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Abstract
Background Skeletal muscle dysfunction is common in COPD. Ultrasound-derived rectus femoris cross-
sectional area (RFCSA) is a radiation free, non-invasive measure of muscle bulk that relates to quadriceps
strength in people with COPD. However, there are limited longitudinal data for RFCSA, and it is not
known whether longitudinal change in RFCSA reflects change in quadricep strength, exercise capacity,
lower limb function or muscle mass. We aimed to quantify longitudinal change in ultrasound-derived
RFCSA and assess its relationship with change in quadriceps maximal voluntary contraction (QMVC),
incremental shuttle walk test (ISWT), five-repetition sit-to-stand (5STS) and fat-free mass (FFM) over
12 months in people with COPD.
Methods We measured ultrasound-derived RFCSA, QMVC, ISWT, 5STS and FFM (measured by
bioelectric impedance analysis) at baseline and 12 months in 169 people with stable COPD. Change was
correlated using Pearson’s or Spearman’s coefficients.
Results Baseline characteristics: mean±SD age 70.4±9.4 years; FEV1 53.3±18.9% predicted. Over the
course of 12 months mean RFCSA change was −33.7 mm2 (99% CI −62.6–−4.9 mm2; p=0.003)
representing a mean±SD percentage change of −1.8±33.5%. There was a weak correlation between change
in RFCSA and FFM (r=0.205, p=0.009), but not with change in QMVC, ISWT or 5STS.
Conclusion There is a statistically significant decrease in ultrasound-derived RFCSA over 12 months in
people with stable COPD, but this decrease does not correlate with change in quadriceps strength, exercise
capacity, FFM or lower limb function.

Introduction
Skeletal muscle dysfunction is common in COPD [1] and is associated with increased mortality and
healthcare utilisation [2–4]. Skeletal muscle dysfunction is particularly prevalent in the lower limbs [5],
and the quadriceps is one of the primary locomotor muscles. In COPD, quadriceps weakness is associated
with reduced exercise tolerance [6], functional performance [7], quality of life [8] and physical activity [9],
and can independently predict increased healthcare utilisation and mortality [2, 10].
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Measurement of quadriceps muscle strength can be assessed by maximal voluntary contraction force, but
this relies on maximum patient effort and motivation; 27% of patients perform quadriceps maximal
voluntary contraction (QMVC) incorrectly in real-world practice [11]. Furthermore, measurement of
QMVC force requires specialist, often cumbersome equipment such as a dedicated plinth or chair, which
are not commonly available in most healthcare settings and difficult to use in clinical practice [12].
Although measurement of muscle strength is a core outcome for pulmonary rehabilitation, only 18.4% of
services in the UK directly measure quadriceps strength [13].

Ultrasound imaging is a low-cost, non-invasive and non-ionising radiation method of measuring
cross-sectional area of muscle and is becoming increasingly available in most clinical settings.
Measurement of ultrasound-derived muscle cross-sectional area has been widely investigated in sarcopenia
[14–16], intensive care [17, 18] and COPD [19]. Ultrasound-derived assessment of rectus femoris
cross-sectional area (RFCSA) has been proposed as an attractive, effort-independent surrogate marker of
quadriceps strength in COPD [20]. Previous studies have demonstrated that RFCSA correlates with QMVC
and exercise capacity in patients with COPD [9, 21–26] and in critically ill patients [27] at a single
time-point. To further validate ultrasound-derived RFCSA as a surrogate marker of quadriceps strength,
longitudinal validity is important. However, there is a paucity of longitudinal data examining the natural
course of RFCSA change in stable patients with COPD [22].

We conducted a longitudinal study to assess the relationship between ultrasound-derived RFCSA and
quadriceps strength, exercise capacity, FFM and lower limb function over 12 months in patients with
COPD. We hypothesised that longitudinal change in ultrasound-derived RFCSA would correlate with
change in quadriceps strength over the same time period.

Materials and methods
Study participants
The current study was a planned secondary analysis of a prospective cohort study of people with chronic
respiratory disease, approved by the London – Central Research Ethics Committee (13/LO/1161) and
registered on ClinicalTrials.gov (NCT02261337). All participants provided informed written consent. The
study was conducted according to the Declaration of Helsinki as most recently amended and Good Clinical
Practice standards.

For this analysis, inclusion criteria were a physician diagnosis of stable COPD, based on the 2010 National
Institute for Health and Clinical Excellence guidance on COPD [28], ability to provide written informed
consent and agreement to attend two research visits 1 year apart. Exclusion criteria were significant
comorbidities that would limit walking ability or measurement of QMVC (e.g. unstable ischaemic heart
disease, neuromuscular disease, severe hip/lower limb joint pain or lower limb amputation), or the
physician’s expectation that that the participant would not be alive 1 year after recruitment (e.g. receiving
specialist palliative care or presence of metastatic cancer).

Study procedures
Participants were assessed at baseline and 1 year later.

RFCSA was measured by B-mode ultrasonography using a Mindray DP-50 Ultrasound system (Mindray,
Shenzhen, China). Imaging was conducted with the participant in a semirecumbent position with the leg
rested in passive extension. Aquasonic ultrasonic transmission gel (Parker Laboratories, Fairfield, NJ,
USA) was first applied to minimise soft tissue distortion. Ultrasound measurement was conducted on the
dominant leg (same as the quadriceps strength measurements). The transducer was placed perpendicular to
the long axis of the thigh on its anterior aspect, two-thirds of the distance from the anterior superior iliac
spine to the superior patella border, similar to SEYMOUR et al. [21]. Gentle contraction-relaxation techniques
were employed to identify rectus femoris muscle borders. Scanning depth was adjusted to visualise the
femur for orientation. A 5–10 MHz, 5.6 cm linear probe was used in the first instance for imaging; if the
operator was unable to visualise the entire muscle due to increased size or excess adipose tissue, a
2–6 MHz curved abdominal probe was used. To ensure measurement reliability between baseline and
12 months, the same probe was used on both occasions. Distance from the anterior superior iliac spine
and ultrasound probe used in the first visit was recorded for the repeat visit to maximise repeatability and
reliability. Three images were taken, with removal and repositioning of the ultrasound probe between each.
RFCSA was calculated using ImageJ (https://imagej.net) after the inner echogenic line of the rectus femoris
was outlined by a movable cursor on a frozen image 3 times with measurements within 10% of each other.
The average of these three separate RFCSA images was used for analysis.
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Quadriceps strength was measured on the dominant leg using QMVC, as previously described [29].
Briefly, participants were seated in a chair with an inextensible strap placed around the ankle connected to
a strain gauge, and performed six maximal isometric contractions maintained for 3 s with the knee joint at
90°, with the peak value recorded. If measured strength continued to increase, then additional
measurements were performed until fatigue [29]. Data were recorded and analysed using LabChart 7
(ADInstruments, Oxford, UK). QMVC was adjusted for height and QMVC % predicted was calculated
using the method described by SEYMOUR et al. [21].

FFM, a surrogate marker of muscle mass, was determined using bioelectrical impedance analysis (Bodystat
1500; Bodystat, Douglas, Isle of Man). Participants were advised to do no strenuous exercise for 12 h prior
to the test and avoid excessive alcohol consumption for 24 h before the test. Participants were advised to
be “normally hydrated” and asked to empty their bladder before the test. When possible, tests were
repeated at the same time of day at baseline and 12 months. A disease-specific regression equation was
then used to calculate FFM [30]. FFM index (FFMI) was calculated by dividing FFM by height squared.

Lower limb functional capacity was measured using the five-repetition sit-to-stand (5STS) test as previously
described [31], where a decreased time is associated with improved function, whilst exercise capacity was
measured using the incremental shuttle walk test (ISWT) according to international technical standards [32].
Clinical information recorded at the 12-month follow-up included number of exacerbations in the last year,
which was stratified into infrequent exacerbation history (0 or 1 exacerbations not leading to hospital admission)
or frequent exacerbation history (⩾2 exacerbations or ⩾1 exacerbations leading to hospital admission) [33].

Sample size
To demonstrate a weak correlation (r>0.3) between change in RFCSA and change in QMVC with 90%
power at the 1% significance level required 158 participants. To account for 35% missing data or dropout,
we aimed to include a minimum of 244 consecutive participants from the study cohort.

Statistical analysis
Data were tested for normality using Kolmogorov–Smirnov and Shapiro–Wilk tests. Baseline
characteristics were reported using descriptive statistics and presented as mean with standard deviation. The
relationship between RFCSA and outcome measures at baseline and 12 months was measured using
Pearson’s product-moment correlation (Spearman’s rank correlation coefficient for non-parametric data).
For this, a two-tailed level of p<0.01 was considered statistically significant to adjust for multiple
correlation comparisons. A paired t-test was used to compare differences between paired outcome measures
at baseline and 12 months. Univariate regression was used to assess the association between RFCSA
change and plausible confounding variables based on previous evidence and expert opinion, including age,
sex, body mass index (BMI), Medical Research Council (MRC) dyspnoea scale, smoker at baseline, ISWT
at baseline, FFM, FFMI and exacerbation history or attending pulmonary rehabilitation during follow-up.
A forced entry multivariate regression analysis used all the variables in the univariate analysis. Statistical
analyses were performed using SPSS version 29.0.1.0 for Windows (IBM, Armonk, NY, USA).

Results
Recruitment
The flow of participants is presented in figure 1. 393 of the original cohort had an established diagnosis of
COPD, with 240 attending both baseline and 1-year research assessments. Of these, 169 participants had
both QMVC and RFCSA measured at both research visits.

Baseline
Baseline characteristics are presented in table 1. There were moderate strength correlations between
RFCSA and measures of quadriceps strength and muscle mass (QMVC: r=0.508; FFM: r=0.523).
However, the association between RFCSA and measures of walking exercise capacity and lower limb
function were weaker (ISWT: r=0.329; 5STS: r=−0.261) (table 2).

Change in outcome measures over 12 months
Over the course of 12 months mean±SD RFCSA fell significantly from 521.3±197.5 to 487.6±174.3 mm2

(mean change was −33.7 mm2 (99% CI −62.6–−4.9 mm2) (table 3). The changes in all outcomes over
12 months are shown in table 3, whilst figure 2 illustrates percentage change in RFCSA, QMVC, 5STS,
ISWT and FFM over 12 months.

Change in RFCSA did not correlate with change in QMVC, 5STS or ISWT over 12 months. There was a
weak correlation between change in RFCSA and change in FFM (r=0.205, p=0.009).
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Predictors of RFCSA change
Univariate and multivariate regression analyses found baseline age, sex, BMI, MRC dyspnoea scale,
smoker, ISWT distance, FFM and FFMI did not predict change in RFCSA over 1 year, nor did
exacerbation history or completion of pulmonary rehabilitation during follow-up (table 4).

TABLE 1 Baseline characteristics (n=169)

Male 90 (53.0)
Age (years) 70.4±9.4
BMI (kg·m−2) 27.9±6.0
FEV1 (% pred) 53.3±18.9
FEV1/FVC ratio 0.48±0.1
Current smoker 21 (12.4)
Smoking history (pack-years) 44.1±40.7
MRC dyspnoea score 3±1
RFCSA (mm2) 521.3±197.5
QMVC (kg) 31.1±12.9
QMVC/height (kg·m−1) 18.6±7.3
QMVC (% pred) 75.2±25.6
ISWT (m) 330.2±177.6
5STS (s) 11.7±4.7
FFM (kg) 45.8±9.4
FFMI (kg·m−2) 16.7±2.4

Data are presented as n (%) or mean±SD. BMI: body mass index; FEV1: forced expiratory volume in 1 s; FVC:
forced vital capacity; MRC: Medical Research Council; RFCSA: rectus femoris cross-sectional area; QMVC:
quadriceps maximal voluntary contraction; ISWT: incremental shuttle walk test; 5STS: five-repetition
sit-to-stand; FFM: fat-free mass; FFMI: fat-free mass index.

Primary diagnosis not COPD (n=172)

Withdrew from study before first visit (n=14)

Lost to follow-up/unable to contact (n=15)

Declined to attend two visits (n=115)

Died during follow-up (n=9)

Missing data for RFCSA or QMVC (n=71)

565 people with chronic respiratory disease

consented to cohort study

240 participants attended second research visit

393 eligible participants with COPD approached

169 participants with COPD and paired

data on QMVC and RFCSA

249 participants attended baseline visit

FIGURE 1 Flow of participants. RFCSA: rectus femoris cross-sectional area; QMVC: quadriceps maximal
voluntary contraction.
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Discussion
The main finding from this study is that ultrasound-derived RFCSA change does not reflect changes in
quadriceps muscle strength, walking exercise capacity or lower limb functional performance over
12 months in individuals with COPD. This raises questions about the utility of RFCSA as a surrogate
marker of quadriceps strength or lower limb performance in COPD.

Previous studies
Previous cross-sectional studies have shown that ultrasound-derived RFCSA correlates with QMVC in
patients with COPD [9, 21, 22, 24], and this has led to proposals that ultrasound-derived RFCSA may be a
useful surrogate measure of quadriceps strength. The technique has several advantages, including the
non-invasive and painless nature, as well as not relying on patient motivation or effort. Therefore, it is
particularly suitable in those unable to perform maximum volitional manoeuvres (e.g. in the intensive care
setting) [18]. Demonstration of the longitudinal validity of RFCSA would provide further evidence to
support a role as a surrogate measure of lower limb muscle strength or function. However, the only
existing study exploring longitudinal validity in patients with COPD was conducted in a small cohort of
patients; BUTTERY et al. [22] measured RFCSA over 3 years in 31 patients with COPD. RFCSA declined
by a mean±SD of −154±245 mm2 (95% CI −181–−99.8 mm2) over 3 years, an annual rate of change
similar to that observed in our study. The authors found no longitudinal correlation between RFCSA
change and change in QMVC or exercise capacity measured by the 6-min walk test [22].

Other studies specifically measuring longitudinal change in RFCSA and QMVC in disease have
investigated the relationship during a specific strengthening intervention or in critically ill patients, both
over a short follow-up period. MENON et al. [23] measured RFCSA and QMVC before and after an 8-week
resistance training programme in 45 patients with COPD and 19 healthy controls, and found no correlation
between increase in RFCSA and increase in QMVC. In critically ill patients, CONNOLLY et al. [18]

TABLE 2 Relationship (r-value#) between rectus femoris cross-sectional area and outcomes at baseline (n=169)

r-value (99% CI) p-value

QMVC (kg) 0.508 (0.328–0.652) <0.001
QMVC/height (kg·m−1) 0.491 (0.308–0.639) <0.001
QMVC (% pred) 0.300 (0.090–0.484) <0.001
ISWT (m) 0.329 (0.133–0.500) 0.005
5STS (s) −0.261 (−0.443–−0.058) <0.001
FFM (kg) 0.523 (0.363–0.653) <0.001
FFMI (kg·m−2) 0.441 (0.266–0.587) <0.001

QMVC: quadriceps maximal voluntary contraction; ISWT: incremental shuttle walk test; 5STS: five-repetition
sit-to-stand; FFM: fat-free mass; FFMI: fat-free mass index. #: Pearson’s product-moment correlation
(Spearman’s rank correlation coefficient for non-parametric data).

TABLE 3 Muscle, strength, exercise capacity and respiratory outcomes at baseline and 12-month follow-up

Baseline 12 months Absolute
change

Percentage
change

Absolute change
99% CI (p-value)

FEV1 (% pred) 53.3±18.9 55.0±21.4 1.8±10.5 3.7±20.9 −0.53–4.04 (0.47)
RFCSA (mm2) 521.3±197.5 487.6±174.3 −33.7±144.0 −1.8±33.5 −62.6–−4.9 (0.003)
QMVC (kg) 31.10±12.9 31.1±13.6 0.006±6.9 1.6±25.5 −1.6–1.6 (0.99)
QMVC/height
(kg·m−1)

18.6±7.3 18.6±7.7 0.01±4.1 1.9±25.3 −0.93–0.95 (0.97)

QMVC (% pred) 62.3±22.2 62.2±23.3 −0.1±13.8 2.2±25.6 −4.2–4.1 (0.97)
ISWT (m) 330.2±177.6 299.8±168.4 −30.3±81.4 −8.1±34.5 −48.8–−10.7 (<0.001)
5STS time (s) 11.7±4.7 12.8±8.8 1.1±7.9 12.3±61.6 −0.55–2.8 (0.079)
FFM (kg) 45.6±9.4 46.0±9.6 0.45±2.8 1.1±6.1 −0.13–1.02 (0.066)
FFMI (kg·m−2) 16.6±2.4 16.8±2.4 0.15±1.0 1.1±6.1 −0.06–0.36 (0.97)

Data are presented as mean±SD, unless otherwise stated. FEV1: forced expiratory volume in 1 s; RFCSA: rectus
femoris cross-sectional area; QMVC: quadriceps maximal voluntary contraction; ISWT: incremental shuttle walk
test; 5STS: five-repetition sit-to-stand; FFM: fat-free mass; FFMI: fat-free mass index.
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demonstrated significant reductions in tibialis anterior cross-sectional area as measured by ultrasound but
no changes in non-volitional strength when measured longitudinally over 7 days. Conversely, in health,
data shows a weak correlation between increase in RFCSA and strength after a 24-week strengthening
programme [34]. The weak correlation between RFCSA and FFM change in our data is similar to findings
from BUTTERY et al. [22] who found a correlation coefficient of r=0.22. Longitudinal decline in FFM in
patients with COPD is more pronounced in the lower limbs, which may explain these findings [35].

Significance of the findings
Despite previous cross-sectional studies showing moderate to strong correlations between RFCSA and
QMVC, we have demonstrated in a prospective longitudinal study that change in RFCSA does not reflect
change in QMVC, sit-to-stand performance or walking exercise capacity. There are several reasons that
could explain the findings.
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FIGURE 2 Mean percentage change in rectus femoris cross-sectional area (RFCSA), quadriceps maximal
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limb function; the percentage change of 5STS has been inverted to demonstrate this negative change and its
relationship to ISWT, RFCSA, FFM and QMVC.

TABLE 4 Univariate and multivariate regression analyses to predict rectus femoris cross-sectional area change

Univariate analysis Multivariate analysis

Regression (β)
coefficient (99% CI)

p-value Regression (β)
coefficient (99% CI)

p-value

Age (years) −0.25 (−3.34–2.85) 0.836 −0.40 (−4.22–3.43) 0.787
Sex (male or female) −36.88 (−94.4–20.67) 0.097 19.85 (−104.44–144.14) 0.677
BMI (kg·m−2) −2.19 (−7.03–2.65) 0.24 2.43 (−7.39–12.26) 0.519
MRC dyspnoea score 6.43 (−20.5–33.3) 0.534 6.89 (−29.97–43.75) 0.055
Smoker at baseline 42.11 (−45.25–129.47) 0.211 62.79 (−34.85–160.43) 0.161
ISWT (m) −0.075 (−0.24–0.095) 0.253 −0.13 (−0.37–0.12) 0.180
FFM (kg) 15.40 (−13.43–44.23) 0.166 −3.0 (−16.47–10.48) 0.562
FFMI (kg·m−2) −9.49 (−34.46–15.49) 0.324 1.25 (−10.51–13.0) 0.087
Follow-up events
Pulmonary rehabilitation course
during follow-up

13.67 (−44.34–71.69) 0.540 21.45 (−50.12–93.01) 0.435

Exacerbation history during
follow-up (GOLD ABCD tool)

−18.15 (−78.24–41.94) 0.432 −19.62 (−87.04–47.80) 0.448

BMI: body mass index; MRC: Medical Research Council; ISWT: incremental shuttle walk test; FFM: fat-free mass;
FFMI: fat-free mass index; GOLD: Global Initiative for Chronic Obstructive Lung Disease.
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RFCSA reflects muscle size but not quality, and therefore a discordance between muscle size and function
has been observed in previous studies [18, 22, 23]. RFCSA also reflects the size of the rectus femoris,
which is only one of four muscles that constitute the quadriceps femoris, and therefore performance of
QMVC and exercise performance. Also, inhomogeneous hypertrophy of quadriceps muscle compartments
has been observed during intervention studies [36]. Whilst measurement of RFCSA using ultrasound
correlates significantly with that measured by computed tomography (CT) in patients with COPD, the
relationship between ultrasound-derived RFCSA and CT-derived total quadriceps cross-sectional area is
much weaker [21]. Over time, other factors may have a heterogeneous impact on the lower limb variables,
e.g. one would expect that deteriorating lung function may have a much greater impact on functional and
exercise capacity levels than RFCSA.

Strengths and limitations
This is the largest study to prospectively examine the longitudinal change in RFCSA in people with
COPD, with five-fold the number of participants in previous studies [22]. The study was designed to be
adequately powered to detect even a weak correlation between RFCSA and quadriceps strength.
Participants also had a detailed longitudinal evaluation of other relevant lower limb measures including
quadriceps strength, lower limb function and exercise capacity. However, a weakness is that we did not use
other imaging modalities such as CT, dual X-ray energy absorptiometry (DXA) or magnetic resonance
imaging (MRI) due to ionising radiation or cost concerns. Despite this, ultrasound-derived RFCSA
correlates well with CT-derived RFCSA in patients with COPD (intraclass coefficient r=0.88) [21] and in
other disease [37]. In health, ultrasound-derived cross-sectional muscle area of the rectus femoris and the
tibialis muscles highly correlates with that of MRI-derived cross-sectional area at a single time-point [38, 39].
Ultrasound-derived RFCSA has high levels of agreement against MRI-derived RFCSA in detecting
cross-sectional area change after a 21-week strength training programme in healthy subjects [40]. DXA
correlates well with ultrasound-derived RFCSA (r=0.68), but one major limitation of DXA is its lack of
ability to assess specific muscles [23].

Future research using CT or MRI imaging to measure muscle mass could unequivocally confirm if there is
a relationship between longitudinal change in muscle mass and measures of strength, lower limb function
and exercise capacity in stable patients with COPD, but concerns regarding ionising radiation and cost
could make studies of this nature unfeasible. Whilst echogenicity may have provided further information
on muscle quality in this study [25, 41, 42], due to the variable reproducibility of echogenicity in the
published literature [43, 44], we choose not to use this measure. Due to researcher availability over a
longitudinal study, paired measurements at baseline and 12 months were conducted by the same researcher
in 71% of participants, so some of the variance may be related to interrater variability. Although we did
not measure RFCSA interrater agreement in our study, previous studies suggest interrater reliability of
RFCSA is high [21, 23, 45, 46]; SEYMOUR et al. [21] and PUTHUCHEARY et al. [45] found the mean±SD bias
and 95% limits of agreement were 2±32 mm2 and −61 to +65 mm2 and 7±37 mm2 and −66.1 to
+80.5 mm2, respectively, for interrater agreement of RFCSA measurement, MENON et al. [23] found
inter-operator mean±SD differences in measured RFCSA of 8.73±25.39 and 5.90±15.01 mm2 when
comparing one primary operator to two others. To minimise inter-operator variability in our study, the
same independent investigator performed all offline RFCSA calculations. Our cohort had largely stable
disease and therefore the changes in RFCSA and other lower limb measures were relatively modest; our
results cannot be extrapolated to other settings where more dramatic acute changes in RFCSA might be
expected, e.g. in the acute hospitalisation setting [47] or in the intensive care setting [18]. We did not have
an age-matched healthy control group so we cannot comment on the clinical significance of the observed
RFCSA change over time and whether this is line with health ageing.

Conclusions
This study offers further insight into longitudinal change in RFCSA in stable COPD. Whilst RFCSA
reduces significantly over 12 months, it does not correlate with change in quadriceps strength, exercise
capacity nor lower limb function functional performance. Although ultrasound-derived assessment RFCSA
may be an attractive, easy to access measure in both research and practice, our data suggest that RFCSA
change is not a useful surrogate measure for longitudinal change in quadriceps strength, exercise capacity
or lower limb function in stable COPD.
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