithms that can be
used to segment genomic sequences.We also outlined themathematics
and methods of program changept, a Bayesian segmentation algorithm
that is capable of segmenting an alignmentwhile simultaneously classi-
fying segments into different segment classes that share similar proper-
ties. We have demonstrated the effectiveness of this method through
examples. The program changept can be used to identify putative func-
tional elements in genomes such as non-coding RNAs, alternatively
spliced exons and transcription factor binding sites. Other applications
of program changept include identifying rapidly evolving genomic
regions and inferring various segmentation patterns in genomic
regions.
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