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Abstract

Liver masses account for 5 to 6% of pediatric cancer, which includes hepatoblastoma (HBL) 

along with rare cases of hepatocellular carcinoma (HCC). The most dangerous form of pediatric 

liver cancer is aggressive HBL, which can be characterized by chemo-resistance and multiple 

nodules or metastases at diagnosis, all correlating with worse clinical prognosis. Despite intensive 

studies and a significant improvement in overall outcomes, very little is known about the key 

molecular pathways which determine the aggressiveness of pediatric liver cancer. Although 

genetic mutations have been reported in aggressive HBL, they represent a low level (1.9% per 

case) and are found mainly in two genes CTNNB1 and NRF2. Over the past 5 years, our 

liver biology and tumor group at Cincinnati Children’s Hospital Medical Center has investigated 

molecular signatures of aggressive HBL by examination of fresh tissue specimens, which 

were studied immediately after surgery to preserve the integrity of key biochemical pathways. 

Summarization of these high quality HBL samples discovered several critical pathways that are 

specific for aggressive pediatric liver cancer. These pathways include three characteristics:

1. Conversion of tumor suppressor proteins (TSPs) by posttranslational modifications into 

oncogenes

2. Activation of specific chromosomal regions, i.e., Aggressive Liver Cancer Domains 

(ALCDs) within many oncogenes, resulting in increased expression of oncogenes

3. Potential epigenetic mechanisms that open chromatin structure of oncogenes via 

ALCDs. This commentary summarizes our key findings and discusses development 

of potential ALCD-based therapeutic approaches.

Aggressive HBL: Clinical Features and Genomic Mutations

Although there are many preclinical investigations of HBL and several clinical trials, 

aggressive features of HBL have not been summarized to define aggressive vs. non-

aggressive HBL. In our studies of HBL at CCHMC, we defined aggressive HBL as 

displaying clinically aggressive features including chemo-resistance, relapsed HBL, multiple 

nodules at diagnosis, vascular invasion, and metastatic at diagnosis [1]. Our work which has 

included engraftment of patient derived xenografts (PDXs) of these tumors has aligned with 
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Nicolle et al. who showed that successful engraftment of these tumors correlates with worse 

clinical prognosis [2]. A recent report by Cairo et al. analyzed 174 HBL patients with the 

goal to integrate known biomarkers into a tool which can predict survival of HBL patients 

[3]. In agreement with previous findings [4,5], the authors confirmed that HBL has a low 

level of genetic mutations mainly in the CTNNB1, NRF2 genes, and TERT genes [3]. The 

authors also found that 36% of analyzed patients have “a 16-gene signature” previously 

suggested for prediction of worse outcome [5]. However, they did not find associations of 

CTNNB1 mutations with clinical or pathological features. Given this information, it is clear 

that there is a need for discovering additional biochemical alterations which contribute to 

the development of aggressive HBL. It is also necessary to elucidate how the expression of 

mutant proteins, such as CTNNB1, NRF2 and TERT1, is increased in aggressive HBL. Our 

group is working with elucidation of these key intermolecular alterations.

Aggressive HBL Converts Tumor Suppressor Proteins into Oncogenes

The normal quiescent liver is equipped with a set of molecules which support essential 

liver functions which also aid in protecting the liver from the development of cancer. One 

group of these molecules are TSPs. Particularly, normal liver expresses high levels of strong 

inhibitors of proliferation along with TSPs: Rb, p53, C/EBPα, HNF4α and CUGBP1. In 

a significant amount of our cases of liver cancer, these proteins are downregulated by 

silencing of promoters and degradation by the ubiquitin proteasome system [1]. In the 

course of blinded studies of these specimens, we surprisingly found a group of HBL 

patients who had an elevation of C/EBPα, CUGBP1, HNF4α and p53. Following review 

of their clinical records, we discovered that this group represents patients with features 

of chemo-resistance, relapsed HBL, multiple nodules at diagnosis, vascular invasion, or 

metastases. In our paper [1] and in two other manuscripts, we have examined modifications 

of these elevated TSPs and their biological activity (Figure 1). Briefly, C/EBPα: tumor 

suppressor C/EBPα is dephosphorylated at Ser190 in aggressive HBL and in some cases of 

HCC [1,6]. We generated C/EBPα-S193A knock-in mice (mouse Ser193 is equivalent of 

human Ser190) in which the C/EBPα is inactivated and found that S193A mice developed 

spontaneous liver cancer through de-differentiation of hepatocytes into cancer-like stem 

cells [7]. Several reports showed that C/EBPα possesses oncogenic activities under specific 

settings [6,8]. CUGBP1: De-ph-S302-CUGBP1 is a tumor suppressor but is eliminated by 

Gankyrin in classic HBL [9]. In aggressive HBL, CUGBP1 is phosphorylated at Ser302 

and works as oncogene [1,10]. P53: Well-known TSP p53 was found to be phosphorylated 

at Ser6 and elevated in aggressive HBL [1]. Our new observations show that ph-S6-p53 

possesses oncogenic activities (Johnston, Hepatology, under review). Thus, these recent 

studies revealed that one of the molecular characteristics of aggressive liver cancer is the 

conversion of tumor suppressor proteins into oncoproteins.
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Aggressive Pediatric Liver Cancer Increases Expression of Multiple 

Oncogenes via Activation (Opening) of Human Genome Regions Called 

Aggressive Liver Cancer Domains (ALCDs).

Our studies of the mechanisms by which aggressive HBL increases oncogenic forms of 

tumor suppressors found specific chromosomal DNA regions (ALCDs) that are observed 

only in the human genome. These regions are approximately 250 bp long and are located 

in introns of genes of many oncoproteins and proteins that accelerate development of liver 

cancer. ALCDs have 85–95% homology between them and contain short 100% homological 

regions (boxes) which are shown in Figure 2A. Careful molecular analyses showed that the 

18S BP core is occupied by PARP1-Ku80/70 complexes. A typical ChIP assay with ALCD 

is shown in Figure 2B. The binding of the PARP1 complexes correlates with acetylation of 

histone H3 at K9, which usually demonstrates open chromatin being transcribed by RNA 

Pol II (Figure 2C).

Biological significance:

Identification of ALCDs as human genome regions that enhance liver cancer and promote 

aggressiveness is highly significant due to a very broad spectrum of genes that might be 

activated through ALCDs along with the role these oncogenes have in pediatric liver cancer. 

First, as we mentioned above, ALCDs were first found as regions that increase expression of 

oncogenic forms of TSPs: C/EBPα, CUGBP1, and p53. In addition, other tumor suppressors 

such as HNF4α and HACE1 have been found to be modified in aggressive HBL and 

potentially might work as oncogenes [1]. Second, ALCDs are observed in beta-catenin and 

NFR2 genes. These two genes are on the top list of genes which are mutated in patients with 

HBL. The previously described pathways of activation of beta-catenin include mutations 

within the protein beta-catenin and translocation of the mutant beta-catenin protein from the 

cell surface to nucleus. In the nucleus, beta-catenin interacts with the transcription factor 

TCF4 and activates expression of cancer genes. However, it has been shown that wild type 

beta-catenin can also induce liver cancer if it is overexpressed [11]. Therefore, the increase 

in transcription of beta-catenin is a key event for oncogenic functions of beta-catenin and 

mechanisms of its elevation need to be determined. Our finding that the beta-catenin gene 

contains chromatin ALCDs provides a potential mechanism. NFR2 is also mutated and 

elevated in patients with poor prognosis and low survival [4,5]. The identification of an 

ALCD in the NRF2 genes might additionally explain how the mutant form of NRF2 is 

elevated in aggressive HBL. Among the multiple other ALCD containing genes, many are 

involved not only in liver cancer, but also in other malignancies. Most importantly, these 

include Rb, WNT98, GSS, RUNDC1, ANK4 and MYO18B.

PARP1-Dependent Mechanisms of Activation of ALCD-containing 

Oncogenes

Our manuscript [1] found that PARP1 is associated with open ALCDs in patients with 

aggressive HBL. PARP1 is a nuclear protein which has been initially identified as an enzyme 

involved in repair of double-stranded DNA breaks [12]. However, PARP1 is also a potent 
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transcriptional regulator [12]. This activity is associated with the regulation of transcription 

factors, change of the chromatin structure, and direct interactions with chromatin remodeling 

proteins. It is important that PARP1 also interacts with complexes of RNA pol II [13]. 

The known transcriptional activities of PARP1 which are involved in promotion of cancer 

include a) interactions with and activation of promoters of key pluripotency genes protecting 

these genes from epigenetic repression [14]; b) binding to a transcription factor E2F1 and 

functioning as a strong activator of E2F1 [15]; and c) modulation of chromatin on the 

c-myc promoter leading to activation of c-myc gene [16]. Given the location of ALCDs 

mainly in introns, we suggest that these transcriptional activities of PARP1 might be, at least 

partially, involved in providing long distance interactions between ALCDs and promoters 

with subsequent activation of promoters. We are currently investigating such mechanisms 

of activation of oncogenes by ALCDs. Another pathway by which activation of oncogenes 

containing several ALCDs might be through a simple opening of chromatin throughout 

entire genes and subsequent facilitation of transcription. In this regard, we have found that 

the Glypican 3 gene, which is highly elevated in many HBL and HCC patients, contains six 

ALCDs (unpublished data). We suggest the opening of these ALCDs might be involved in 

high overexpression of Glypican 3 in patients with aggressive HBL.

Future studies and development of potential ALCD-based therapeutic approaches: Our 

studies showed that inhibitors of PARP1, Olaparib (Ola), and DPQ, inhibit proliferation 

in hepatoblastoma HepG2 and Huh6 cells [1]. Moreover, our recent work with PDXs 

showed that Ola partially inhibits tumor growth with reduction in proliferation in HBL-PDX 

models (Johnston, Hepatology, under review). Therefore, we have obtained substantial 

evidence that Ola might be considered for ALCD-based clinical trials with aggressive HBL 

patients. In this regard, the inhibitor of PARP1, Ola, is in trials for several human cancers 

including ovarian cancer [17], prostate cancer [18]; and breast cancer [19]. There are also 

several recent reports showing promising development of Ola-based therapy for liver cancer, 

including aggressive HBL [20–22]. Positive results in these trials and studies are likely 

associated with Ola-mediated repression of ALCD-dependent oncogenes. It is also clear 

that Ola alone is not sufficient to inhibit the HBL completely due to complexity of the 

regulation of ALCDs. First, PARP1 and other known components of the PARP1 complex 

Ku70/Ku80 do not bind to DNA in a sequence specific manner and should be delivered to 

ALCDs by transcription factors (TFs). Therefore, identification of these factors is required. 

Second, ALCDs contain several additional 100% homological (20–25 nucleotide) regions 

(see Figure 2) which might be bound by other TFs and activated by other signaling 

pathways. It is likely that these unknown TFs and pathways are also involved in activation of 

ALCD-containing oncogenes and must be dampened or eliminated for successful inhibition 

of ALCD-dependent cancers including aggressive HBL. As a final remark, we would like 

to emphasize that ALCDs have only been observed in the human genome. This feature 

creates challenges in studies of aggressive HBL using genetically modified mouse models 

and strongly suggests that the inhibition of ALCD-dependent liver cancer can be examined 

only in human cell culture studies or PDXs derived from human cancers.
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Figure 1: 
Aggressive HBL converts tumor suppressor proteins C/EBPα, CUGBP1 and p53 into 

oncoproteins. In healthy livers, major portions of these proteins are phosphorylated or 

de-phosphorylated at specific Ser residues and work as tumor suppressors. In aggressive 

HBL, phosphorylation/de-phosphorylation of C/EBPα, CUGBP1 and p53 is changed and 

the proteins possess oncogenic activities.
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Figure 2: 
Aggressive Liver Cancer Domains are activated and are open for transcription. A) Structure 

of ALCDs. 100% homological regions are shown. B) A typical ChIP assay of the ALCDs. 

Tumor; a tumor section of HBL patient, background; a “healthy” region of liver of the same 

patient adjacent to tumor, B; beads, PP1; IP with antibodies to PARP1; Ac and 3-me; IPs 

with antibodies specific to histone H3 acetylated or 3-methylated at K9. C) Summary of the 

studies which suggest changes of chromatin structures of ALCDs in aggressive HBL.
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