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Personalizing Androgen 
Suppression for Prostate Cancer 
Using Mathematical Modeling
Yoshito Hirata   1,2, Kai Morino1,2, Koichiro Akakura3, Celestia S. Higano4 & Kazuyuki Aihara   1,2

Using a dataset of 150 patients treated with intermittent androgen suppression (IAS) through a fixed 
treatment schedule, we retrospectively designed a personalized treatment schedule mathematically for 
each patient. We estimated 100 sets of parameter values for each patient by randomly resampling each 
patient’s time points to take into account the uncertainty for observations of prostate specific antigen 
(PSA). Then, we identified 3 types and classified patients accordingly: in type (i), the relapse, namely 
the divergence of PSA, can be prevented by IAS; in type (ii), the relapse can be delayed by IAS later than 
by continuous androgen suppression (CAS); in type (iii) IAS was not beneficial and therefore CAS would 
have been more appropriate in the long run. Moreover, we obtained a treatment schedule of hormone 
therapy by minimizing the PSA of 3 years later in the worst case scenario among the 100 parameter sets 
by searching exhaustively all over the possible treatment schedules. If the most frequent type among 
100 sets was type (i), the maximal PSA tended to be kept less than 100 ng/ml longer in IAS than in CAS, 
while there was no statistical difference for the other cases. Thus, mathematically personalized IAS 
should be studied prospectively.

Intermittent androgen suppression (IAS) was proposed to hopefully overcome the relapse of prostate cancer that 
appears after long prescription of hormone therapy. In past clinical trials1–14 of IAS, after starting the hormone 
therapy, the therapy is stopped when the value of prostate specific antigen (PSA), a serum tumor marker in blood 
for prostate cancer, decreases to less than a predefined lower threshold value and the period of the hormone 
therapy becomes 6 or 9 months or above. The hormone therapy is resumed after PSA reaches an upper threshold 
value. The on- and off-treatment periods are alternated until the development of castration resistance. The same 
treatment schedule is applied to all patients uniformly.

We proposed a mathematical model of prostate cancer15–19 that describes the behavior of PSA under IAS quan-
titatively. Mathematically, the challenge is how to treat the uncertainty due to the short and noisy observations 
of PSA compared to time series data used in the other fields such as weather, renewable energy, and finance. In 
order to address this challenge, we have developed a method for overcoming this uncertainty using a statistical 
method called bootstrapping20,21. Thus, here we apply this statistical method to the datasets of 150 patients and 
examine what would have been an optimal treatment schedule of IAS for these patients using the mathematical 
model of Hirata et al.15.

Materials and Methods
Patient Data Analyzed.  We analyzed 150 patients of prostate cancer treated by IAS. Out of 150 patients, 
58 patients were the patients from the phase 2 study in Canada8,12, 17 were taken from Japan, and 75 were taken 
from the United States22–25. The analysis of the Canadian phase 2 study was approved by the ethics committee at 
the University of Tokyo School of Medicine (Review No. 2857-(8)). This Canadian study is too old to have the reg-
istry name or registration number of this trial. This study was previously analyzed in refs8,12,15–18,26. The Japanese 
cases were approved by the ethics committees of the JCHO Tokyo Shinjuku Medical Center (no approval number 
assigned) and The University of Tokyo (Review No. 2857-(8)). Each patient provided his oral informed consent. 
Prior to the oral informed consent, the ethics committee of JCHO Tokyo Shinjuku Medical Center approved that 
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the oral consent is sufficient because the Japanese cases were part of usual clinical practice, retrospective, and did 
not have any intervention. The medical doctor for each patient recorded the patient’s oral consent in the medical 
record. These Japanese cases were previously analyzed in refs18,26. The American study was the on-going phase 
2 study of IAS22–25. The NCI number is NCT00223665. The University of Washington (Protocol # 97-3730-A) 
and The University of Tokyo (Review No. 2857-(8)) approved this American study. All patients provided written 
informed consent. This American study was previously analyzed in22–26. All methods were performed in accord-
ance with the relevant guidelines and regulations.

Quantitative Mathematical Model of Hormonal Therapy.  The mathematical model we used here 
is an extension15–19 of model proposed in Ideta et al.27 (see Appendix A.1). This mathematical model consists of 
three variables: one kind of androgen dependent (AD) cancer cells, and two kinds of castration resistant (CR) 
cancer cells which are generated from AD cancer cells through reversible and irreversible changes, respectively. 
During an on-treatment period, AD cells may change to CR cells (see Fig. 1). During an off-treatment period, 
CR cells generated through reversible changes may become AD cells again. However, CR cells generated through 
irreversible changes such as mutations cannot change back to AD cells (see Fig. 1). By enforcing some constraints 
during fitting, this mathematical model can reproduce the relapse of cancer as well15,18.

Fitting The Mathematical Model.  We first generated 100 bootstrap samples from PSA measurements 
obtained for each patient during the first 2 and half IAS according to Kuramae et al.21 (see Fig. 2 for the schematic 
illustration; see also Appendix A.2 for the details). Second, we fitted each bootstrap sample with the method 
proposed in15. The mathematical model can be fitted to the clinical datasets relatively well. Our method using the 
bootstrapping has been examined previously in Kuramae et al.21. Especially, in type (ii) and type (iii) patients, 
we found that the most frequent types chosen among the 100 bootstrap samples were also type (ii) and type (iii), 
respectively.

Classifications of Patients.  For each bootstrap sample, we examined which type the obtained parameter 
values corresponded to: type (i), where IAS stops the relapse and thus we target a periodic orbit by IAS19,27, type 
(ii), where IAS delays the relapse later than CAS and thus we try to delay the relapse of cancer by minimizing 
the growth rate of cancer, or type (iii), where CAS is better than IAS (see Fig. 3). See, the detail of the criteria 
in Appendix A.3 as well as18. We compared the classification made by the mathematical model with the initial 

Figure 1.  Schematic diagram for our mathematical model. AD cells correspond to androgen dependent cancer 
cells and CR cells correspond to castration resistant cancer cells.

Figure 2.  Schematic diagram for bootstrapping method. We resample data points with replacement. If two 
arrows are drawn, it means that this time point has been selected twice.
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Gleason score28, a pathological staging for prostate cancer by a biopsy, and the clinical status (without relapse, 
with metastasis, or with castration resistance) at the end of record we have.

Optimal IAS.  We minimized the PSA of 3 years later in the worst case scenario among the simulations of the 
estimated parameters whose simulation error in the PSA value was 5 ng/ml or less at the end of the first two and 
half cycles, out of 100 parameter sets for each patient. We searched exhaustively all over the possible schedules 
among such simulations where each hormone treatment is assigned as a block of 24 weeks and obtained an opti-
mal treatment schedule for each patient. Since we searched exhaustively all over the possible schedules described 
above, our best solutions are not sub-optimal.

Results
There were 150 prostate cancer patients whose Gleason scores were more than or equal to 6, treated with IAS: 58 
from a phase 2 study in Canada8,12, 17 from Japan, and 75 from a phase 2 study in the United States22–25. The mean 
and the standard deviation for the number of time points among the patients were 33.7 ± 17.1, respectively. The 
minimum and the maximum for the number of time points were 4 and 103. The PSA values ranged between 0 and 
220.00 (ng/ml). The mean and the standard deviation for the PSA values were 2.63 ± 6.57 (ng/ml), respectively. 
There were no pre-treatment PSA measurements.

By fitting the first 2 and half cycles of IAS, one can predict future behavior with the precision shown in Fig. 4 
(see Fig. 5 of15 for the validity for fitting single PSA time series). Therefore, the mathematical model of15 provides 
quantitative prognosis of prostate cancer. Examples for the estimated parameters for type (i), type (ii), and type 
(iii) are shown in Supplementary Tables 1, 2 and 3, respectively.

The mathematical model can distinguish patients without relapse from patients with metastasis and those with 
castration resistance. Table 1 shows the results of the comparison of mathematical model types (i–iii) with clinical 
status at the end of record. We found that if the clinical status was “without the relapse”, the most frequent type 
among 100 bootstrap samples was likely to be type (i). For patients classified with metastasis or with castration 
resistance, the possibility that they were either type (ii) or type (iii) is greater (the odds ratio: 2.80, P = 0.0029 
(using the Fisher’s exact test in R)). This correlation implies that if a patient is classified to type (ii) or type (iii), the 
patient has a higher possibility to have metastasis or castration resistance.

We also compared the Gleason score28 with the most frequent type (i), (ii), or (iii) among 100 bootstrap sam-
ples obtained by the fitting. But we could not find significant correlation between the Gleason score and the most 
frequent type of patients (Table 2; P:0.13).

Actually, by personally optimizing schedules, we found that IAS is more preferred to CAS (Fig. 5). Especially, 
when the most frequent type among 100 bootstrap samples was type (i), IAS tended to keep the PSA level for the 
worst case scenario among the bootstrap sample simulations less than 100 ng/ml for a longer time period than 
CAS (see Fig. 5a; P:0.024). In addition, while the average length of worst case survival with the PSA less than 100 
ng/ml among the bootstrap sample simulations for type (ii) patients was longer for IAS (6.1 months) than CAS 
(5.3 months), there was no statistical difference between IAS and CAS when the most frequent type was either 
type (ii) or type (iii) (see Fig. 5b and c; P = 0.40 and P = 0.50, respectively). The optimal schedules for type (i) 
patients vary, depending on the maximal growth rates among the cells as shown in Supplementary Fig. 1. On the 
other hand, the conventional IAS is inferior to CAS in terms of the time length for keeping the maximum PSA 
level less than 100 ng/ml for type (ii) patients (P = 0.027) while there were no statistically significant differences 
for type (i) patients (P = 0.33) and type (iii) patients (P = 0.80).

Figure 3.  Classification of patients.
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Discussion
While the treatment schemata for IAS have been fixed on clinical trials, this retrospective analysis of 150 patients 
who were treated with the conventional IAS suggests that a more personalized approach may be feasible. 
Application of this mathematical model shows that the behavior of the prostate cancer can be predicted and used 
to decide when to reinstitute AS or whether to use CAS instead.

Many mathematical models have been proposed for IAS15–19,27,29–31. By considering several models simultane-
ously, we may be able to derive more robust treatment to control the prostate cancer. This direction is a topic for 
the future research.

When we averaged all the bootstrap samples and applied the mean dynamics starting from the mean state at 
the first two and half cycles among the simulations within which the simulation error in the PSA value there was 
5 ng/ml or smaller, its optimized schedule was too optimistic, always reached the considered maximum length of 
36 months for each patient, and was longer (96.7%) or equal (2.3%) than the corresponding optimized schedule 
shown in Fig. 5, which took into account each of the bootstrap samples. Therefore, if we use the mean dynamics 
only, we cannot consider the variety of the bootstrap samples, which describe the uncertainty in terms of the 
underlying dynamics finely.

The solutions we evaluated are based on the best schedules for IAS because they minimized the PSA level 
for the worst case scenario, or the maximal PSA level, among the estimated parameter sets corresponding to 
100 bootstrap samples for each patient. A control scheme is defined as robust32 if a set of parameters has some 
uncertainty within a mathematical model and the control scheme attains an intended state even for the worst case 
scenario among the possible parameter sets. In order to optimize IAS in clinical practice, we need to prepare a 

Figure 4.  Fitting a mathematical model of prostate cancer to PSA values. Predictions of PSA follow the fitting 
period of the first 2 and half cycles of intermittent androgen suppression. Dash-dotted lines represent 10%, 
50%, and 90% points of bootstrap samples for each time point. Crosses show actual measurements of PSA. The 
darkness shows the density of bootstrapped solutions.

Mathematical Model types

End of record

TotalWithout relapse With metastasis Castration resistance

Type (i) 52 (71%) 9 (12%) 12 (16%) 73 (100%)

Type (ii) 36 (48%) 9 (12%) 30 (40%) 75 (100%)

Type (iii) 0 (0%) 1 (50%) 1 (50%) 2 (100%)

Total 88 (59%) 17 (13%) 43 (29%) 150 (100%)

Table 1.  Classification by the mathematical model in relation to clinical status at the end of record.

Mathematical model Types

Gleason score

Total≤8 ≥9

Type (i) 70 (96%) 3 (4%) 73 (100%)

Type (ii) 65 (87%) 10 (13%) 75 (100%)

Type (iii) 2 (100%) 0 (0%) 2 (100%)

Total 137 (91%) 13 (9%) 150 (100%)

Table 2.  Classification by mathematical model related to Gleason score, pathological stages for prostate cancer.
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control/optimization method that can be applied with prediction or fitting. Currently, we have the control/opti-
mization approaches with model predictive control33,34 and minimization of the maximal growth rate35, both of 
which have not been within the framework of robust control, and thus cannot take into account the uncertainty 
of estimated parameters, which intrinsically exists in the clinical setting. Thus, we need to extend these control/
optimization methods to robust ones. This paper is the first step towards such a direction by evaluating the worst 
case scenario among the bootstrap sample simulations. Expanding this line of research is a topic of the future 
research for theoreticians such as engineers, mathematical and/or computational biologists, physicists, mathe-
maticians, and statisticians.

It is generally known that the bootstrap method is unreliable with a small sample dataset36. The main dif-
ference between what was discussed in36 and our method firstly described in21 is that we bootstrap time points 
of a time series and fit each bootstrapped time series to obtain a set of parameters. In addition, there are only a 
few patients classified to type (iii) originally15,18, which is consistent with our finding here, especially Table 1. 
Therefore, although the bootstrap method, in general, might be known to be unreliable for a small sample dataset, 
our method does not seem to inherit this weakness and can classify the three types without much problems, as 
shown in our previous paper21. As a result, the classifications obtained by the bootstrap method are correlated 
well with the classifications by simply fitting the whole dataset for each patient in18 (Table 3).

With the current fitting approach, we need the first two and half cycles of PSA measurements for confidently 
estimating a set of parameters for the model15,16,18. Although the constraints on the parameters may cause some 
bias on their estimates, the constraints are necessary for fitting the data and reproducing the relapse15. By using 
our recent developments26,37 on techniques of machine learning and the Bayesian theorem, we may be able to 
estimate a set of parameter values based on much shorter PSA time series. This is another topic for our future 
research among the theoreticians.

Usually, in a hormone treatment for prostate cancer, some medicine is injected under the skin and its effect 
lasts for one month or three, depending on the kind and amount of the medicine. We assume here for the sake of 
simplicity that pharmacokinetics is not so problematic in our setting.

There is a limitation in our study. As shown in Table 2, there were only two patients in type (iii). Thus, in this 
manuscript, we tried to make conclusions by grouping type (ii) and type (iii). To derive stronger statements, we 
need to analyze a larger dataset such as ones in13,14.

We conclude that the mathematical model of prostate cancer of15 is useful for predicting behavior of PSA and 
hypothesize that use of the model could personalize the treatment schedule even if observations of the PSA levels 
obtained from a patient are noisy and short compared with time series obtained in the other fields. We overcame 
short noisy measurements of the biomarker by representing the uncertainties by sets of parameters and initial 
conditions obtained by 100 bootstrap samples according to the method of21 for each patient. IAS is the treatment 
of choice if the PSA pattern falls into type (i). We believe that the proposed approach could promote the introduc-
tion of mathematical models and tools to medical practice for robust treatment scheduling. This mathematical 
framework is quite general and one can apply the framework to other diseases once we construct their mathemat-
ical models and obtain short and noisy observations of some good biomarkers related to the diseases.

Figure 5.  Time vs probability that the maximum PSA among 100 bootstrap samples is less than 100 ng/ml. The 
length of the time period that the maximal PSA value among 100 bootstrap samples is less than 100 ng/ml after 
the first 2 and half cycles was estimated. If patients were classified off-study before the first 2 and half cycles, then 
the time from the off study was estimated. Panel (a) is for type (i) patients, panel (b) is for type (ii) patients, and 
panel (c) is for type (iii) patients. In each panel, the solid line corresponds to the optimized IAS, the dash-dotted 
line corresponds to the conventional IAS, and the dotted line corresponds to CAS. In the conventional IAS, the 
hormone therapy is stopped when the PSA level is less than 0.1 ng/ml 40 weeks after the restart of the hormone 
therapy and the hormone therapy is resumed when the PSA level becomes greater than or equal to 1 ng/ml.
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Appendix A: Equations and Assumptions.  A mathematical model for intermittent androgen suppression.  
This work is based on a mathematical model of prostate cancer under intermittent androgen suppression pro-
posed in15. In this mathematical model, we assume that there are three kinds of cancer cells: one kind of androgen 
dependent cancer cells and two kinds of castration resistant cancer cells (see Fig. 1). The first kind of castration 
resistant cells is assumed to be generated through reversible changes such as adaptations, while the second kind of 
castration resistant cells is assumed to be generated through irreversible changes such as mutations. We let x1, x2, 
and x3 correspond to the androgen dependent cancer cells, the first kind of castration resistant cancer cells, and 
the second kind of castration resistant cancer cells, respectively, so that x1 + x2 + x3 represents simply the serum 
level of prostate specific antigen (PSA) in ng/mol. While the hormone therapy is prescribed, the tumor dynamics 
is assumed to follow the following dynamics:
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For our fittings, we discretize the models in time by using the Euler approximation with the time resolution of 
a day, and obtain the following difference equations:
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Fitting resampled data.  The additional assumption in this paper is that we resample the original dataset of PSA 
for each patient 100 times by following21, and then fit each of the resampled datasets by using the method of15 to 
obtain a set of parameters and initial conditions. Namely, the cost function can be written as
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where ε1 = 0.000000001 and ε2 = 0.001, were newly introduced here to avoid dividing with 0. The PSA value at 
time tk is denoted by p(tk). Variables x̂ t( ) and x t( ) correspond the simulations at time t under IAS and CAS, 
respectively. The function h(z) is defined as

h z z z( ) 100(1 ), if 0,
0, otherwise, (6)

=





− <

which ensures that the inside z of h(z) becomes positive at the end of the minimization process15,38. Therefore, as 
a whole, we try to obtain a set of parameters such that (i) the PSA values are non-negative, (ii) their temporal 
changes are constrained within finite ranges, and (iii) the cancer will relapse if we continue CAS for a long time. 
We minimized the cost function of equation (5) over { }di j

m
,  and x(0) by the differential evolution algorithm38. Thus, 

we finally obtained 100 sets of parameters and initial conditions to represent the uncertainties due to the short 
and noisy measurements of PSA.

Classifications for patients.  For each set of parameters for each patient, we applied the criteria of15,18,35, derived 
analytically, to classify each resampled dataset of each patient (see Fig. 3): If a parameter set belongs to type (i), 
namely if there exists a parameter α ∈ (0, 1) such that all the eigenvalues of αW1 + (1 − α)W0 are negative, the 
prostate cancer will be successfully suppressed by intermittent androgen suppression; If a parameter set belongs 
to type (ii), namely if the parameter set is not type (i) and ( >w w1,1

1
1,1
0  or >w w2,2

1
2,2
0  or >w w3,3

1
3,3
0 ), the growth of 

prostate cancer will not be suppressed but will be delayed successfully longer by the intermittent androgen sup-
pression than by the continuous androgen suppression; If a parameter set belongs to type (iii), namely if the 
parameter set is neither type (i) nor type (ii), the growth of the prostate cancer will be delayed by the continuous 
androgen suppression longer than the intermittent androgen suppression in any schedule. Because there are 100 
parameter sets for each patient, we count the number of parameter sets for each type to obtain the most frequent 
type for each patient, which probably represents the patient’s tumor characteristic the best.

Data availability statements.  There are restrictions related to our data sharing because we used the clini-
cal datasets, which are subject to patients’ privacy. Thus, we will share the datasets we used with interested readers 
after all the involving ethics committees including the readers’ approve the data sharing.
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