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A B S T R A C T

Blood transfusion, using the safest conventional blood bioproducts, is an irreplaceable part of substitution
therapy. It is considered the most essential supportive clinical intervention aimed to restore the health of patients
in need. Nevertheless, numerous unresolved problems are still associated with current blood substitution
therapy. To alleviate our dependency on blood donors, many investigators have been focusing on the quest for
stem cell-derived blood cells in line with major developments in the field of regenerative medicine. The main
objective is to provide a safe and highly standardized universal cultured red cell concentrate [CRBC] for all
clinical applications, regardless of blood groups. Currently, we are close to overcoming some of the main ob-
stacles in culturing cells. This concise report is a prelude to the immortalized cell lines that are ready for in vivo
clinical trials. It is only through the sharing of experimental ideas and knowledge-based strategies that we will be
able to achieve such an enormous task and better understand ‘’the one for all concept’’ of CRBCs and their
universal usage in all clinical settings.

1. Background

Numerous unresolved problems hamper conventional blood sub-
stitution programs including: a] the paucity of donors and their asso-
ciated physiological, immunological and hematological variabilities, b]
the ever-dynamic nature of transmission of pathogenic microorganisms
due to the “window period” for known and emerging pathogens, as
exemplified with the unexpected arrival of the pandemic outbreak of
coronavirus disease [COVID- 19], leading to shortage of a safe and
adequate blood supply, c] the need for multilayers of preventative
measures using the upgraded pathogen reduction technologies for each
unit of blood, with concerns regarding operational time and economic
impact, and finally, d] the trend for increasing life expectancy of our
aged populations, that are predicted to require more transfusion pro-
ducts than currently supported by voluntary donation along with the
ever increasing need in both military and civil trauma cases.

To overcome these concerns some investigators have been looking
for alternative blood donor-independent supply strategies, in line with
the concept, that in a safe society, the patients’ safety must be para-
mount and secured. Hence, the focus has moved to the industrial ex vivo
production of highly standardized and universally transfusable cultured
red blood cell [CRBC] products capable of substituting conventional
packed red blood cells. This concept is now approaching fruition,
through R&D studies in many institutions in parallel, that follow the in
vivo physiological mechanisms of erythropoiesis, and advances in the
fields of collection, culture, preservation and expansion of hemato-
poietic stem cells

The currently used sources of progenitor cells are all indicating that,
with some refinement in the study protocols, adequate numbers of
CRBCs can be obtained in vitro and that the observed economic and
biotechnological obstacles of the recent past can be overcome [1,2].

Clearly, unlocking the secrets of the highly standardized CRBC pro-
duction requires more targeted innovative R&D studies. However,
progress among several international institutes, including those asso-
ciated with the UK NHS BTS [Filton in Bristol and Cambridge Uni-
versity], has been achieved. Whilst the Scottish NHSBT group has
abandoned their most exciting innovative projects on CRBC due to in-
stability of their expansion media, there are important lessons to be
learned from their research program.

From a practical standpoint, a CRBC project must be based on es-
tablishing the same functional capabilities of circulating red cells or at
least of RBCs stored for transfusion purposes. Physiologically, RBCs
evolved to have high concentrations of haemoglobin and metabolic/
redox enzymes in their cytosol, to achieve efficient transportation of
oxygen and provide antioxidant defense potential throughout the body.
The gradual accumulation of irreversible lesions targets natural RBCs
for prompt removal by the reticuloendothelial system. This evolu-
tionary adaption, however, is no longer effective when RBCs are stored
hypothermically in citrated anticoagulant or storage media that opti-
mally enhance their functional integrities for longer periods. Most of
these donor dependent, storage-induced cumulative damages in red cell
shape and function, that develop during the shelf life of stored RBCs,
become irreversible after 21 days [3] and such changes might have
considerable clinical consequences and significant immunomodulatory
impact [1–4]. The potential causes and their clinical consequences as
well as the main parameters involved in the storage lesion have been
recently identified and supported by newer data obtained from the
modern "omics". While the physiological consequences of storage le-
sions on in vitro studies are well established, the potential: a] link to
clinical outcome and b] interventions to mitigate the extent of the
storage lesion development, are still subjected to randomized controlled
trials based on the age of stored blood and clinical outcomes [1,4]. On
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one hand, these studies suggested that the age of stored RBCs is neutral
in terms of transfusion efficacy, mortality, morbidity and adverse ef-
fects to the recipients [5–7]. On the other, they also highlighted that
since the presence of significant variation in the transfusion outcome
cannot be attributed to the age of transfused blood it must be linked to –
undefined up to date – parameters, probably attributed to donor char-
acteristics and recipient status. To support, when comparing storage
lesion parameters in RBC units generated from donors with different
genetic background, large differences occur regardless of the storage
period examined [8–10]. Clearly, further data and extensive analyses
on the quality, safety and efficacy of CRBC are needed in order to de-
termine the suitability and superiority/inferiority of any available
CRBC products in comparison to conventional components, especially if
these products are to be stored – even for a short period – at blood bank
conditions prior to their administration to patients.

2. Cultured RBCs: from R&D phase to clinical trials

The innovative concept of culturing blood cells using human adult
peripheral blood CD34+ cells began almost 4 decades ago [11]. Today,
many experts in the field have switched their efforts to generation of
erythrocytes from stem cells, as the primary source material, using re-
levant expansion media. Objectively, if successful, such a process would
improve the availability of much safer, matched blood cells in terms of
adherence to standardized quality criteria, and provide an almost un-
limited supply of much needed bioproducts. A universal CRBC product
would be ideal for treating patients with various pathophysiological
problems, in particular those having rare blood phenotypes, and for
reducing alloimmunization and immune-modulation, still unresolved
problems in transfusion medicine. In fact, phosphatidylserine (PS) ex-
posure, the end mark of apoptosis in human erythrocytes is dependent
on in vitro cold storage, while the presence of PS+ extracellular vesicles
has been implicated to transfusion related immune modulation [12].

While cultured RBCs grown in the laboratory have already been
used for experimental purposes, the clinical use of such ex vivo gener-
ated RBCs requires that they are functionally equivalent to native RBCs.
This has not been accomplished yet, despite the fact that these methods
are moving towards good manufacturing processes before application
to the clinical setting.

Current efforts to produce cultured RBCs have generated at least
three major questions that need to be addressed: a] identifying the most
appropriate source of human stem cells; b] suitability, and in particular,
long-term stability of culture conditions and; c] immortalization of
progenitor cells for large scale industrial production facility fit for
purpose. In this context, we do not know in depth the detailed biolo-
gical picture of the erythropoiesis process, so, we are still walking
blindfolded into a highly complex system.

3. Fundamental manufacturing and quality assessment of CRBC

It is important to highlight that the physiological regulation of the
production of erythroid lineage cells from pluripotent stem cells, is a
highly regulated system. During differentiation, progenitor cells un-
dergo substantial changes not only in size but also in haemoglobini-
zation and chromatin condensation in order to be ready for enucleation.
Nuclei are extruded to form reticulocytes, which enter the circulation
and mature into young erythrocytes. Evidence is accumulating that, in
culture systems, in the presence of appropriately selected cocktails of
cytokines, growth factors, transferrin (as a source of iron), serum and
erythropoietin (as the hormone that drives erythropoiesis), it takes
approximately 3 weeks to expand erythroid progenitors, more than
10,000-fold, in a culture volume of 20–30 liters. At the end of erythroid
culture there is a mixed population of up to 90 % enucleated re-
ticulocytes, free nuclei and residual nucleated cells. A purer population
of reticulocytes is obtained by passing the cells through a standard
leucocyte reduction filter used for universal pre-storage leucodepletion

in blood processing. Several different types of leucocyte removal filters
need to be validated to identify the best practical model that reduces
the time taken for cells to pass through validated filters without clog-
ging, damaging, or releasing harmful biological response modifiers The
recovery and integrity of the functional reticulocytes following leu-
koreduction should be continuously monitored to ensure their relia-
bility, consistency and reproducibility. Media volume can be reduced
by centrifugation processes to concentrate the culture-generated red
cells. Closed autotransfusion systems have been optimized to con-
centrate the cells at the end of culture [2]. Accordingly, volume re-
duction during production needs to be fully standardized and harmo-
nized to achieve processing consistency.

From a quality assurance and standardization standpoint, continual
quality improvement at every stage of culture process is an essential
part of all R&D programs producing therapeutic products. Moreover,
any changes in the culture protocols that improve the expansion of
erythroid progenitor cells must ensure sufficient therapeutic quantities
and quality. This is of particular relevance as donor variability and
donors’ parameters enormously influence cell growth in culture. This
observation is crucial since conventional components are known to be
subjected to the donor variation effect as well. These issues remain an
essential part of the successful culture process, as the selection of do-
nors whose erythroid progenitors have a greater expansion capacity, is
a key parameter of the source material. Consequently, moving towards
CRBC products might give as the opportunity to leave RBC storage le-
sions behind, but will lead to a different kind of donor dependency. The
appropriate choice of reproducible and stable expansion media that
enable rapid rate of growth also remains to be fully investigated.

4. Trends and targets in RBC expansion using controlled
bioreactors

The feasibility studies on using immortalized human erythroid
progenitor cell lines for generating large numbers of clinically viable
CRBCs, in a robust and reproducible way began in early 2000s [13]. To
date, major advances have been made in the fields of immortalization of
erythroid adult cell lines [13–18]. Currently, we are witnessing sig-
nificant breakthroughs. For example: The Bristol erythrocyte adult cell
line (BEL-A) can effectively expand indefinitely the proerythroblasts’
stage of differentiation. Further, gene editing of these cells in order to
create individual blood group knockouts has produced a new diagnostic
tool and a multi-blood group knockout that could be used as a new
therapeutic option for sickle cell disease patients [19]. Genetic mod-
ification of the BEL-A cell line led to the generation of cytokine-in-
dependent cells and the production of reticulocytes expressing ther-
apeutic proteins for the treatment of patients with enzyme deficiencies
or for use in perfusates that could prime donor organs for transplan-
tation [1]. Initially, it appeared that the HPV16-E6/E7 oncogene could
force expression of the transcription factor TaL-1 that is essential for the
early haemopoiesis development in cell lines. This proved to be helpful
in producing low efficiency functional haemoglobin after differentia-
tion of enucleated RBCs. Another immortalized cell line that was de-
veloped by the transduction of c-MYC and BCL-XL into multipotent
haematopoietic progenitor cells derived from pluripotent stem cells,
showed high rates of enucleation and expression of foetal haemoglobin
following injection into NOD/SCID mice [16]. Later, by introducing the
HPV16 E6/E7 oncogenes into bone marrow CD34+ cells, the first
human immortalized adult erythroid line (BEL-A) was produced. These
cells have biochemical and structural features of normal erythropoiesis
and survive in vivo expressing mainly haemoglobin A. This has provided
the first proof of principle for the feasibility of scaling up erythroblast
expansion in controlled bioreactors by using immortalized cell lines to
generate RBCs that share common metabolic and functional char-
acteristics with adult conventional RBCs [16,14–18].

In this context, further quality profiling of the final products is
needed in order to ensure that CRBCs have the potential to replace
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short- or long-term unwanted events.

5. Future perspectives

Conceptually CRBCs might become the cornerstone of red cell
substitution therapy in transfusion medicine. This is an enormous task
and only achievable through collaboration of all research groups in-
volved who we hope will work together and help each other. In the
context of facing unresolved challenges, in order to address the risk/
benefit balance in relation to safely of patients, a fresh review of the
jungle of information is warranted, since so many lessons can be
learned from the production, the quality, the legally bound policies and
the evidence-based recommendations. Collaborative studies in trans-
parent working rooms, osmotic flows of both ideas and findings, and –
most of all – a return of excitement to the research classes are needed
for the forward movement of such a difficult project. To conclude, we
already know enough about CRBC as a massive, powerful tool, but we
still have a long way to go before achieving standard RBC product re-
placement. Balancing between what we have achieved so far and the
uncertainty – that is related to the risk/benefit ratio and the cost-ef-
fectiveness – of using CRBCs, might prove to be helpful and informative
for moving towards the next level of transfusion therapy. With each
step taken and each goal achieved it seems that the questions multiply,
but this is a challenge that the scientific community must deal with in
order to increase the chance for an even brighter future for transfusion
therapy.
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