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ABSTRACT
Cretaceous rift basin evolution was an important part of the tectonic history of northeast Asia in the late
Mesozoic.Three types of rift basins are identified—active, passive and wide rift basins—and they developed
in different regions. Passive rift basins in the eastern North China craton are thought to be the consequence
of crustal stretching and passive asthenospheric upwelling. Wide rift basins in the eastern Central Asian
orogen are assumed to originate from gravitational collapse of the thickened and heated orogenic crust.
Active rift basins in the northern North China craton are attributed to uprising of asthenospheric materials
along a lithospheric-scale tear fault. Slab tearing of the subducting paleo-Pacific plate is postulated and well
explains the spatial distribution of different types of rift basins and the eastward shifting of magmatism in
the northern North China craton.The Late Cretaceous witnessed a period of mild deformation and weak
magmatism, which was possibly due to kinematic variation of the paleo-Pacific plate.
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INTRODUCTION
The northeastern Asian continent experienced al-
ternating crustal contraction and extension as well
as sporadic magmatism in the Mesozoic [1–4]. The
multiple tectono-magmatic processes are ascribed
to the near-field and far-field effects of the changes
in subduction angles of the paleo-Pacific plate
[5,6], continent–continent collisions and the result-
ing escape tectonics [7–9], subcontinental thermo-
tectonic processes [10–12], and a combination of
diverse tectonic drivers [13]. Two phases of strong
crustal shortening, which took place in the lateMid-
dle Jurassic and at the end of the Late Jurassic
[2,14,15], have been identified and extensively stud-
ied. The end-Jurassic contraction was intense and
extensive, as indicated by widespread folding and
thrusting as well as a regional angular unconformity
beneath Lower Cretaceous strata [2,16].This phase
of shortening, termed Phase B of the Yanshanian
orogeny in the literature [17], resulted in two main
consequences: crustal thickeningof the easternCen-
tral Asian orogen (ECAO) and the onset of desta-
bilization of the North China craton (NCC). Ex-

tensive rifting occurred in the aftermath of this con-
tractional event [18,19]. Early Cretaceous rift basins
developed throughout the northeastern Asian con-
tinent and expressed themselves in general as dis-
parate small- and mediate-scale basins (Fig. 1). Vig-
orous volcanism accompanied the rifting [3,12,20],
with volcanic/volcaniclastic rocks making up signif-
icant parts of most basin successions. Previous stud-
ies focused mainly on individual rift basins in differ-
ent regions, such as the Erlian, Hailar and Songliao
basins in the ECAO [21–23], the Luanping basin in
the northern NCC [24] and the Hefei and Jiaolai
basins in the eastern NCC [25].

Distinct rift basins are distributed in different
regions, as hinted by diverse Lower Cretaceous
volcano-sedimentary sequences. The basins in the
eastern NCC started with clastic sedimentation,
whichwas followed by volcanic eruption [25,26]. By
contrast, volcanism marked the initiation of the rift
basins in the northern NCC, and clastic deposition
then succeeded [24]. Volcaniclastic and volcanic
rocks are present throughout basin sequences in
the ECAO [21,23]. The existing tectonic models,
however, seldom explicate how the diverse rift
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Figure 1. Tectonic map showing distribution of Cretaceous basins in NE Asia. The NE Asian continent is divided into two main domains, the North China
craton (NCC) and eastern Central Asian orogen (ECAO). The NCC can be further divided into three parts, the western, eastern and northern NCC, based
on their distinct tectonic evolution in late Mesozoic. Note that passive, active and wide rift basins are distributed in different regions, with metamorphic
core complexes being closely associated with active rift basins.

basins are generated simultaneously and why they
are distributed in different areas. Early Cretaceous
rifting in NEAsia is commonly attributed to backarc
extension induced by the westward subduction
of the paleo-Pacific plate [1,25]. Unfortunately, it
remains poorly knownwhy extension basically came
to an end during the Late Cretaceous and what
caused differential basin subsidence in space. This
study takes a holistic treatment of tectonic evolution
of Cretaceous rift basins in NE Asia and attempts
to explore the dynamic controls of time-space
variations of the rift basins.

TECTONIC SETTING
Thenortheast Asian continent ismade up of two tec-
tonic domains, theNCC in the south and the ECAO
in the north (Fig. 1). The NCC developed as a sin-
gle stable tectonic domain from the Mesoprotero-
zoic to Paleozoic, and underwent little crustal de-
formation and magmatism for over 1.20 Ga [1,3].
The NCC kept its stability as a whole in the early
Mesozoic albeit its peripheral regions were affected
by terrane accretion as a result of the closure of
the paleo-Asian and paleo-Tethyan oceans [27].
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The late Mesozoic was a period when the differ-
ent portions of theNCCbegan experiencing diverse
thermo-tectonic evolution. The western NCC still
behaved as a stable element with few tectonic ac-
tivities. In contrast, the eastern NCC was character-
ized by lithospheric thinning and extensive magma-
tism, and completely lost its stability by the Early
Cretaceous [1,3,11]. The northern NCC manifests
itself as a unique zone by virtue of strong extension
and magmatic outpouring, which were interrupted
by short-term crustal/lithospheric shortening [1,2].
Compared with the NCC, the ECAO was built up
with a number of terranes that had been amalga-
mated by the end of the Paleozoic [28]. The ECAO
is therefore a wide orogenic domain with complex
crustal compositions and fabrics.

Cretaceous extensional tectonics in NE Asia are
evidenced by rift basins, metamorphic core com-
plexes andvigorousmagmatism[2,24,29–33]. In ad-
dition, the NCC lithosphere was significantly atten-
uated and experienced a radical change from conti-
nental to oceanic lithosphericmantle [34,35].These
tectonic processes happened mainly in the Early
Cretaceous and led to total destabilization of the
eastern NCC [36]. Early Cretaceous extension and
magmatism in the eastern NCC were in essence
the surface expressions of deep thermo-mechanic
processes, which were possibly associated with a
big mantle wedge system resulting from rollback
and retreat of the subducting paleo-Pacific plate
[1,10]. Coeval extension in the ECAO is thought to
be the consequence of gravitational collapse of the
thickened orogenic crust [29,37]. Crustal thicken-
ing might have resulted partly from the collision of
the ECAO and Siberian craton along the Mongo-
Okhotsk suture [38] and partly from the tectonic
push due to flat subduction of the paleo-Pacific plate
at the Jurassic to Cretaceous transition [1,39]. This
shortening event is registered by a regional uncon-
formity beneath the LowerCretaceous in the ECAO
[9] (Fig. 2). Late Cretaceous tectonics of NE Asia
was characterized by vertical crustal motion, with
Early Cretaceous rift basins either undergoing up-
lift/erosion or subsidence. The small-scale basins in
both the ECAO and the northern NCC were up-
lifted or inversed at the end of Early Cretaceous,
with a fewUpper Cretaceous strata left (Fig. 2).The
Songliao basin, situated in the east of the ECAO, is
an exception in that it experienced pronounced sag-
ging during the Late Cretaceous [21]. The Jiaolai
basins in the eastern NCC also underwent striking
subsidence in theLateCretaceous,which is assumed
to have had a bearing on the strike-slip motion of
the Tanlu fault [26]. Large-scale sinistral transpres-
sion happened ∼100 Ma along the eastern margin
of the NE Asian continent, as manifested by the oc-
currence/reactivation of left-slip faulting, such as the

Tanlu fault [5], Dunhua-Mishan fault [40] and the
Central Sikhote-Alin fault [41].

BASIN SEQUENCES
Cretaceous strata are well preserved in NE Asia,
and both lithostratigraphic and biostratigraphic
sequences have been intensively investigated.
Basins in different regions display distinct volcano-
sedimentary sequences (Fig. 2). The ages of
lithostratigraphic units are tightly constrained by
preciseU-Pb zircon andAr-Ar dating of volcanic and
volcaniclastic beds in conjunction with fossil assem-
blages. Cretaceous successions are separated from
the underlying units by a regional angular uncon-
formity, which registers a strong shortening event
just prior to the Early Cretaceous rifting. Another
unconformity occurs between the Lower andUpper
Cretaceous, and manifests itself as either a parallel
or low-angle discordant surface (Fig. 2). Cretaceous
strata are unconformably covered by or pass upward
conformably to Tertiary sediments [25,42].

Complete Cretaceous successions in the eastern
NCC are best preserved in the Jiaolai and Hefei
basins (Fig. 2). Lower Cretaceous succession dis-
plays two distinct parts, with the lower dominated
by clastic rocks and the upper by volcanic and vol-
caniclastic rocks.The clastic parts are represented by
the Laiyang Group in the Jiaolai basin and by the
Zhuxiang Formation in the Hefei basin. Fluvial con-
glomerate and sandstone facies associations make
up the lower part of the Laiyang Group, whereas
the upper part consists primarily of meandering flu-
vial and lacustrine facies [43]. The Shuinan Forma-
tion, a unit in the middle Laiyang Group, contains
a basalt layer that yields an 40Ar/39Ar plateau age of
129.7 ± 1.7 Ma [26]. The Zhuxiang/Fenghuangtai
Formation in the Hefei basin shares similar facies
to the lower Laiyang Group, and has an accumu-
lative thickness up to 2500 m [44,45]. Clastic sed-
imentation was suppressed by vigorous volcanism,
as indicated by a rapid change from siliciclastic to
volcaniclastic and/or volcanic rocks that dominate
the upper parts of the LowerCretaceous successions
of both the Hefei and Jiaolai basins (Fig. 2). The
Maotanchang volcanics, up to 1000 m thick, repre-
sent late volcanism in the Hefei basin, and range in
age from 130 to 120 Ma [45]. The Maotanchang
volcanics pass upward into theHeishidu Formation,
which is dominated by lacustrine fine-grained facies
and contains abundant pyroclastic rocks [44]. The
Qingshan Group, up to 1500 m thick, comprises
basic and felsic volcanic rocks that yield 40Ar/39Ar
plateau ages from 122 to 105Ma [26,46,47]. Lower
Cretaceous sequences are overlain unconformably
by Upper Cretaceous strata, such as the Wangshi
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Group in the Jiaolai basin and theZhangqiaoForma-
tion in the Hefei basin (Fig. 2).TheWangshi Group
consists mostly of alluvial–fluvial coarse-grained fa-
cies, with depositional ages ranging from 107 to
73.5 Ma based on radiometric ages of volcanic beds
and detrital zircons [48,49]. An angular unconfor-
mity separates the Lower from Upper Cretaceous
units in the eastern NCC [26]. The discordant con-
tacts are both observed at outcrops and identified
on seismic profiles that are near or within the Tanlu
fault zone [26,50].

Cretaceous sequences commence with volcanics
in the northern NCC, as recorded by the Dongling-
tai Formation in the western segment, the Zhangji-
akou Formation in the middle segment and the
Yixian Formation in the eastern segment (Fig. 2).
The Zhangjiakou and Donglingtai volcanics in the
western Yanshan belt are dated at 143 ± 0.67 Ma,
143.4 ± 0.65 Ma and 140.7 ± 0.64 Ma [54,76,77],
whereas the Zhangjiakou rhyolite and ignimbrite
in the eastern Yanshan belt yield U-Pb zircon
ages ranging from 136 to 131 Ma [24,56,60].
The Yixian volcanics have both 40Ar/39Ar plateau
ages and U-Pb zircon ages ranging from 126 to
124Ma [61,78]. Accordingly, Early Cretaceous vol-
canism became younger eastward in the northern
NCC [10,11]. Clastic sedimentation then took the
place of volcanism with time, and prevailed in the
late stage, as recorded by the Xiguayuan and Jiu-
fotang Formations in different basins (Fig. 2). The
clastic units are collectively assigned to theHauteriv-
ian toAptian ages based on radiometric ages and fos-
sil assemblages [64], and are characterizedbyfluvial-
lacustrine facies associations [24,79].TheQingshila,
Shahai and Fuxin Formations represent the upper-
most portions of LowerCretaceous successions, and
aremade upmostly of fluvial facies associations.The
UpperCretaceous, if present, is separated fromolder
units by either disconformities or low-angle uncon-
formities (Fig. 2).

Lower Cretaceous strata are extensively pre-
served in the ECAO, and composed primarily of
clastic facies [29,37,80]. Volcanics, usually present
as interlayers, also occur in Lower Cretaceous
successions of the East Gobi, Erlian and Hailar
basins, and are largely basalt and basaltic an-
desite, yielding 40Ar/39Ar ages from 142 to 113 Ma
[22,29,65,66,80–82]. Early Cretaceous volcanics
and volcaniclastic rocks are widespread in the
Great Xing’an Range, and dated at 135–115 Ma
[20,68,69,81]. The Lower Cretaceous succession
of the Songliao basin contains thick volcanic and
volcaniclastic rocks, such as the Huoshiling and
Yingcheng Formations, albeit clastic facies are also
commonplace (Fig. 2). The Huoshiling volcanics
are recently dated at 133–129 Ma [71,72], much
younger than the previous age assignment of ∼150

Ma [21]. The Yingcheng volcanics are constrained
at 120–105 Ma [21], indicating the persistence of
volcanism to the end of the Early Cretaceous. The
Upper Cretaceous is well developed in the Songliao
basin, up to 3 km thick [83]. In contrast, the rift
basins in the western portion of the ECAO possess
meager Upper Cretaceous strata, which are usually
less than 500 m thick [29]. A regional unconfor-
mity separates the Lower from Upper Cretaceous
[21,29].

MAGMATISM
Vigorous volcanism and plutonism characterized
theNEAsian continent during the Early Cretaceous
[3,20,32]. Volcanic rocks are widely distributed in
the northern NCC, as represented by the Dongling-
tai andesite in theWestHill, Zhangjiakou rhyolite in
northernHebei and Yixian basalts in western Liaon-
ing. Volcanism in the eastern NCC took place in the
late stage of rift basin development, as recorded by
the Qingshan rhyolite and basalt in the Jiaolai basin,
the Maotanchang andesite in the Hefei basin, the
Laohutai basalts in the Fushun basin [84] andXiaol-
ing Formation in eastern Liaoning [85]. Early Cre-
taceous volcanismwas vigorous in theGreat Xing’an
Range and the Songliao basin [20,21,70,81], but de-
clined significantly westward. Volcanic and/or vol-
caniclastic rocks are only present as interlayers in the
lower successions of the East Gobi [80] and Erlian
basins [66].

Early Cretaceous intrusions are also extensive in
NE Asia [3,32]. Mafic intrusives occur in the east-
ern NCC, such as gabbro-pyroxenite complexes in
the Taihang Shan belt and diorite/gabbro bodies
in western Shandong [86,87]. Granitoids are dis-
tributed in the periphery of the easternNCC [3,32],
such as the Fangshan granite in the western Yanshan
belt [88], the Sanguliu granite in the eastern Liaon-
ing belt [11] in the northern NCC, the Guojialing
granite in the Jiaodong Peninsula in the NCC east-
ernmargin [89] and theHuashan andHeyu granites
at the southern edge of the NCC [90]. Early Creta-
ceous granitoids are also widely documented in the
ECAO, particularly in NE China [32,91].

Growing geochronologic data show that Early
Cretaceous magmatism took place during a wide
range of time although it mainly happened from 130
to 120 Ma [32]. An east-younging trend in mag-
matic activity has been recognized [10,11], and is
best demonstrated by eastward progression of Early
Cretaceous volcanism in the northernNCC(Fig. 3).
Volcanism started at 143–140 Ma in the Yinshan
and western Yanshan belts [3,54,77], ∼136 Ma
in the eastern Yanshan belt [56], ∼126 Ma in the
Liaoxi region and ∼120–110 Ma in the Liaodong
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Figure 3. Distribution of Early Cretaceous igneous rocks in the NCC. Note that igneous rocks are particularly abundant in the northern NCC and both
intrusive and extrusive rocks display a marked east-younging trend.

region [32,85]. Early Cretaceous magmatism in the
eastern NCC commenced around 138 Ma in the
Taihangshan belt [92], and appeared to have not
started until ∼130 Ma in the easternmost NCC
[87]. No matter when it began, Early Cretaceous
magmatism lasted until∼110Mawithin and around
the easternNCC [11,32]. Early Cretaceousmagma-
tism in the ECAO occurred from ∼130 to 110 Ma,
and was vigorous in the east [70,81].

Also noticeable is the time-space variation of
magma types in the eastern NCC. Felsic and inter-
mediate magmatism was prevailing in the west from
143 to136Ma,whereasmaficmagmatism tookplace
largely in the east from130 to 110Ma [87].Theeast-
ward migration of magmatism was also associated
with an increase in alkaline andmafic rocks like syen-
ite andgabbro [93].This situation iswell exemplified
by∼143 Ma rhyolites and granitoids in the western
Yanshan and Taihangshan belts [3,54] and ∼130–
110 Ma mafic rocks in the easternmost NCC [87].
Magmatism persisted in the western portion of the
eastern NCC when migrating eastwards [11]. Fel-
sic volcano-plutonic associations are also common
in the easternmost NCC, coeval with mafic and al-
kaline magmatism [32,87].

Early Cretaceous granite in the northern NCC is
shown to have formed at high temperature ranging
from 640 to 1100oC with a peak at ∼770oC [11].
This deduction is supported by the co-occurrence
of mafic rocks that originate from high-temperature
melts [87]. Coexistence of felsic and mafic magmas
in the northern NCC indicate intense crust–mantle
interaction [94], thereby hinting at the uprising of
hot asthenospheric materials.

Magmatism declined significantly throughout
the NCC and ECAO in the Late Cretaceous [3,4],
and occurred largely along the eastern edge of the
NE Asian continent, such as the Sikhote Alin belt
[95], Korea [96] and southwestern Japan [91]. Late
Cretaceous igneous rocks are mostly granitoid, an-
desite and pyroclastic rocks, representing island-arc
magmatic activities triggered by the paleo-Pacific
plate subduction [69,97].

BASIN EVOLUTION
Rift basins are usually classified on the basis of dy-
namic, geometric and kinematic aspects, such as
active and passive rifts [98] and wide and narrow
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rifts [99,100]. Active rifting is attributed to ac-
tive uprising of mantle plumes, which first leads
to doming and then induces supracrustal stretch-
ing [101]. Passive rifting is ascribed to lithosphere
extension as a result of horizontal in-plane far-
field forces, with the asthenospheric materials ris-
ing passively due to lithosphere thinning [101].
Wide rift systems develop owing to gravitational
collapse of the orogenically thickened crust. Ten-
sile deviatoric stress fields in the thickened crust
are produced by lateral variation in gravitational
potential energy [102]. By contrast, narrow rifts
result from necking of the lithosphere with nor-
mal geotherm and crust thickness [100], and there-
fore fit the passive rifting mode. Merle (2010)
proposes a rift classification in the context of
tectonic settings, such as subduction-, mantle-,
transform- and mountain-related rifts [103]. How-
ever, it is a purely interpretive classification and can-
not help explore the real mechanism of continental
rifting. Moreover, wide rifts are neither taken into
account in Merle’s classification nor readily fall into
the category of Sengör andBurke’s (1978) classifica-
tion [98]. Active and passive rifting modes do have
drawbacks and cannot successfully explain thewhole
evolution of continental rifts [103,104]. However,
this simple classification proves quite useful for the
first-order assessment of continental rifting [105].
Obviously, no existing rift classifications can encom-
pass all types of continental rifts and no single driv-
ing force can account for all aspects of rift basins.We
thus take a pragmatic approach to dealing with Cre-
taceous rift basins in NE Asia by adopting the cat-
egorization of active, passive and wide rifting. Our
rationale is that the investigated basin successions
appear to be compatible with the distinct rifting
modes.The three types of rifting are thus considered
to originate from three driving forces: (i) far-field
forces originating at plate boundaries; (ii) forces
acting on the base of the lithosphere due to the
asthenospheric uprising, and (iii) buoyancy forces
arising within the thickened orogenic crust. Differ-
ent drivers may work together to control the devel-
opment of some rift basins.

The relative timing of extension and volcanism
is pivotal in discriminating different types of rift
basins, which can be readily recognized by their dis-
tinct stratigraphic sequences (Fig. 4). Passive rift
basins develop when the lithosphere is stretched
and thinned, with the asthenosphere rising passively
(Fig. 4A-a).Magma is then generated either bymelt-
ing of the crust and lithospheric mantle due to as-
thenospheric heatingorbydecompressionalmelting
of the asthenosphere. As a result, volcanic eruptions
take place in the late stage of rifting when the litho-
sphere is considerably attenuated (Fig. 4A-b). Pas-

sive rift basin development is thus recorded by basin
sequences typified by the lower clastic rocks and the
upper volcanic/volcaniclastic rocks (Fig. 4A-c). By
contrast, extensive volcanism usually precedes sub-
sidence of active rift basins as a consequence of the
active asthenospheric upwelling and crustal dom-
ing (Fig. 4B-a). The domed upper crust then expe-
riences horizontal stretching owing to gravitational
instability and collapse, thereby forming active rift
basins in the extended areas.Clastic sedimentation is
therefore characteristic of the late stage of active rift
basins (Fig. 4B-b). Typical volcano-sedimentary se-
quences of active rift basins are accordingly marked
by a lower volcanic part and an upper clastic part
(Fig. 4B-c). As regards wide rift basins, they ini-
tiate and develop owing to gravitational collapse
of the thickened orogenic crust, as manifested by
broad occurrence of small-scale disparate rift basins
in the upper crust (Fig. 4C-a).The isolated basins ex-
pand through lateral linkage of adjacent basins, and
thus often express themselves as elongated or nar-
row basins in map view (Fig. 5). Continued grav-
itational spreading can result in stress localization
and may eventually give rise to metamorphic core
complexes (MCCs) [99]. The close association of
MCCs with wide rifting can be exemplified by the
presence of a number of Early Cretaceous MCCs,
like the Yagan MCC [29,106], Ereendavaa MCC
[107] andUlan-UdeMCC [33] in the ECAO.Mag-
matism also occurs simultaneously with wide rift-
ing (Fig. 4C-b) and is well documented [108–110].
Potential heat sources for partial melting of thick-
ened crust might be internal heat production by ra-
dioactive decay [111] and/or heat flux related to
the asthenospheric upwelling triggered possibly by
plate subduction [112]. Widespread volcanism in
the ECAO is commonly attributed to subduction-
induced delamination [69]. Wide rifts are marked
by basin sequences dominated by clastic facies, with
volcanic interlayers being present at different strati-
graphic levels (Fig. 4C-c).

Early Cretaceous rift basins in NE Asia are cat-
egorized into three types in this study: passive,
active and wide rift basins. Rift basins in the east-
ern NCC display similar synrift stratigraphic suc-
cessions that begin with clastic units characterized
by alluvia/fluvial and lacustrine facies associations.
The clastic units are overlain by upper units dom-
inated by volcanic and volcaniclastic rocks. These
typical synrift sequences are well manifested in the
Jiaolai andHefei basins (Fig. 2).The Laiyang Group
and Zhuxiang Formation represent the lower clas-
tic units, while the Qingshan Group and Maotan-
chang Formation exemplify the upper volcanic units
(Figs 2 and 4A-d). Rift basins in the eastern NCC
thus fall into passive rift basins. Rift basins in the
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Figure 4.Models for tectonic subsidence of different types of rift basins and resultant volcano-sedimentary sequences. (A) Passive rift basin. (B) Active
rift basin. (C) Wide rift basin. Refer to text for detailed explanation. eNCC = eastern NCC; nNCC = northern NCC.
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Figure 5. Diagrams showing structures of rift basins in the ECAO. (A) Map view of the Yingen basin, which is made up of many individual sub-basins and
associated with metamorphic core complexes. (B) Map view of Early Cretaceous Songliao basin. Note the individualities of sub-basins. (C) A geologic
section across the Yingen basin (a-a’ profile in A), showing marked synrift subsidence and minor postrift subsidence. (D) A geologic section across
the southern Songliao basin (b-b’ profile in B) that is typified by pronounced postrift subsidence. Abbreviations: K1 = Lower Cretaceous, K1y = Yixian
Formation, K1j = Jiufotang Formation, K1s = Shahai Formation, K1f = Fuxin Formation.

northern NCC show synrift sequences typified by
a lower volcanic unit and an upper clastic unit,
contrasting strikingly with rift basin sequences in
the eastern NCC. The lower unit is represented
by the Donglingtai, Zhangjiakou and Yixian vol-
canics, while theDabeigou, Xiguayuan and Jiufotang

Formations make up the upper clastic units in the
Luanping and Beipiao basins, respectively (Figs 2
and 4B-d). The rift basins in the northern NCC are
therefore considered as active rift basins. Early Cre-
taceous basins in the ECAO have been well inves-
tigated and classified as wide rift basins [29,37,80].
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The extensive distribution of small-scale basins, as
manifested by Early Cretaceous basin families in the
Yingen and Songliao basins (Fig. 5), typifies the
wide rift basins. Volcanic layers of various thick-
nesses occur at different levels of successions of the
wide rift basins (Figs 2 and 4C-d), as displayed by
Lower Cretaceous sequences in the Songliao basin
[21,71,72], theGreatXing’anRange [68], theHailar
basin [66,67] and the Erlian basin [66].

It is noteworthy that the distinct types of rift
basins occurred in different regions in NE Asia dur-
ing the Early Cretaceous: wide rift basins devel-
oped in the ECAO, active rift basins in the north-
ern NCC and passive rift basins in the eastern NCC
(Fig. 1). The wide rift basins are reminiscent of the
Tertiary Basin and Range Province of the United
States [113,114], and were attributed to gravitation-
ally driven collapse of thickened and heated oro-
genic crust [29,37,115,116]. Other drivers are also
proposed for theEarlyCretaceous extension, such as
backarc crustal extension [21,117] or transtension
in association with escape tectonics [9,118]. How-
ever, thesemechanisms canhardly explain the exten-
sive distribution of these supracrustal basin families.
Passive rift basins in the eastern NCC resulted from
backarc extension triggered by high-angle subduc-
tionof thepaleo-Pacificplate [18,119],with regional
tensional stress oriented NW to SE [120,121]. The
Tanlu fault behaved as a major normal fault in the
Early Cretaceous, playing amajor role in subsidence
of the Hefei, Jiaolai and other adjacent basins [25].
It has been bewildering how an active rift basin was
induced in the northern NCC.

The Late Cretaceous saw a period when most
rift basins experienced vertical motion in NE Asia
[21,29]. Basin subsidence and sedimentation in
eastern NCC were partly associated with normal
faulting [25,26]. Magmatism became quiet, and was
only active at the eastern edge of the NE Asian con-
tinent, such as the Sikhote Alin belt, southeast Ko-
rea and southwest Japan [3,4,91]. The passive rift
basins in the eastern NCC subsided as a result of
N–S extension, as exemplified by the Jiaolai basin
where the Upper Cretaceous Wangshi Group was
deposited under the control of E–W-striking nor-
mal faults like the Baichihe and Pingdu faults [26].
The N–S extension was postulated to have resulted
from transcurrent tectonics [5]. E–W-trending nor-
mal faulting also took place in the Hefei basins, and
controlled sedimentation of the Zhangqiao Forma-
tion [25]. Contraction happened in the easternmost
NE Asian continent at the end of the Early Cre-
taceous, as registered by a regional unconformity
beneath Upper Cretaceous strata in a number of
basins, such as the Hefei, Jiaolai, Songliao and San-
jiang basins [21,26,122]. Strong transpression oc-

curred along strike-slip fault zones, leading to fold-
ing and uplifting of Lower Cretaceous successions
of the basins near or within the fault zones, as indi-
cated by intense deformation of Lower Cretaceous
strata in the Sanjiang basin [122] and the Yisu basin
[26]. The basins far away from the strike-slip faults
only experienced a short-lived vertical uplift, with
no obvious break in the Lower–Upper Cretaceous
successions. For instance, Lower and Upper Cre-
taceous strata are conformable in the Gyeongsang
basin in SE Korea [52], and the Cretaceous synrift
and postrift sequence is only separated by a short-
termed disconformity in the Songliao basin [21].

Most rift basins in the ECAO underwent minor
subsidence in the postrift stage, with postrift succes-
sions usually <800 m thick [29]. The insignificant
postrift subsidence resulted possibly from lower-
crustal flows from the less stretched areas to the
strongly attenuated regions [29]. The lower-crustal
flows prevented the crust of the rift basins from
further thinning, thereby reducing postrift tectonic
subsidence. The Songliao basin is an exception in
that it underwent striking postrift subsidence with
sedimentary successions up to 5000 m thick [21].
Opinions diverge on the origins of large-magnitude
postrift subsidence of the Songliao basin. It is as-
sumed that the lithosphere of the Songliao basin
was significantly thinned due to backarc extension,
and subsequent thermal contraction of the astheno-
sphere was thus responsible for the pronounced
postrift subsidence [21]. Li and Liu attributed the
marked postrift subsidence to the superposition of
dynamic subsidence induced by downward drag-
ging of the subducting paleo-Pacific plate [123]. It
is also argued that west-verging thrusting on the
eastern margin of the Songliao basin might have
contributed partially to the postrift subsidence, al-
beit thermal subsidence was dominant in the early
stage [122]. Transpressional deformation was lo-
calized along the strike-slip fault zones in the east-
ernmost margin of NE China at the Early to Late
Cretaceous boundary, like the Yilan–Yitong and
Dunhua–Mishan faults [5,40], and led to inver-
sion of the Sanjiang basins in between [122]. The
Songliao basin did not undergo shortening until
∼80 Ma when all the basin’s fills were folded to
various degrees and partially uplifted under roughly
west–east compression [21].

Upper Cretaceous strata are considerably thin
and only occur in a few rift basins in the north-
ern NCC (Fig. 2). It is unclear why the active
rift basins largely came to an end in the Late
Cretaceous. Most Early Cretaceous successions
remain fairly flat, indicating weak deformation. It
is plausible that the active rift basins terminated
as a result of vertical crustal motion rather than
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horizontal shortening. The northern NCC in
practice experienced polyphase rapid uplifting
in the Cretaceous, starting ∼120 Ma based on
low-temperature thermochronologic data [124].
The episodic vertical motion might be responsible
for the lack of Upper Cretaceous strata. More
work is obviously needed to explore the driver of
the polyphase uplift/denudation of the northern
NCC. The end-Early Cretaceous thrusting was
rarely recorded in the northern NCC except in a
few localities where sinistral transpressive faults,
such as the Nantianmen and Yaowangmiao faults
in western Liaoning, displace the Mesoproterozoic
dolostones over Lower Cretaceous strata [125].

DYNAMICS OF CRETACEOUS BASINS
Distinct types of rift basins developed in differ-
ent regions in NE Asia during the Early Creta-
ceous, and there should be a coherent mechanism
that governed spatial distribution of the diverse
rift basins. We here advance a tectonic model that
seems to better explain why different rifting took
place in different regions in the Early Cretaceous
(Fig. 6). The NE Asian continent was bounded on
the east by a subduction zone, which presumably
initiated in the Early Jurassic, as implied by the
presence of Early Jurassic accretionary complexes
and arc/backarc igneous associations at the east-
ern margin of the ECAO [4,14,126]. Early Creta-
ceous arc volcanic rocks are rarely documented in
the eastern edge of the NCC, but mafic and felsic
intrusives in the eastern NCC implicate active sub-
duction of the paleo-Pacific plate [87]. One possi-
bility is that the subduction zone was far away from
the present-day eastern edge of the NCC continent,
and the Early Cretaceous island-arc belt might have
been destroyed by later subduction and/or trans-
form processes due to reorganization of the west-
ern Pacific plate [127,128]. This situation hints at a
change in the paleo-Pacific plate subduction process
along the subduction zone (Fig. 6A).Thewhole sub-
duction zone could be divided into the northern and
southern segments (Fig. 6). The northern subduc-
tion zoneeast of theECAOwas relatively fixed, as ev-
idenced by complete preservation of Jurassic–Early
Cretaceous accretionary complexes in the Nadan-
hada and Sikhote Alin belts [41,126]. In contrast, a
lackof geologic recordsof Jurassic–EarlyCretaceous
arc systems suggests that the subduction zone east of
the NCCmight have been located far away from the
continentalmargin. It is thus plausible that a transfer
zone developed to accommodate the different sub-
duction processes at the northern and southern sub-

duction zones. The transfer zone just occurred be-
neath the northern NCC (Fig. 6A).

An internal connection might exist between the
paleo-Pacific plate subduction and extensional tec-
tonics in the ECAO during the Early Cretaceous
(Fig. 6B). The paleo-Pacific plate subduction not
only produced an accretionary prism, as evidenced
by the Late Jurassic–Early Cretaceous Nadanhada
and Sikhote-Alin complexes [41,126], but also in-
duced backarc extension, as implicated by Early
Cretaceous bimodal volcanism and A-type rhyolite
[4,20]. The free eastern boundary could have facil-
itated extensional collapse of the thickened ECAO
crust, leading to the formation of wide rift basins.
The superposition of backarc extension and grav-
itational collapse brought about significant thin-
ning of the whole lithosphere in the eastern ECAO
(Fig. 6B), thereby resulting in uprising of the as-
thenosphere and voluminous volcanic eruption in
both the Songliao basin and Great Xing’an Range
[20,69,81]. This mechanism offers a satisfactory ex-
planation for intense volcanism in theGreat Xing’an
Range in the Early Cretaceous and the pronounced
thermal subsidence of the Songliao basin in the Late
Cretaceous.

It was argued that Early Cretaceous magmatism
was younging to the east in the ECAO [69]. Close
scrutiny of available geochronologic data, however,
shows that magmatism occurred throughout the
ECAO mainly in the timespan from 135 to 110 Ma
[32,69,81,97,110] and did not display the marked
eastward progression. Extensive volcanism across
the ECAO is attributed either to the break-off of
the subducting plate [20] or delamination of sub-
continental lithosphere [23]. Although the two tec-
tonic models could explain extensive magmatic out-
pouring and uplifting of wide rift systems in the late
Early Cretaceous, they can hardly account for why
significant thermal subsidence only happened in the
Songliao basin. We tentatively ascribe Early Creta-
ceous magmatism in the ECAO interior to the com-
bination of internal heating due to radioactive decay
in the thickened crust and heat flux of the astheno-
spheric upwelling triggered by plate subduction.

Passive rifting in the eastern NCC resulted from
horizontal lithospheric extension, which was pre-
sumably induced by rollback and retreat of the sub-
ducting paleo-Pacific plate [10,25]. The westward
decrease in the intensity of crustal stretching im-
plies that horizontal tensile forcemust have been ap-
plied from the east. Given that there are no records
of Early Cretaceous arc magmatism in the present-
day eastern edge of the NCC, the subduction zone
must have been located far to the east during the
Early Cretaceous. It is conjectured that the southern
subduction zone had continued migrating eastward
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Figure 6. Diagram showing a possible linkage between Early Cretaceous basins and the paleo-Pacific plate subduction. (A) Passive rift basins
occur in the NCC, bounded on the east by the southern subduction zone. Wide rift basins develop in the ECAO, bounded by the northern
subduction zone. Active rift basins happen in the northern NCC. (B) A sketch showing that wide rift basins result from supracrustal stretch-
ing due to gravitational collapse of the thickened ECAO crust. The Songliao basin crust is significantly thinned owing to the superposition of
backarc extension induced by paleo-Pacific plate subduction. Note that the northern subduction zone was relatively fixed in Jurassic to Early
Cretaceous times. (C) A sketch showing that passive rift basins originate from backarc extension triggered by a combination of rollback and retreat of
the subducting paleo-Pacific plate. A big mantle wedge might have begun developing beneath the NCC since the Early Cretaceous.

with timeowing to persistent rollback and/or retreat
of the subducting paleo-Pacific plate (Fig. 6C).Con-
tinued rollback and/or retreat of paleo-Pacific plate
subductionmight also have led to the formation of a
bigmantlewedgebeneath theNCC in theEarlyCre-
taceous, which in turn promoted lithospheric thin-
ning of the eastern NCC by means of water-assisted
thermal erosion [10].

Two-dimensional thermal mechanical modeling
was recently performed to investigate behaviors
of the overriding continent with differing thermal
states in the process of oceanic plate subduction
[129]. It is shown that: (i) trenchward thrusting
of overthickened and hot (>17.5◦C km−1) crust
will slow down the trench retreat; and (ii) decou-
pling could occur between the overriding conti-
nents and subducting oceanic plates if continents
possess low thermal gradients (∼10–15◦C km−1)
and normal crustal thickness. The modeling results
carry important implications for subduction pro-
cesses of the western paleo-Pacific plate. As dis-
cussed earlier, complete Jurassic–Cretaceous accre-
tionary complexes are well preserved at the east-
ern margin of the ECAO. This fact implicates that
the northern subduction zone must have been

relatively fixed or experienced little eastward retreat
during the late Mesozoic, compatible with the pre-
diction of themodeling [129]. In contrast, theNCC
was a domain with relatively normal geotherm and
crustal thickness as a whole. Given that few geologic
records of arc systems have been identified along the
easternmarginof theNCC, the southern subduction
zone is thus inferred to have undergone eastwardmi-
gration as a result of continuous trench retreat and
subduction rollback of the paleo-Pacific plate. Both
geologic observations and interpretations seem con-
sistent with the numerical modeling [129].

Tearing of the subducting lithospheric slab has
been widely documented by geophysical observa-
tions in many subduction zones around the world
[130,131], and is attributed to the variation in rates
of subduction rollback and trench retreat along
the length of subduction zones [132]. We con-
jecture that the subducting paleo-Pacific plate ex-
perienced vertical slab tearing beneath the north-
ern NCC as a result of different rollback and/or
retreat velocities of the northern and southern
subduction zones (Fig. 7). The northern subduc-
tion zone was relatively fixed between the Late
Jurassic to Early Cretaceous, whereas the southern
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Figure 7. A tectonic model showing that slab tearing played an important role in controlling active rift basin evolution and high-flux magmatism in
the northern NCC in the Early Cretaceous. Slab tearing possibly resulted from a higher rate of rollback and retreat of the subducting paleo-Pacific
plate at the southern subduction zone. Hot mantle materials ascended through the tear fault and impinged on the overlying lithosphere, thus triggering
magmatism and eastward-younging polarity as slab tearing progressed from west to east. Passive rift basins in the eastern NCC were generated by
horizontal extension induced by rapid trench retreat in conjunction with subduction rollback. Wide rift basins developed due to gravitational collapse
of the thickened crust of the ECAO and the northern subduction zone underwent not very much eastward migration.

subduction zone continued migrating to the east,
with only the backarc system left in the easternNCC
(Fig. 6A). Persistent eastward retreat of the southern
subduction zone eventually led to segmentation
of the subduction zone and the formation of a
lithospheric-scale tear fault that split the subducting
paleo-Pacific plate beneath the NE Asian continent
(Fig. 7).Oneof thedirect consequences is the ascent
of the hot asthenospheric materials along the tear
fault, which heated the overlying lithosphere and
triggered vigorousmagmatism in the northernNCC
(Fig. 6).The plausibility of tearing of the subducting
paleo-Pacific plate is sustained by several geologic
facts. First, Early Cretaceous volcanism and pluton-
ism occurred mostly in the northern NCC, as indi-
cated by linear distribution of igneous rocks (Fig. 3).
Second,EarlyCretaceous volcanismshowedaneast-
ward younging polarity, taking place first in the
west and shifting to the east [10,11] (Fig. 3). Third,
Early Cretaceous igneous rocks in the northern
NCCwere formed at high temperatures and sourced
partially from depleted mantle materials [11]. All
the geologic records are compatible with the pro-
posed slab tearing process. Tearing of the subducted

paleo-Pacific plate happened first in the west, thus
permitting asthenospheric materials to penetrate
through the slab gap produced by lithospheric-scale
tearing (Fig. 7).Consequently, vigorousmagmatism
occurred first in the western segment of the north-
ernNCC as a result of heating of the asthenospheric
uprising, giving rise to the voluminous Dongling-
tai and Zhangjiakou volcanics. Tearing then propa-
gated eastward and upward over time, and brought
about eastward migration of magmatic activities
(Fig. 7). Slab tearing thus offers a good explanation
for the generation of voluminous volcanism and ac-
tive rift basins in the northern NCC (Fig. 7).

Also noticeable is the occurrence of a num-
ber of Early Cretaceous MCCs in the northern
NCC (Fig. 1), such as the Hohhot [133], Yun-
mengshan [134,135], Yiwulushan [136] and Liao-
nanMCCs [137], indicating that the northernNCC
was a highly extended corridor. The MCCs possess
two important aspects: (i) footwalls or the lower
plates usually contain Early Cretaceous plutons; and
(ii) detachments experience high temperature (up
to 600◦C) ductile shearing [109]. The facts imply
that magmatismmust have played an important role
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in theMCCs’ formation by thermally weakening the
lithosphere/crust. MCCs preferentially form in the
hot and thickened crust, as revealed by both natu-
ral examples and numerical modeling [99,100,138].
The northern NCC had experienced two strong
shortening events prior to the Early Cretaceous
[2,15,16], and had already evolved into an intraplate
orogen with the considerably thickened crust. Sub-
sequent voluminous magmatic activity must have
further weakened the northern NCC [109]. There-
fore, the northern NCC behaved as a unique ex-
tensional corridor affected by both magmatic up-
rising and gravitational collapsing in the Early
Cretaceous, and was thus prone to active rifting and
MCC formation.

A global plate reorganization event happened
at ∼105–90 Ma, and the paleo-Pacific plate began
moving to the north or north-northwest [127]. The
N- orNNW-directedmovement of the paleo-Pacific
plate strongly sheared the eastern margin of the NE
Asian continent from the beginning of the Late Cre-
taceous [41,127,139], contrasting with the domi-
nant NW-directed subduction in the Early Creta-
ceous [25]. The kinematic change in direction, rate
and subduction angle of the paleo-Pacific plate led
to two prominent consequences in the eastern mar-
gin of NE Asia in the Late Cretaceous time: (i) re-
activation and/or initiation of a number of large-
scale left-slip faults, such as the Tanlu fault [5],
Dunhua-Mishan fault [40], Median tectonic lines
[140], South Korea tectonic line [141] and Cen-
tral Sikhote Alin fault [41]; (ii) transpressional de-
formation in the period from 97 to 80 Ma, which
presumably resulted from an abrupt increase in sub-
duction rate of the paleo-Pacific plate [139]. The
transgression resulted in inversion of Early Creta-
ceous rift basins in the eastern margin of the NE
Asian continent, such as theHefei, Jiaolai, Yisu, San-
jiang and Songliao basins [21,26,122]. Following
the shortening event, rifting resumed as a conse-
quence of N-S extension in some localities, and pos-
sibly bore upon persistent large-scale left-slip fault-
ing [26,120,141]. Late Cretaceous magmatism was
thus concentrated along the easternmost margin of
theNEAsian continent [41,96], and became signifi-
cantlyweak toward the interior due to localization of
transcurrent deformation [3,5]. The Songliao basin
underwent marked postrift subsidence in the Late
Cretaceous tectonic quiescence [21]. Most of the
NE Asia continent experienced vertical uplift or mi-
nor subsidence in the LateCretaceous on account of
the scarcity of Upper Cretaceous strata [122].

Admittedly, uncertainties and disagreements re-
main regarding the subduction history of the west-
ern paleo-Pacific plate in the late Mesozoic. The
existing reconstructions of paleo-Pacific plate sub-
duction need to be refined when new data are

available. A more feasible mechanism for tectonic
development of Cretaceous basins inNEAsia awaits
a better understanding of subduction processes and
the kinematic history of the paleo-Pacific plate in the
late Mesozoic.

CONCLUSION
Cretaceous rift basins characterize the NE Asian
continent. Three types of rift basin are identified
according to their distinct volcano-sedimentary se-
quences and subsidence history, and termed as pas-
sive, active and wide rift basins. Passive rift basins
in the eastern NCC commenced with clastic depo-
sition, which was followed by volcanic eruption. Ac-
tive rift basins were formed in the northern NCC
and marked by vigorous volcanism at the begin-
ning of basin history. Clastic sedimentation then
took place and became more prevalent with time.
Wide rift basins occurred in the ECAO and were
mostly filled with clastics. Volcanic and volcaniclas-
tic layerswere present throughout basin successions,
and abundant in the eastern ECAO. The passive
rift basins are attributed to horizontal lithospheric
stretching induced by rollback and retreat of the
subducting paleo-Pacific plate. The wide rift basins
originate from gravitational collapse of the hot and
thickened crust. Development of active rift basins
is presumably related to asthenospheric uprising
through a lithospheric-scale tear fault.The Late Cre-
taceous was a period of tectonic quiescence, and
most of the Early Cretaceous rift basins experienced
either sagging or uplift. Late Cretaceous crustal de-
formation was localized along the eastern margin of
the NE Asian continent in response to kinematic
change of the paleo-Pacific plate that began mov-
ing to the north or north-northwest. Basins near or
within major strike-slip faults in the eastern mar-
ginwere either inversed or developed into strike-slip
basins.
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