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Due to alterations in their metabolic activity and decreased mitochondrial efficiency, 
cancer cells often show increased generation of reactive oxygen species (ROS), but at 
the same time, to avoid cytotoxic signaling and to facilitate tumorigenic signaling, have 
mechanism in place that keep ROS in check. This requires signaling molecules that con-
vey increases in oxidative stress to signal to the nucleus to upregulate antioxidant genes. 
Protein kinase D1 (PKD1), the serine/threonine kinase, is one of these ROS sensors. In 
this mini-review, we highlight the mechanisms of how PKD1 is activated in response 
to oxidative stress, so far known downstream effectors, as well as the importance of 
PKD1-initiated signaling for development and progression of pancreatic cancer.
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inTRODUCTiOn

The Warburg effect in cancer cells is the product of two factors, a return of cells to glycolytic metabo-
lism and increased production of mitochondrial reactive oxygen species (ROS), which is due to 
alterations in oxidative phosphorylation (1). In established tumors, increased levels of oxidative 
stress are often accompanied by upregulation of antioxidant systems (2, 3). The upregulation of 
antioxidant systems keeps ROS at levels where they are protumorigenic and promote cell survival 
and proliferation, but do not induce apoptosis or necrotic cell death. This mini-review focuses on a 
ROS-sensing signaling pathway that controls tumor cell detoxification, proliferation, and survival 
through activation of protein kinase D1 (PKD1).

Protein kinase D1 is one of three members of the PKD family of serine/threonine kinases. PKD1 
consists of an N-terminal regulatory region and a C-terminal kinase domain. Main elements in 
the regulatory region are two cysteine-rich (C1) domains that are important for lipid binding, and 
a pleckstrin homology (PH) domain, needed for protein–protein and protein–lipid interactions 
[reviewed in Ref. (4)]. Dependent on upstream signaling and binding partners, PKDs can be located 
at various cellular compartments and facilitate Golgi transport processes, as well as mitochondrial, 
cytosolic, and nuclear signaling [reviewed in Ref. (5)]. An increased oxidative stress leads to PKD1 
localization to the mitochondria, where it is activated (6). ROS-activated PKD1 has been shown not 
only to initiate cytosolic signaling pathways (6–8) but also to redistribute to the nucleus (9). The 
signaling pathway that leads to the activation of PKD1 by oxidative stress seems unique because it 
involves tyrosine phosphorylation of the molecule at several residues (8, 10, 11), which do not occur 
when PKD1 is activated by receptor-mediated signaling (7).
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FigURe 2 | Mitochondrial reactive oxygen species (mROS)/reactive 
oxygen species (ROS)-induced activation of protein kinase D1 (PKD1) 
and downstream signaling. Activation of PKD1 is mediated by increases in 
ROS as obtained after ectopically administered hydrogen peroxide (H2O2) or 
decrease of glutathione (GSH) or by increases in mROS as obtained by the 
expression of oncogenic KRas (KRasmut), or inhibitors of the mitochondrial 
respiratory chain such as rotenone and diphenyleneiodonium. ROS-activated 
PKD1 promotes cell survival by inactivating c-Jun N-terminal kinase (JNK) 
1/2 and p38 signaling, cofilin function, but also through phosphorylation of 
Hsp27 and activation of nuclear factor kappa-light-chain-enhancer of 
activated B cells (NF-κB). PKD1 also promotes proliferation by upregulating 
extracellular signal-regulated kinases 1/2 (ERK1/2) and epidermal growth 
factor receptor (EGFR) signaling. Other functions for ROS-activated PKD1 are 
upregulation of inflammatory cytokines, regulation of autophagy, and 
chemoresistance.

FigURe 1 | Reactive oxygen species (ROS)-induced activation 
mechanism for protein kinase D1 (PKD1). An initial event in activation of 
PKD1 in response to oxidative stress is the phosphorylation at Y463 by Abl 
(1). This leads to a conformational change in PKD1 that allows docking to 
membranes such as the outer mitochondrial membrane via binding to 
diacylglycerol (DAG) (2). For mitochondrial membrane anchoring, DAG is 
generated by ROS-activated phospholipase D1 (PLD1). A third activation 
step is the phosphorylation of PKD1 at Y95, which is mediated directly by 
Src (3). This leads to docking of PKCδ via its C2 domain and phosphorylation 
of the PKD1 activation loop serines S738 and S742, rendering PKD1 fully 
active (4).
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PKD ACTivATiOn DOwnSTReAM OF ROS

Protein kinase D1 can be activated by an increase in intracellular 
oxidative stress levels, such as induced by glutathione depletion 
or ectopic addition of hydrogen peroxide (7, 8, 12). PKD1 activa-
tion also occurs in response to an increase in mitochondrial ROS 
(mROS) caused by inhibitors of the mitochondrial respiratory 
chain (13). These include rotenone, a mitochondrial complex I 
inhibitor, and diphenyleneiodonium, an inhibitor of the NADPH 
cytochrome P450 reductase (6). Moreover, PKD1 is activated by 
oncogenes that increase mROS levels such as mutant versions 
(G12D, G12V) of V-Ki-ras2 Kirsten rat sarcoma viral oncogene 
homolog (KRas) (14).

Increases in mitochondrial (and cellular) ROS levels initiate a 
series of tyrosine phosphorylations (Y95, Y432, Y463, and Y502) 
in PKD1 (8, 10, 11), which are mediated either directly by the 
proto oncogene tyrosine protein kinase Src or downstream of Src 
(10, 11). The mechanism of how Src is activated downstream of 
ROS is not fully understood, and conformational changes due 
to direct oxidation of cysteine residues, tyrosine nitration, or 
redox inactivation of inhibitory protein tyrosine phosphatases 
could be a cause of its increased activity. In this context, it was 
shown that ROS-responsive receptor-like PTP alpha is required 
for the activation of PKD1 in response to hydrogen peroxide (15), 
but a detailed mechanism was not provided. For Src-mediated 
phosphorylations of PKD1 at Y432 and Y502, no functional con-
sequences have been attributed, so far. Phosphorylation of PKD1 
at Y95 is directly mediated by Src (10), whereas Y463 has been 
shown to be directly phosphorylated by Abelson murine leukemia 
viral oncogene homolog 1 (Abl), when activated through Src (11).

A sequential model for activation of PKD1 by ROS has been 
proposed (Figure 1). The phosphorylation of PKD1 at Y463 in PH 
domain seems to be an initiating step that leads to a conformational 
change, which initiates membrane anchoring at the mitochondria 

(16). This is mediated by binding to diacylglycerol that can be 
generated through activation of phospholipase D1 downstream 
of mROS (16). It should be noted that it was also shown that the 
multifunctional chaperone p32 can act as an adapter that associates 
PKD1 and PKCδ with mitochondrial membranes (17), but a role 
for p32 in ROS-initiated activation of PKD1 so far has not been 
investigated. A next step is the phosphorylation of PKD1 at Y95 
by Src. This generates a binding motif for the C2 domain of PKCδ 
(10), another kinase that is activated downstream of oxidative stress 
and Src (18). PKCδ then phosphorylates the PKD1 activation loop 
serines (S738 and S742), resulting in a fully active kinase (7, 10).

SignALing THROUgH ROS-ACTivATeD 
PKD1 AnD FUnCTiOnAL 
COnSeQUenCeS

Several signaling molecules that regulate cell survival and detoxi-
fication have been implicated downstream of oxidative stress-
activated PKD1 (Figure  2). A main target is the transcription 
factor nuclear factor kappa-light-chain-enhancer of activated 
B cells (NF-κB). After activation through the ROS/Src/Abl/PKCδ 
pathway, PKD1 induces canonical NF-κB signaling through IκB 
kinase β and subsequent downregulation of inhibitor of kappa-
light-chain-enhancer of activated B cells alpha (8). However, the 
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exact molecular mechanisms of how this is facilitated are not 
known. NF-κB is a protein complex that controls inflammatory 
signaling, cytokine production, and cell survival. Downstream of 
PKD1, activation of NF-κB was linked to increased expression 
of SOD2, a gene encoding manganese superoxide dismutase 
(MnSOD) (6). MnSOD generates hydrogen peroxide, a bona fide 
signaling molecule that is important for tumor cell proliferation 
(2). PKD1-mediated activation of NF-κB also increases expres-
sion of epidermal growth factor receptor (EGFR) and its ligands 
transforming growth factor alpha (TGFα) and epidermal growth 
factor (EGF) (14). Besides activation of NF-κB, PKD1 is also 
involved in other signaling pathways to promote cell survival. For 
example, in response to oxidative stress, cofilin2 translocates to 
the mitochondria to interact with the proapoptotic molecule Bax 
(19). PKD1 inhibits the cofilin phosphatase Slingshot 1L (20), and 
such signaling attenuates cofilin2 translocation to mitochondria, 
preserves mitochondrial integrity after oxidative stress, and medi-
ates cell survival (19). Another pathway of how PKD1 promotes 
cell survival is by activating extracellular signal-regulated kinases 
1/2, which confers a protective response to chronic oxidative 
stress, and by downregulating c-Jun N-terminal kinase (JNK) 
signaling that promotes apoptosis (21, 22). Similarly, downregu-
lation of p38 MAPK signaling by PKD1 in response to hydrogen 
peroxide has been demonstrated to protect cells from apoptosis 
(23). Another target for ROS-activated PKD1 is the small heat 
shock protein Hsp27, which is phosphorylated by PKD1 at S82 
(24). PKD1-phosphorylated Hsp27 can bind apoptosis signal-
regulating kinase 1 to prevent JNK-induced apoptosis (25). Hsp27 
also has been implicated in chemoresistance of several cancers 
(26, 27). In addition, the tumor suppressor death-associated 
protein kinase phosphorylates and activates PKD1 in response to 
oxidative damage (28). Such signaling induces autophagy, due to 
PKD1-mediated phosphorylation of Vps34, which increases its 
lipid kinase activity and autophagosome formation (29).

ROS–PKD1 SignALing in CAnCeR

Reactive oxygen species–PKD1 signaling has emerged to be 
important in the pathophysiology of neurodegenerative diseases 
(30, 31), cardioprotection against ischemia/reperfusion injury 
(19), tissue inflammation (32), and several cancers, including 
basal cell carcinoma (33) and pancreatic cancer (14, 34). We here 
focus on the role of above pathway in pancreatic cancer.

Almost all pancreatic ductal adenocarcinomas (PDAs) are ini-
tiated by acquisition of activating KRAS mutations (35). During 
development and progression of PDA, oncogenic KRas protein 
causes metabolic changes that increase levels of ROS (14, 36–40). 
KRas-induced suppression of respiratory chain complexes I and 
III can cause mitochondrial dysfunction and increased genera-
tion of mROS (14, 40, 41). Other sources for increased mROS in 
PDA are enhanced growth factor signaling (42). Oncogenic KRas 
also activate nuclear respiratory factor 2 to upregulate antioxidant 
systems to counterbalance the increases in oxidative stress (14, 
43). This is accompanied by an upregulation of the SOD2 gene, 
whose gene product, MnSOD, leads to formation of hydrogen 
peroxide (44). In sum, the upregulation of antioxidant enzymes 
keeps ROS at levels where they are protumorigenic (3, 14, 45, 46). 

Further depletion of KRas-caused mROS decreases pancreatic 
tumorigenesis in genetic animal models (14, 45).

Although in normal fibroblast cells, the ROS/PKCδ/PKD1 
pathway downstream of oncogenic KRas upregulates pro-inflam-
matory signaling (expression of interleukin-6 and interleukin-8) 
and may contribute to senescence (47), under pathophysiological 
conditions, this pathway drives initiation of PDA. For example, 
after pancreatic inflammation (pancreatitis), PKCδ/PKD1/NF-κB 
signaling is induced in pancreatic acinar cells (48) and contributes 
to acinar-to-ductal metaplasia, a process that leads to pancreatic 
lesions (34). In the presence of an oncogenic KRas mutation, 
these lesions can then further develop to pancreatic cancer. KRas/
mROS/PKD1/NF-κB signaling contributes to tumor initiation by 
upregulating expression of EGFR and its ligands TGFα and EGF 
(14). EGFR signaling then elevates overall (oncogenic and wild-
type) KRas activity to pathological levels (49–51). Another role 
for PKD1 during initiation of pancreatic cancer is the activation 
of Notch signaling downstream of mutant KRas (34). Although 
there is no direct evidence that PKD1/Notch signaling is due 
to production of mROS, Notch and NF-κB pathways have been 
shown to co-operate in processes that mediate development of 
PDA (52).

COnCLUSiOn

The occurrence of increased oxidative stress in tumor cells 
requires ROS-sensing signaling to upregulate antioxidant systems 
to counterbalance ROS. This opens an opportunity for targeting 
tumor cells (46). In response to ROS, PKD1 has been shown to 
regulate prosurvival and proliferation signaling through various 
factors (Figure 2). In addition, PKD1 signaling also determines 
the threshold of mitochondrial depolarization that leads to the 
production of ROS (53). Therefore, targeting PKD1 or PKD1 
downstream signaling may be efficient to drive ROS to levels where 
they are toxic for cancer cells. In recent years, a variety of PKD 
inhibitors have been developed and successfully tested in preclini-
cal models. For example, for othotopically implanted pancreatic 
cancer cells, the PKD inhibitor CRT0066101 showed promising 
effects on primary tumors (54). However, it is not known if this 
inhibitor can be used for late stage tumors, or if it will show efficacy 
in combination therapy with currently used chemotherapeutics. 
Clearly, additional studies are needed to fully evaluate the value of 
targeting ROS-PKD signaling for cancer therapy.
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