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ORIGINAL RESEARCH

Diabetes and Excess Aldosterone Promote 
Heart Failure With Preserved Ejection 
Fraction
Bence Hegyi , MD, PhD; Juliana Mira Hernandez , DVM, PhD; Christopher Y. Ko , PhD;  
Junyoung Hong , PhD; Erin Y. Shen, BS; Emily R. Spencer , BS; Daria Smoliarchuk, BS;  
Manuel F. Navedo , PhD; Donald M. Bers , PhD; Julie Bossuyt , DVM, PhD

BACKGROUND: The pathobiology of heart failure with preserved ejection fraction (HFpEF) is still poorly understood, and effec-
tive therapies remain limited. Diabetes and mineralocorticoid excess are common and important pathophysiological factors 
that may synergistically promote HFpEF. The authors aimed to develop a novel animal model of HFpEF that recapitulates key 
aspects of the complex human phenotype with multiorgan impairments.

METHODS AND RESULTS: The authors created a novel HFpEF model combining leptin receptor– deficient db/db mice with a 4- week 
period of aldosterone infusion. The HFpEF phenotype was assessed using morphometry, echocardiography, Ca2+ handling, 
and electrophysiology. The sodium- glucose cotransporter- 2 inhibitor empagliflozin was then tested for reversing the arrhythmo-
genic cardiomyocyte phenotype. Continuous aldosterone infusion for 4 weeks in db/db mice induced marked diastolic dysfunc-
tion with preserved ejection fraction, cardiac hypertrophy, high levels of B- type natriuretic peptide, and significant extracardiac 
comorbidities (including severe obesity, diabetes with marked hyperglycemia, pulmonary edema, and vascular dysfunction). 
Aldosterone or db/db alone induced only a mild diastolic dysfunction without congestion. At the cellular level, cardiomyocyte hy-
pertrophy, prolonged Ca2+ transient decay, and arrhythmogenic action potential remodeling (prolongation, increased short- term 
variability, delayed afterdepolarizations), and enhanced late Na+ current were observed in aldosterone- treated db/db mice. All of 
these arrhythmogenic changes were reversed by empagliflozin pretreatment of HFpEF cardiomyocytes.

CONCLUSIONS: The authors conclude that the db/db+aldosterone model may represent a distinct clinical subgroup of HFpEF 
that has marked hyperglycemia, obesity, and increased arrhythmia risk. This novel HFpEF model can be useful in future thera-
peutic testing and should provide unique opportunities to better understand disease pathobiology.
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Heart failure with preserved ejection fraction (HFpEF) 
is a critical and unresolved public health concern 
because of its increasing prevalence, high morbid-

ity and mortality, and limited clinical treatment options.1 
In addition to the characteristic diastolic dysfunction and 
common extracardiac comorbidities (eg, hypertension, 
diabetes, obesity, exercise intolerance, lung and kid-
ney diseases), patients with HFpEF have longer QTc2 
and increased incidence of nonsustained ventricular 

tachycardia on ambulatory ECGs.2,3 The risk for cardiac 
arrhythmias and sudden cardiac death may also be in-
creased in HFpEF,4,5 especially in patients with insulin- 
treated diabetes.6 Importantly, almost all drugs that 
provide benefit in patients with heart failure with reduced 
ejection fraction (EF) have failed clinical trials in HFpEF, 
with exceptions being the mineralocorticoid receptor 
antagonist spironolactone7 and the sodium- glucose 
cotransporter- 2 (SGLT2) inhibitors empagliflozin8 and 
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dapagliflozin.9 However, further randomized HFpEF clin-
ical trials are needed, and the exact molecular mecha-
nisms of cardioprotective effects of these drugs remain 
incompletely understood.10 Therefore, there is a press-
ing unmet need for better understanding of the disease 
pathophysiology and identification of novel therapeutic 
targets.

Progress in understanding and treating HFpEF has 
been hampered by limitations in preclinical animal 
models for HFpEF that fail to represent the full spec-
trum of the complex, multiorgan human HFpEF phe-
notype.11 Moreover, multiple models may be needed 
to capture the clinically heterogeneous human HFpEF 
patient population.1,12,13 Recently, 2-  or multi- hit mod-
els emerged to more closely recapitulate the human 
HFpEF syndrome.11 These models include high- fat 
diet– fed mice treated with the constitutive nitric oxide 
synthase inhibitor Nω- nitro- L- arginine methyl ester (L- 
NAME),14 ZSF1 diabetic plus spontaneously hyperten-
sive rats treated with the vascular endothelial growth 
factor- 2 inhibitor SU5416,15 western diet– fed and aortic- 
banded pigs,16 and western diet– fed pigs treated with 
excess mineralocorticoid (deoxycorticosterone ace-
tate).17 Topical reviews highlighted that in addition to 
these multi- hit models, the leptin receptor- deficient db/
db and aldosterone infusion models can each recapit-
ulate human HFpEF to a certain degree.10,18 However, 
db/db19,20 or aldosterone infusion21 alone may not in-
duce severe diastolic dysfunction or multiorgan HFpEF 
phenotype. Here, we introduce a novel murine HFpEF 
model in which db/db mice are chronically infused 
with aldosterone (db/db+Aldo mice), thus combining 
marked metabolic alteration with mineralocorticoid 
excess. We hypothesized that this combination may 
synergize, leading to a robust HFpEF phenotype with 
marked diastolic dysfunction, increased proarrhythmia 
risk, and significant systemic multiorgan impairments. 
This model would complement the existing HFpEF 
models in having a more diabetic phenotype, because 
a one- size- fits- all therapeutic strategy is unlikely to 
work in HFpEF.1 Patients with diabetic HFpEF represent 
a large clinical pheno- subgroup22 with distinct myocar-
dial gene expression profile,23 impaired cardiomyocyte 
Ca2+ homeostasis,24 and a particularly poor prognosis 
but better response to spironolactone therapy22 com-
pared with patients with nondiabetic HFpEF.

Here we show that db/db and chronic aldosterone 
infusion separately induced only very mild diastolic 
dysfunction without pulmonary congestion in mice. 
However, when these 2 factors are combined, db/
db+Aldo mice exhibit marked diastolic dysfunction 
with preserved EF, cardiac hypertrophy, high levels of 
B- type natriuretic peptide (BNP), and significant ext-
racardiac comorbidities (morbid obesity, diabetes with 
marked hyperglycemia, pulmonary edema, and vas-
cular dysfunction) in line with current human HFpEF 
diagnostic criteria.11 At the cellular level, cardiomyocyte 
hypertrophy, prolonged Ca2+ transient (CaT) decay, 
and arrhythmogenic action potentials (APs) were ob-
served in db/db+Aldo mice. Empagliflozin reversed the 
late Na+ current (INa,Late) enhancement and proarrhyth-
mic AP changes in db/db+Aldo, directly acting on car-
diomyocytes despite that cardiomyocytes lack SGLT2 

CLINICAL PERSPECTIVE

What Is New?
• Diabetes and mineralocorticoid excess are syn-

ergistic pathogenic factors in promoting heart 
failure with preserved ejection fraction (HFpEF) 
phenotype.

• Diabetes and aldosterone induce diastolic Ca2+ 
handling impairments and action potential du-
ration prolongation and enhance late Na+ cur-
rent, which promote diastolic dysfunction and 
arrhythmias in HFpEF.

• The sodium- glucose contransporter- 2 inhibitor 
empagliflozin reverses action potential duration 
prolongation and late Na+ current enhance-
ment, acting directly on HFpEF cardiomyocytes.

What Are the Clinical Implications?
• Patients with HFpEF and diabetic hyperglyce-

mia may exhibit more severe diastolic dysfunc-
tion and have increased arrhythmia risk.

• Patients with HFpEF and diabetes may ben-
efit from drugs targeting mineralocorticoid 
signaling.

• The sodium- glucose contransporter- 2 inhibitor 
empagliflozin may have an important beneficial 
effect on cardiac electrical activity in patients 
with HFpEF and diabetic cardiomyopathy.

Nonstandard Abbreviations and Acronyms

AP action potential
db/db+Aldo db/db mice infused with 

aldosterone
APD action potential duration
CaT Ca2+ transient
db/db leptin receptor– deficient mice 

(Leprdb/db)
HFpEF heart failure with preserved 

ejection fraction
INa,Late late Na+ current
L- NAME Nω- nitro- L- arginine methyl ester
SGLT2 sodium- glucose contransporter- 2
SR sarcoplasmic reticulum
WT wild- type
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expression,25 providing additional insights into myocyte 
drug targets and therapeutic benefits of empagliflozin. 
In conclusion, the db/db+Aldo model can be an im-
portant translational murine model of a more diabetic 
phenotype to complement existing animal models for 
studying disease pathobiology and future therapeutic 
testing in HFpEF.

METHODS
All animal handling and laboratory procedures were 
in accordance with the approved protocols (#21572 
and 22834) of the Institutional Animal Care and Use 
Committee at University of California, Davis, conform-
ing to the National Institutes of Health Guide for the 
Care and Use of Laboratory Animals (8th edition, 2011).

The data underlying this article will be shared on 
reasonable request to the corresponding authors.

Detailed methods are available in Data S1.

Animal Procedures
Twenty- four adult (10- week- old, both sexes) Leprdb/db 
(stock #000697) and 24 corresponding wild- type (WT) 
mice on C57BL6/J background were obtained from 
Jackson Laboratory. The animals were kept at standard 
temperature, humidity, and lighting. Food (Teklad, 2018) 
and drinking water were provided ad libitum. Osmotic 
minipumps (Alzet, model 2004) that delivered a continu-
ous infusion of either d- aldosterone (0.3 μg/h)21 or vehi-
cle (saline with 5% ethanol) for 4 weeks were implanted 
subcutaneously in 12- week- old mice (Figure  1A). We 
used block randomization with a block size of 4 animals 
(for 1 genotype and treatment group in 1 sex), with 16 
control (WT+vehicle) and 16 two- hit (db/db+Aldo) mice 
included (allowing for detailed isolated myocyte studies), 
and for the one- hit controls we used 8 WT+Aldo and 8 
db/db+vehicle mice. For proper allocation concealment, 
animals were recruited blinded based on sequential ear 
tag numbers randomly assigned by the animal housing 
facility. Each treatment group included an equal num-
ber of male and female animals. Enzymatic isolation of 
left ventricular (LV) cardiomyocytes was performed as 
previously described.26

Blood Glucose, Aldosterone, and BNP 
Measurements
Blood glucose levels were measured in fresh blood 
samples collected from the middle tail vein using 
OneTouch UltraMini blood glucose monitoring system 
and test strips (LifeScan). BNP and aldosterone lev-
els were measured in blood plasma by ELISA using 
manufacturers’ instructions (RayBiotech, EIAM- BNP- 1 
and Cayman Chemical, Aldosterone EIA, respectively). 
Three technical replicates were performed for each 
biological sample.

Arterial Diameter Measurements
Freshly isolated mesenteric artery segments were 
mounted in a 5- mL myograph chamber to determine 
arterial diameter changes in response to changes in 
intraluminal pressure as previously described.27

Echocardiography
Transthoracic echocardiography was performed in an-
esthetized (isoflurane, 1%– 3%) animals. LV M- mode and 
Doppler images were acquired using a Vevo 2100 echo-
cardiography system (FUJIFILM VisualSonics) equipped 
with a 40- MHz transducer. Body temperature was care-
fully monitored, and anesthesia was adjusted to achieve 
heart rates of 350 to 450 beats per minute to assess di-
astolic dysfunction and 450 to 600 beats per minute to 
assess systolic cardiac function in each animal.

Calcium Imaging
Intracellular CaTs were measured using confocal mi-
croscopy in freshly isolated ventricular cardiomyo-
cytes loaded with Fluo- 4 AM (10 μmol/L, 30 minutes; 
Invitrogen) at room temperature.26

Cellular Electrophysiology
APs were recorded in isolated ventricular cardiomyo-
cytes using patch- clamp with physiological solutions 
at 37 °C.26 Arrhythmogenic diastolic activities were as-
sessed during a 1- minute period following cessation of 
tachypacing. In voltage- clamp experiments, INa,Late was 
measured using 500- millisecond depolarizing voltage 
pulses to −40 mV from −120 mV holding potential in 
every 5 seconds.

Statistical Analysis
Data are presented as mean±SEM. Statistical sig-
nificance of differences was determined using t test, 
Mann– Whitney test, and ANOVA followed by Tukey 
or Dunn multiple comparisons test, when applicable. 
GraphPad Prism 9 was used for data analysis. P<0.05 
was considered statistically significant.

RESULTS
Diabetes and Aldosterone Excess Induce 
Multiorgan Impairments Characteristic of 
HFpEF
Figure  1A illustrates the db/db+Aldo mouse proto-
col and measurements made at the end of 4- week 
continuous aldosterone (or vehicle) infusion. Plasma 
aldosterone levels were elevated 2.5- fold following 
4- week aldosterone infusion (versus vehicle) in both 
WT and db/db mice (Figure 1B). Morphometric evalu-
ations (Figure  1C) showed morbid obesity, marked 
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hyperglycemia, and hepatomegaly in all db/db mice (in-
dependent of aldosterone infusion) as expected in this 
genotype. However, only db/db+Aldo mice exhibited 
significant cardiac hypertrophy (P=0.011 for interac-
tion between db/db genotype and aldosterone treat-
ment in 2- way ANOVA), pulmonary edema (P=0.037), 
and elevated BNP levels (P=1.2×10−5) as shown in 
Figure 1D. No major morphometric alteration was ob-
served in aldosterone- treated WT mice (WT+Aldo) ver-
sus vehicle- treated WT controls (WT+vehicle).

Diabetes and Aldosterone Excess Induce 
Vascular Remodeling in HFpEF

Extracardiac comorbidities, including vascular ab-
normalities (vascular stiffening and endothelial and 
microvascular dysfunction) and hypertension, are fre-
quently reported in patients with HFpEF. We carefully 
measured the arterial diameters and the myogenic re-
sponse over a range of intravascular pressures (10 to 
100 mm Hg) in isolated mesenteric arteries in WT+vehicle 

Figure 1. Robust heart failure with preserved ejection fraction (HFpEF) phenotype in db/db mice with chronic aldosterone 
infusion.
A, Study protocol of HFpEF- inducing treatment and assessment of cardiac function and multiorgan impairments. B, Plasma 
aldosterone levels 4 weeks after osmotic minipump implantation in WT and leptin receptor- deficient db/db mice. C, Marked obesity, 
hyperglycemia, and hepatomegaly in db/db mice. D, Cardiac hypertrophy, pulmonary edema, and high BNP plasma levels in db/
db+Aldo. Mean±SEM is shown. ANOVA followed by Tukey multiple comparisons test. Animal numbers are shown in the figure. BNP 
indicates B- type natriuretic peptide; db/db+Aldo, db/db mice with chronic aldosterone infusion; HFpEF, heart failure with preserved 
ejection fraction; HM/TL, heart mass to tibia length ratio; and WT, wild- type.
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and db/db+Aldo mice (Figure  2A). Significant vascu-
lar remodeling in db/db+Aldo mice was evident from 
markedly increased myogenic tone (Figure 2B), which 
could contribute to an increased mechanical afterload 
on the heart.

db/db+Aldo Mice Exhibit Marked Diastolic 
Dysfunction and Preserved EF

Echocardiographic evaluation (Figure  3) showed 
preserved fractional shortening and EF in WT+Aldo 
mice, whereas contractility was slightly reduced in db/
db+vehicle mice. Importantly, fractional shortening and 
EF were preserved in db/db+Aldo mice (Figure 3A and 
3B). Moreover, db/db+Aldo hearts exhibited significant 
concentric hypertrophy quantified as LV remodeling 
index (a ratio between LV mass/LV end- diastolic inter-
nal diameter; P=1.2×10−5 for interaction between db/db 
and Aldo), whereas db/db+vehicle hearts showed only 
a small tendency for LV hypertrophy, and LV remod-
eling index was unchanged in WT+Aldo (Figure  3B). 
Indices of diastolic dysfunction (mitral E/A and E/e′) 
progressively increased during chronic aldosterone in-
fusion (Figure S1), and, by the end of 4- week treatment, 
both measures (Figure 3C) were markedly increased in 
db/db+Aldo mice (E/e′, P=1.6×10−8 for interaction be-
tween db/db and Aldo). In contrast, db/db+vehicle and 
WT+Aldo mice only showed slight increases in E/A and 
E/e′ over the 4- week study period versus WT+vehicle 
(Figure 3C; Figure S2). Left atrial (LA) enlargement is a 
marker of diastolic dysfunction,28 frequently observed 
in patients with HFpEF,29 and LA area was also sig-
nificantly increased in db/db+Aldo mice (P=0.001 
for interaction between db/db and Aldo) but only 
slightly increased in db/db+vehicle and WT+Aldo mice 
(Figure  3C). These data suggest a synergy between 

diabetes and aldosterone signaling in promoting dia-
stolic dysfunction.

db/db+Aldo Mice Exhibit Diastolic 
Impairments in Cardiomyocyte Calcium 
Handling

Impaired cardiomyocyte Ca2+ handling can promote 
contractile dysfunction and arrhythmias.30,31 Intracellular 
CaTs in db/db+Aldo myocytes stimulated at 1 Hz exhib-
ited unchanged peak [Ca2+]i, elevated diastolic [Ca2+], 
and slowed decline of CaTs indicative of slower sarco-
plasmic reticulum (SR) Ca2+ reuptake (Figure 4A through 
4C). The elevated diastolic [Ca2+]i caused by slower CaT 
decline results in a trend toward smaller CaT amplitude. 
However, the caffeine- induced CaT amplitude was 
unchanged, indicating similar SR Ca2+ content in db/
db+Aldo versus control myocytes (Figure 4C).

db/db+Aldo Murine Cardiomyocytes Have 
Proarrhythmogenic Electrophysiological 
Changes

Because arrhythmias are more frequent in diabetic 
patients with HFpEF, we tested for proarrhythmic re-
modeling in db/db+Aldo mice. AP duration (APD) was 
markedly prolonged in db/db+Aldo mice (Figure  5A). 
APD prolongation was prominent at the later phase 
of repolarization (75% and 90% of repolarization) 
(Figures 5A; Figure S3). Moreover, short- term tempo-
ral variability of APD was also markedly increased in 
db/db+Aldo (Figure 5B), which may reflect increased 
spontaneous Ca2+ release.26,32 To further assess ar-
rhythmia susceptibility, we tested spontaneous di-
astolic activities following a tachypacing protocol 
(1 minute at 10 Hz pacing). Delayed afterdepolarizations 

Figure 2. Impaired arterial function in db/db mice with chronic aldosterone infusion.
A, Increased arterial myogenic tone in db/db+Aldo (n=7 arteries from 5 animals) vs WT mice with vehicle infusion (WT+vehicle, n=5 
arteries from 5 animals). Mean±SEM is shown. Two- way repeated measures ANOVA with Geisser– Greenhouse correction. db/db+Aldo 
indicates db/db mice with chronic aldosterone infusion; and WT, wild- type.
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Figure 3. Marked diastolic dysfunction with preserved systolic function in db/ddb/db+Aldo.
A, Representative LV M- mode, flow, and tissue Doppler echocardiographic images 4 weeks after aldosterone or vehicle minipump 
implantation in WT and db/db mice. B, Preserved FS and EF, and significantly increased LVRI in db/db+Aldo. C, Severe diastolic 
dysfunction and LA enlargement in db/db+Aldo. Mean±SEM is shown. ANOVA followed by Tukey multiple comparisons test. Animal 
numbers are shown in the figure. db/db+Aldo indicates db/db mice with chronic aldosterone infusion; E/A, ratio between mitral E 
wave and A wave; E/e′, ratio between mitral E wave and e′ wave; EF, ejection fraction; FS, fractional shortening; LA, left atrial; LV, left 
ventricular; LVAW, left ventricular anterior wall; LVID, left ventricular internal diameter; LVIDd, end- diastolic left ventricular internal 
diameter; LVM, left ventricular mass; LVPW, left ventricular posterior wall; LVRI, LV remodeling index; and WT, wild- type.
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Figure 4. Prolonged Ca transient decay in db/db+Aldo.
A, Representative intracellular CaTs in WT+vehicle and db/db+Aldo cardiomyocytes at 1- Hz pacing 
and following a rapid caffeine pulse (10 mmol/L). B, Intracellular Ca2+ levels quantified as changes in 
Fluo- 4 fluorescence. Diastolic [Ca2+]i is the ratio of minimum F between beats at 1 Hz and the resting 
F0. C, Prolonged CaT decay tau and unchanged SR Ca2+ content in db/db+Aldo. Mann– Whitney test. 
Mean±SEM is shown. n=18 cells from 6 animals in WT+vehicle and n=21 cells from 8 animals in db/
db+Aldo. Each individual myocyte is shown as a data point. CaTs indicates Ca2+ transients; db/db+Aldo, 
db/db mice with chronic aldosterone infusion; SR, sarcoplasmic reticulum; and WT, wild- type.
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Figure 5. Arrhythmogenic AP changes in db/db+Aldo murine cardiomyocytes are reversed by empagliflozin.
A, Representative APs in WT+vehicle and db/db+Aldo cardiomyocytes at 1- Hz pacing. Cm is shown in the inset (Mann– Whitney test). 
Prolongation of APD90 in db/db+Aldo is reversed by EMPA (1 μmol/L, 4 hours). B, STV of APD90 was increased in db/db+Aldo, and this 
increase was reversed by EMPA. In AP measurements, 16 cells from 7 animals in WT+vehicle without EMPA treatment; 23 cells from 
7 animals in WT+vehicle with EMPA treatment; 18 cells from 8 animals in db/db+Aldo without EMPA treatment; and 23 cells from 8 
animals in db/db+Aldo with EMPA treatment. C, DADs and spontaneous APs were increased in db/db+Aldo following cessation of 
tachypacing (10 Hz) and reversed by EMPA. In DAD measurements, 11 cells from 7 animals in WT+vehicle without EMPA treatment; 
16 cells from 7 animals in WT+vehicle with EMPA treatment; 10 cells from 8 animals in db/db+Aldo without EMPA treatment; and 19 
cells from 8 animals in db/db+Aldo with EMPA treatment. Mean±SEM is shown. ANOVA followed by Tukey multiple comparisons test. 
Each individual myocyte is shown as a data point. AP indicates action potential; APD90, AP duration at 90% repolarization; Cm, cell 
capacitance; DADs, delayed afterdepolarizations; db/db+Aldo, db/db mice with chronic aldosterone infusion; EMPA, empagliflozin 
pretreatment; STV, short- term variability; and WT, wild- type.
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and spontaneous APs were significantly increased in 
db/db+Aldo mice (Figure  5C). Importantly, all proar-
rhythmic AP changes were reversed by empagliflozin 
pretreatment (1 μmol/L, 4 hours) in db/db+Aldo mice, 
while empagliflozin had no effect in WT+vehicle control 
mice (Figure 5A through 5C).

Late Na+ Current Is Enhanced in db/
db+Aldo Murine Cardiomyocytes

APD prolongation, predominantly at phase 3 repo-
larization (Figure  5; Figure  S3), suggested a potential 
role for INa,Late enhancement in db/db+Aldo myocytes. 
INa,Late density (current amplitude normalized to cell 

capacitance) was markedly increased in db/db+Aldo 
(Figure  6). Importantly, empagliflozin preincubation 
(1 μmol/L, 4 hours) reversed INa,Late upregulation in db/
db+Aldo mice and had no effects in controls (Figure 6), in 
line with the significant effect of empagliflozin selectively 
on APD in db/db+Aldo versus WT+vehicle (Figure 5).

DISCUSSION
Modeling Diabetic HFpEF in Preclinical 
Research
Diabetes and mineralocorticoid excess are associ-
ated with worse outcome in patients with HFpEF.6,22,33 

Figure 6. Empagliflozin reverses late Na+ current enhancement in db/db+Aldo murine 
cardiomyocytes.
A, RepresentativeINa,Late traces in WT+vehicle and db/db+Aldo myocytes without or with preincubation 
with EMPA (1 μmol/L, 4 hours) and subsequent acute TTX (10 μmol/L, 3 minutes) applications. (Peak INa 
was off- scale.) B, EMPA pretreatment reversed INa,Late upregulation in db/db+Aldo. Mean±SEM is shown. 
ANOVA followed by Dunn multiple comparisons test. 12 cells from 4 animals in WT+vehicle without EMPA 
treatment; 13 cells from 4 animals in WT+vehicle with EMPA treatment; 12 cells from 4 animals in db/
db+Aldo without EMPA treatment; and 12 cells from 4 animals in db/db+Aldo with EMPA treatment. Each 
individual myocyte is shown as a data point. db/db+Aldo indicates db/db mice with chronic aldosterone 
infusion; EMPA, empagliflozin pretreatment; INa,Late,  late Na+ current; TTX, tetrodotoxin; and WT, wild- 
type.
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In preclinical research, db/db and aldosterone infu-
sion models have been used independently to study 
HFpEF disease mechanisms.19,21 However, db/db mice 
or aldosterone- treated WT mice only exhibit a mild di-
astolic dysfunction (Figure 3), in line with previous re-
ports, and fail to recapitulate the complex metabolic 
and hemodynamic derangements in HFpEF.10,11,18 The 
cardiac systolic function tends to decrease with age in 
db/db mice34; however, the additional hemodynamic 
challenge caused by excess aldosterone led to pre-
served EF in db/db+Aldo mice (Figure 3). In line with 
this, db/db mice did not develop heart failure with 
reduced EF following pressure overload induced by 
transverse aortic constriction.35 This was associated 
with restoration of protein kinase D1 function,35 which 
importantly regulates cardiac hypertrophy and pro-
gression to heart failure with reduced EF.36 Aldosterone 
infusion alone induces mild changes in cardiac func-
tion unless accompanied by additional stressors (eg, 
uninephrectomy+salt water21 or myocardial infarc-
tion).37 Here we showed that combined db/db+Aldo 
synergistically induces marked diastolic dysfunction, 
concentric cardiac hypertrophy, pulmonary conges-
tion, and multiple common comorbidities of HFpEF, 
including diabetes, obesity, and increased vascular re-
sistance (Figures 1 through 3), more closely recapitu-
lating important aspects of human HFpEF. Thus, our 
new 2- hit HFpEF model (db/db+Aldo) complements 
other recent preclinical models with a somewhat dif-
ferent disease pathophysiology (eg, versus a model 
of nitrosative stress in high- fat diet+L- NAME– treated 
mice14). Indeed, individual HFpEF animal models (in-
cluding this db/db+Aldo model) may best phenocopy 
a different subset of patients with HFpEF,12,22– 24 each 
of which may benefit most by different targeted thera-
peutic strategies. Parallel use of these translational 
HFpEF models can help to better understand disease 
pathomechanisms, find new molecular targets, test 
new drugs, and stratify subgroups of patients with 
HFpEF with prognostic and therapeutic implications.1,13

Mechanisms of Increased Arrhythmia 
Susceptibility in Diabetic HFpEF
The db/db+Aldo model showed proarrhythmic 
changes in Ca2+ handling (Figure 4) and electrophysiol-
ogy (Figures 5 and 6), in line with the increased arrhyth-
mia susceptibility in diabetic patients with HFpEF.6,22 
The QTc is longer in patients with HFpEF,2 and an in-
creased incidence of nonsustained ventricular tachy-
cardia was reported on their ambulatory ECGs,2,3 
correlating with APD prolongation and increased 
delayed afterdepolarizations in db/db+Aldo mice 
(Figure 5). Diabetic hyperglycemia has been shown to 
induce a complex signaling network of oxidative stress, 

intracellular glycosylation, and activation of protein ki-
nases (Ca2+/calmodulin- dependent protein  kinase II, 
protein kinase C, protein kinase D1), which impairs the 
function of multiple sarcolemmal and sarcoplasmic 
ion channels to promote proarrhythmic APs.26,38– 40 
Noncardiomyocyte mechanisms, including inflamma-
tion, fibrosis, and coronary artery disease may further 
enhance arrhythmias in diabetic HFpEF.38 We also 
show elevated arterial myogenic tone at physiological 
arterial pressures (Figure 2), which could contribute to 
hypertension observed in many patients with HFpEF. 
The increased mechanical afterload caused by hyper-
tension can further enhance arrhythmogenic Ca2+ han-
dling and ion channel functional impairments in cardiac 
myocytes, dependent on nitric oxide signaling.41,42

Potential Ionic Mechanisms and 
Antiarrhythmic Effects of Empagliflozin in 
HFpEF
Empagliflozin reduces mortality and hospitalization 
in patients with HFpEF with or without diabetes.8 In 
line with this, SGLT2 inhibitors were shown to pro-
vide direct cardiovascular benefits beyond glycemic 
control.25,43 Moreover, SGLT2 expression is lacking in 
cardiomyocytes,44 suggesting an off- target effect. The 
sodium- hydrogen exchanger has been suggested as 
a potential empagliflozin target in cardiomyocytes45; 
however, this mechanism remains controversial.46 
Another target for SGLT2 inhibitors in cardiomyocytes 
can be the late Na+ current.47 Recently, we showed 
that empagliflozin reversed the enhancement of late 
Na+ current and APD prolongation in a different HFpEF 
model induced by high- fat diet+L- NAME treatment.48 
However, this empagliflozin effect on late Na+ current 
and APD in HFpEF required drug preincubation for 
4 hours and suggested that the effect could be medi-
ated by reduction of oxidative stress and suppression 
of Ca2+/calmodulin- dependent protein kinase II.48,49 
Here we confirm this therapeutic benefit of empagliflo-
zin in an additional HFpEF model, showing a complete 
reversal of INa,Late enhancement and proarrhythmic AP 
changes in db/db+Aldo cardiomyocytes (Figures 5 and 
6). Thus, empagliflozin might have beneficial electro-
physiological effects by reversing the cellular Na+ and 
Ca2+- handling impairments, which form a vicious cycle 
promoting contractile dysfunction and arrhythmias in 
the failing heart.31 While the potential antiarrhythmic ef-
fects of SGLT2 inhibitors in patients with HFpEF are yet 
to be determined, dapagliflozin reduced the risk of ven-
tricular arrhythmias and sudden cardiac death in pa-
tients with heart failure with reduced EF.50 Dapagliflozin 
also attenuated diastolic dysfunction in a similar mouse 
model presented here, which used chronic angiotensin 
II infusion in db/db mice.51
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Study Limitations
Aging, an important characteristic of patients with 
HFpEF, has not been considered in this animal model.11 
In addition to arrhythmogenic ventricular remodeling, 
atrial fibrillation is a frequent comorbidity in aging pa-
tients with HFpEF,52,53 which requires further investi-
gation. Sex differences and the underlying molecular 
mechanisms were not studied here; however, cardiac 
remodeling is more prominent in diabetic women with 
HFpEF,54 and female db/db mice,20 and mineralocor-
ticoid receptor inhibition may provide more benefit in 
women with HFpEF.55

CONCLUSIONS
In the current study, we showed that diabetes and 
excess aldosterone synergistically promote diastolic 
dysfunction, concentric cardiac hypertrophy, elevated 
BNP levels, and significant extracardiac comorbidities 
(including severe obesity, diabetes with marked hyper-
glycemia, pulmonary edema, and vascular dysfunction), 
recapitulating important aspects of human HFpEF. At 
the level of cardiac myocytes, diabetes and excess al-
dosterone induced diastolic Ca2+- handling impairments 
and APD prolongation and enhanced INa,Late, which 
could promote diastolic dysfunction and arrhythmias 
in this murine model of HFpEF. Empagliflozin reversed 
INa,Late enhancement and cellular proarrhythmia, directly 
acting on murine HFpEF myocytes. In conclusion, the 
db/db+Aldo model represents an important clinical 
subgroup of HFpEF that has marked hyperglycemia 
and obesity and increased arrhythmia risk. This novel 
HFpEF model can be useful to better understand dis-
ease pathobiology and therapeutic effects.
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Data S1. SUPPLEMENTAL METHODS 

Implantation of osmotic minipumps 
The osmotic minipumps (Alzet, model 2004) were prepared per manufacturer’s instructions. Animals were 
anesthetized by isoflurane (1-5%) during the entire surgical procedure. Once the animal was anesthetized, 
fur on the back was removed with a depilatory. The operating field was disinfected with chlorhexidine 
solution and 70% ethanol. A 1.5 cm mid-scapular incision was made across the back perpendicular to the 
spine. A hemostatic clamp was inserted into the incision, and the subcutaneous tissue was spread by opening 
and closing the jaws of the hemostat to create a pocket for the pump. A pump filled with 200 μL solution 
was inserted into the pocket, starting with the delivery portal. The wound was closed with pharmaceutical 
grade surgical glue. Additionally, for any incisions greater than 1.5 cm or when glue did not provide 
sufficient closure, 3 single non-continuous sutures were placed, and removed 7-10 days later. Recovery of 
animals was carefully monitored, and if the mice showed pain or distress upon regaining consciousness, a 
dose of analgesic (buprenorphine, 0.05-0.1 mg/kg, SC) was given immediately, and additional doses were 
given if pain and distress persisted upon re-evaluation every 12 hr over a 48 hr period. The pumps stayed 
in the mice for 4 weeks and continuously delivered d-aldosterone at a rate of 0.3 μg/hour. 

Aldosterone and BNP measurements 
Aldosterone and B-type natriuretic peptide (BNP) levels were measured from blood plasma using enzyme-
linked immunosorbent assay (ELISA) kits specific to aldosterone (Cayman Chemical, Aldosterone ELISA 
kit, Item No. 501090) and mouse BNP (RayBiotech, EIAM-BNP-1) according to the manufacturers’ 
instructions. Plasma was prepared from anticoagulated (EDTA) blood by centrifugation at 3220 g for 1 
hour at 4°C. The protein concentrations were calculated using a standard curve generated with recombinant 
standards provided by the manufacturers. Three technical replicates were performed for each biological 
sample. 

Pressure myography 
Freshly isolated third and fourth order mesenteric arteries (average diameter 150-180 μm and 0.5-1 mm in 
length) were cannulated onto glass micropipettes and mounted on a 5 mL myograph chamber (Living 
System Instrumentation, St Albans, VT, USA). Arteries were equilibrated at 20 mmHg for an hour with a 
pressure servo controller pump (Living System Instrumentation). Vessels were perfused continuously with 
a physiological saline solution (PSS) containing (in mmol/L): 119 NaCl, 4.7 KCl, 1.2 KH2PO4, 1.2 MgCl2, 
2 CaCl2, 7 glucose, 24 NaHCO3 at 37 C. The PSS solution was bubbled with 95% O2 and 5% CO2 to 
maintain the pH at 7.4. Changes in internal diameter were continuously recorded at 10 frames/second and 
analyzed using the IonOptix edge detection software (IonOptix 6.6, Westerwood, MA, USA). Arterial 
viability was tested by treatment with 60 mmol/L KCl solution and subsequent development of myogenic 
tone upon increasing intravascular pressure. Arteries that did not constrict robustly to the high KCl solution 
and further developed stable tone at 80 mmHg were discarded. Once the arteries had achieved stable 
myogenic tone, they were tested over a range of intravascular pressures (10 to 100 mmHg) to obtain the 
active diameter (DA). At the end of the experiment, the passive diameter (DP) was acquired over the same 
pressure range in a Ca2+ free PSS ([mmol/L], 119 NaCl, 4.7 KCl, 1.2 KH2PO4, 1.2 MgCl2, 7 glucose, 24 
NaHCO3, 5 EGTA) + 1 μmol/L nifedipine to determine the maximal dilation. The percentage of myogenic 
tone was calculated as [(DP-DA)/DP]100. 

Murine echocardiography 
Systolic and diastolic ventricular heart functions of mice were assessed by transthoracic echocardiography 
using the Vevo 2100 echocardiography system (FUJIFILM VisualSonics, Toronto, ON, Canada) equipped 
with a 40 MHz linear probe. Mice fur was removed by a depilatory the day before echocardiography 
recordings. During recordings, mice were anesthetized with isoflurane inhalation (1.5%), which was later 
individually adjusted (between 1 to 3%) to achieve a stable heart rate between 350 to 450 beats/min to 
assess diastolic dysfunction (to avoid fusion of the waves) and 450 to 600 beats/min to assess systolic 



 

cardiac function (to avoid depressed contractile function) in each animal. ECG monitoring was obtained 
using limb electrodes, and core temperature was carefully monitored and maintained at 37ºC during the 
entire procedure. Left ventricular (LV) M-mode echocardiography in parasternal short-axis view was 
performed for assessment of LV dimensions and systolic function. Pulsed wave Doppler and tissue Doppler 
images were acquired to assess diastolic function. At least three consecutive cardiac cycles were sampled 
for each measurement taken, and blinded analysis was performed off-line. 

Enzymatic isolation of ventricular cardiomyocytes 
Mice injected with heparin (400 U/kg body weight) and anesthetized with isoflurane (5% in an induction 
chamber, then 1.5-3% via nose cone). Hearts were excised and retrograde perfused on constant flow 
Langendorff apparatus (4 min, 37ºC) with Ca2+-free normal Tyrode’s solution, gassed with 100% O2. Then, 
the heart was perfused for 13-16 min with 80 mg collagenase (type 2, Worthington Biochemical Corp., 
Lakewood, NJ, USA) and 1.4 mg protease (type XIV, Sigma-Aldrich, St. Louis, MO, USA) in 50 mL 
Tyrode’s solution (with 10 μmol/L Ca2+) to enzymatically isolate cardiomyocytes. Following digestion, the 
myocytes were gently triturated with a pipette, then filtered through a nylon mesh and allowed to sediment 
for ~10 min. The sedimentation was repeated three times using increasing [Ca2+] from 0.125 to 0.25 then 
0.5 mmol/L. Finally, ventricular myocytes were kept in Tyrode’s solution (0.5 mmol/L Ca2+) at room 
temperature until use. 

Calcium imaging 
Intracellular Ca2+ transients and diastolic Ca2+ events (sparks and waves) were measured in freshly isolated 
ventricular cardiomyocytes loaded with Fluo-4 AM (10 μmol/L, Invitrogen, Waltham, MA, USA) and 
Pluronic F-127 (0.02%, Invitrogen). The dye was loaded for 30 minutes at room temperature followed by 
wash and de-esterification for 30 minutes. Fluo-4 was excited at 488 nm using an Argon laser, and emission 
was collected using a 500-530 nm bandpass filter. Images were recorded using confocal microscopy in line 
scan mode (Bio-Rad Radiance 2100, Hercules, CA, USA) using a 40x objective and scanned at 6 ms/line. 
Intact cardiomyocytes were plated on laminin-coated coverslips and paced at 1 Hz in a field stimulation 
chamber (Warner Instruments, Hamden, CT, USA). Myocytes were continuously perfused with Tyrode’s 
solution containing (in mmol/L): NaCl 140, KCl 4, CaCl2 1.8, MgCl2 1, HEPES 5, Na-HEPES 5, glucose 
5.5; pH=7.40. Sarcoplasmic Ca2+ content was assessed by local delivery of 10 mmol/L caffeine. ImageJ 
was used for image processing and analysis. During analysis, the non-cellular background fluorescence was 
subtracted, and the control baseline (non-paced) fluorescence (F0) was determined in each cell. There was 
no statistical difference in F0 values between db/db+Aldo and WT+Vehicle myocytes. 

Cellular electrophysiology 
Isolated single murine ventricular cardiomyocytes were placed in a temperature-controlled perfusion 
chamber (Warner Instruments) mounted on a Leica DMI3000 B inverted microscope (Leica Microsystems, 
Buffalo Grove, IL, USA). Cells were bathed at 37°C (for 10 minutes before starting the experiments) and 
continuously perfused (2 mL/min) with Tyrode’s solution containing (in mmol/L): NaCl 140, KCl 4, CaCl2 
1.8, MgCl2 1, HEPES 5, Na-HEPES 5, glucose 5.5; pH=7.40. Electrodes were fabricated from borosilicate 
glass (World Precision Instruments., Sarasota, FL, USA) having tip resistances of 2 to 2.5 MΩ when filled 
with internal solution containing (in mmol/L): K-aspartate 100, KCl 30, NaCl 8, Mg-ATP 5, 
phosphocreatine dipotassium salt 10, HEPES 10, EGTA 0.01, cAMP 0.002, and calmodulin 0.0001; 
pH=7.20 (with KOH). Using this internal solution, the intracellular Ca2+ transient and contraction of the 
cardiomyocyte are preserved. Axopatch 200B amplifier (Axon Instruments Inc., Union City, CA, USA) 
was used for recordings and the signals were digitized at 50 kHz by a Digidata 1322A A/D converter (Axon 
Instruments) under software control (pClamp10.4). Series resistance was typically 3 to 5 MΩ and it was 
compensated by ≥90%. Experiments were discarded when the series resistance was high or increased by 
≥20% during the recordings. Experiments were conducted at 37±0.1°C. 

APs were recorded in whole-cell I-clamp conditions where cells were stimulated using supra-
threshold depolarizing pulses (2 ms duration) delivered via the patch pipette at 1 Hz frequency. AP duration 
at 90% repolarization (APD90) was used to characterize AP repolarization. Series of 50 consecutive APs 



 

were analyzed to estimate short-term variability (STV) of APD90 according to the following formula: 
STV=Σ(│APDn+1−APDn│)/[(nbeats−1)×√2], where APDn and APDn+1 indicate the durations of the nth and 
(n+1)th APs, and nbeats denotes the total number of consecutive beats analyzed. Diastolic arrhythmogenic 
activities were elicited by cessation of 1-min burst pacing (10 Hz), and membrane potential was recorded 
for additional 1 minute. Delayed afterdepolarizations (DADs) were defined as an increase in resting 
membrane potential exceeding 1 mV in amplitude within 0.5 seconds. Spontaneous APs (sAPs) were 
defined as depolarizations showing overshoot with a fast upstroke phase. 

In voltage-clamp INa,Late measurements, internal solution contained (mmol/L): CsCl 110, 
tetraethylammonium chloride 20, Mg-ATP 5, HEPES 10, phosphocreatine disodium salt 5, calmodulin 
0.0001, EGTA 10, CaCl2 4.1 (free [Ca2+]=100 nmol/L), pH=7.20. Bath solution contained (mmol/L): NaCl 
140, CsCl 4, CaCl2 1.8, MgCl2 1, HEPES 5, Na-HEPES 5, glucose 5.5, 4-aminopyridine 5, nifedipine 0.01, 
pH=7.40. INa,Late was measured at the end of a 500 ms depolarizing pulse to -40 mV from a -120 mV holding 
potential. INa,Late could be inhibited by tetrodotoxin (TTX, 10 μmol/L), and the TTX-sensitive current 
amplitude was normalized to cell capacitance (INa,Late density) in each cell. 

Chemicals and reagents were purchased from Sigma-Aldrich (St. Louis, MO, USA), if not specified 
otherwise. Empagliflozin was from MedChemExpress (Monmouth Junction, NJ, USA). 

Statistical analysis 
Pooled data are presented as Mean±SEM. The number of biological and technical replicates in each 
experimental group is reported in the figures and figure legends. Normality of the data was assessed by 
Shapiro-Wilk test and the equality of group variance was tested using Brown-Forsythe test. Statistical 
significance of differences was determined using two-tailed t-test, Mann-Whitney test, and ANOVA with 
Tukey’s or Dunn’s multiple comparisons test, when applicable. Interaction between genotype and treatment 
was determined using two-way ANOVA. GraphPad Prism 9 (San Diego, CA, USA) software was used for 
data analysis. Blinded data acquisition and analysis have been performed for all in vivo measurements 
(echocardiography). Animals were grouped with no blinding but randomized in cellular experiments. Fully 
blinded analysis was not performed in cellular studies because the same person carried out the experiments 
and analysis. Male and female animals were used in equal numbers. Group sizes were determined by an a 
priori power analysis for a two-tailed t-test with an α of 0.05 and power of 0.8, in order to detect a 20% 
difference signal at the endpoint. Origin 2016 (OriginLab, Northampton, MA, USA) software was used for 
plotting the data. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Figure S1. Progression of cardiac remodeling and diastolic dysfunction during aldosterone infusion 

 

Longitudinal echocardiographic follow-up of db/db mice with chronic aldosterone infusion (db/db+Aldo) 
and wild-type (WT) mice with vehicle infusion (WT+Vehicle). Biweekly monitoring of left ventricular 
remodeling index (LVRI) and diastolic dysfunction (E/A and E/e’) before and after minipump 
implantation. LVM, left ventricular mass; LVIDd, left ventricular end-diastolic diameter; E/A, ratio 
between mitral E wave and A wave; E/e’, ratio between mitral E wave and e’ wave. Osmotic minipumps 
filled with either aldosterone (0.3 μg/hour) or vehicle (saline with 5% ethanol) were implanted in 12-
week-old mice (N=16 in each treatment group). Repeated measures mixed-effect model (REML) with 
Geisser-Greenhouse correction was used to calculate interaction between genotype and post-operative 
weeks. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Figure S2. Progression of diastolic dysfunction (E/e’) during the 4-week study period 

 

Paired data of E/e’ (ratio between mitral E and e’ waves) in Doppler echocardiography before and 4-week 
after aldosterone (Aldo, 0.3 μg/hour) or vehicle treatment via implanted osmotic minipumps in wild-type 
(WT) and db/db mice. Paired t-test. Animal numbers (N) are shown in the figure. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Figure S3. Action potential duration at 20%, 50%, and 75% of repolarization 

 

Action potential duration (APD) at 20%, 50%, and 75% of repolarization (APD25, APD50, and APD75, 
respectively) in WT+Vehicle and db/db+Aldosterone (Aldo) myocytes without or with preincubation with 
empagliflozin (EMPA, 1 μmol/L, 4 hours). Cardiomyocytes were paced at 1 Hz. Mean ± SEM is shown. 
ANOVA followed by Tukey’s multiple comparisons test. n = 16 cells from 7 animals in WT+Vehicle 
without EMPA treatment; n = 23 cells from 7 animals in WT+Vehicle with EMPA treatment; n = 18 cells 
from 8 animals in db/db+Aldo without EMPA treatment; and n = 23 cells from 8 animals in db/db+Aldo 
with EMPA treatment. Each individual myocyte is shown as a data point. 
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