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Linearity and shift invariance (LSI) characteristics of magnetic particle imaging (MPI) are important properties for quantitative
medical diagnosis applications. The MPI image equations have been theoretically shown to exhibit LSI; however, in practice, the
necessary filtering action removes the first harmonic information, which destroys the LSI characteristics.This lost information can
be constant in the 𝑥-space reconstruction method. Available recovery algorithms, which are based on signal matching of multiple
partial field of views (pFOVs), requiremuch processing time and a priori information at the start of imaging. In this paper, a fast ana-
lytical recovery algorithm is proposed to restore the LSI properties of the 𝑥-spaceMPI images, representable as an image of discrete
concentrations of magnetic material. The method utilizes the one-dimensional (1D) 𝑥-space imaging kernel and properties of the
image and lost image equations.The approach does not require overlapping of pFOVs, and its complexity depends only on a small-
sized system of linear equations; therefore, it can reduce the processing time. Moreover, the algorithm only needs a priori informa-
tion which can be obtained at one imaging process. Considering different particle distributions, several simulations are conducted,
and results of 1D and 2D imaging demonstrate the effectiveness of the proposed approach.

1. Introduction

Magnetic particle imaging (MPI) is a new method for
imaging the spatial distribution of magnetic nanoparticles,
as tracers, with high resolution. The method was proposed
by Gleich and Weizenecker [1] and exploits the nonlinear
magnetization response of the nanoparticles to a time-
variable magnetic field and allows for fast image acquisition.
MPI has many applications, especially in medical diagnosis
such as blood flow visualization for coronary artery diseases,
cancer detection [2, 3], stem cell tracking [4], and molecular
imaging [5].

MPI uses an oscillating drive field (excitation field) of
sufficient amplitude to change the magnetization of the
nanoparticles, which induces a voltage signal in the receive
coils. To enable spatial encoding of the information, a static
magnetic gradient field, also known as the selection field, is
utilized inMPI.This field contains a spatial location named a

field-free point (FFP) that has zero field magnitude, and only
the particles located at the FFP induce the MPI signal in the
receive coils [6–8].

Image reconstruction in MPI includes two main
approaches [9]. The first approach makes use of the system
matrix. This method, also known as frequency space
reconstruction, employs a large system matrix and requires
its inversion and some postprocessing to deal with poor
conditioning.The approach has high computational load and
requires the system matrix to be estimated before imaging
[10–12]. The second approach is the 𝑥-space method, which
was introduced by Goodwill et al. [13–15]. This approach
does not require matrix inversion or precharacterization and
hence provides a robust reconstruction algorithm with a
potential for real-time imaging.

Linearity and shift invariance (LSI) are important char-
acteristics of most medical diagnostic systems. For example,
sinceX-ray computed tomography (CT) is LSI, theCT images

Hindawi Publishing Corporation
International Journal of Biomedical Imaging
Volume 2016, Article ID 6120713, 11 pages
http://dx.doi.org/10.1155/2016/6120713

http://dx.doi.org/10.1155/2016/6120713


2 International Journal of Biomedical Imaging

of tissue attenuation coefficient maps provide quantitative
lumen diameters for cardiovascular diagnosis [16]. It has
been theoretically proven that the MPI is an LSI system [17].
However, in practice, to detect MPI signal, it is necessary
to utilize a filter to remove the drive field signal at its
fundamental excitation frequency, which is an unavoidable
phenomenon in currentMPI techniques.This filtering action
also removes the induced particle signal at the excitation
frequency and hence the complete MPI signal is not available
in practice which destroys the LSI properties of the MPI
image.

To recover the complete MPI signal to facilitate the use
of the fast 𝑥-space imaging method in qualitative medical
diagnosis, an algorithm is presented in [16] and is optimized
in [18].The approaches use the partial field of views (pFOVs),
which are primarily generated for enlarging the FOV. It is
shown that the lost information can be recovered bymatching
the two successive overlapped pFOVs, provided the particle
concentration at one reference location is known. Although
the methods provide satisfactory results, the computational
load is reported in [19] to be relatively high, which increases
the imaging time and so this cannot be used for ultrafast
imaging.

In this paper, the effect of the filtered MPI image is ana-
lyzed and it is shown that its value is constant provided that
the trajectory of the FFP is generated by a harmonic function,
a property that has to be satisfied in both one-dimensional
(1D) and multidimensional imaging. Assuming a constant
image loss, a fast analytical algorithm is proposed to restore
the lost information. The approach can be real time since its
complexity depends on solution of a small-sized system of
linear equations and does not require overlapping of pFOVs.
Themethod utilizes the derivative of themagnetization curve
of the particles and a mathematical model of the 𝑥-space
image. It also requires a priori information regarding the
system, which can be obtained experimentally or estimated
theoretically prior to imaging. This is another advantage of
the proposed approach in comparison to previous works,
which require a boundary condition to be obtained at the
start of imaging. Several 1D and 2D imaging simulations are
presented to demonstrate the effectiveness of the proposed
algorithm.

2. Methods

The developed recovery algorithm is based on the mathe-
matical model of the MPI signal. In this section, the signal
model of the 𝑥-space method is presented and a model of
the term removed from the signal as a result of filtering the
fundamental frequency of the excitation signal is derived.
Then, a new algorithm is proposed to recover the lost image.

2.1. Mathematical Model of a 1D MPI Signal. In this section,
the mathematical model of the 1D MPI signal is derived
which is used in Section 2.2 tomodel the 𝑥-space reconstruc-
tion method and to analyze the LSI properties of the 𝑥-space.

When the excitation field in MPI is periodic, the volt-
age signal V(𝑡), induced by the particles’ magnetization, is

periodic as well, and therefore it can be expanded into a
Fourier series as follows:

V (𝑡) = ∞∑
𝑘=−∞

𝑉𝑘𝑒i𝑘𝜔0𝑡, (1)

where 𝑉𝑘 are the Fourier coefficients and 𝜔0 = 2𝜋𝑓0 with 𝑓0
as the frequency of the excitation field.The coefficients can be
written as

𝑉𝑘 = 1𝑇 ∫𝑇/2
−𝑇/2

V (𝑡) 𝑒−i𝑘𝜔0𝑡d𝑡, (2)

where 𝑇 = 1/𝑓0.
Assuming a 1D distribution of the particles in the 𝑥-

direction and a constant sensitivity 𝜌𝑥 for the receive coil
in this direction, the induced voltage by the time-varying
magnetization of the particles can be written as follows [17]:

V (𝑡) = −𝜇0𝜌𝑥 ∫
object

𝜕𝑀 (𝑥, 𝑡)𝜕𝑡 d𝑥, (3)

where 𝜇0 denotes the permeability of free space and𝑀 is the
particle magnetization, which depends on the magnetic field𝐻(𝑥, 𝑡).The particle magnetization can bemodeled using the
Langevin functionL(⋅) as follows:

𝑀(𝐻) = 𝑚𝑐 (𝑥)L (𝜅𝐻) , (4)

where𝑚 [Am2] is the particlemagneticmoment, 𝜅 [mA−1] is
a property of themagnetic particle, and 𝑐(𝑥) [particles/m3] is
the particle concentration that has to be measured in an MPI
image. According to (3), the time derivative of magnetization
is of interest and can be written as

𝜕𝑀𝜕𝑡 = 𝑚𝜅𝑐 (𝑥) 𝜕L (𝜅𝐻)𝜕𝐻 𝜕𝐻𝜕𝑡 . (5)

On the other hand, the magnetic field that particles experi-
ence in MPI is as follows:

𝐻(𝑥, 𝑡) = 𝐻𝑠 (𝑥) − 𝐻𝐷 (𝑡) , (6)

where 𝐻𝑠 is the selection field and 𝐻𝐷 is the excitation or
drive field. Therefore, using (6), (5) can be written as

𝜕𝑀𝜕𝑡 = 𝑚𝜅𝑐 (𝑥) L̇ (𝜅𝐻) 𝜕𝐻𝐷𝜕𝑡 , (7)

where L̇(𝜅𝐻) = 𝜕L(𝜅𝐻)/𝜕𝐻. Now, using (3) and (7), (2)
can be written as follows:

𝑉𝑘 = −𝜇0𝜌𝑥𝑚𝜅𝑇
⋅ ∫𝑇/2
−𝑇/2

∫
FOV

𝑐 (𝑥) L̇ (𝜅𝐻) 𝜕𝐻𝐷𝜕𝑡 d𝑥 𝑒−i𝑘𝜔0𝑡d𝑡
= −𝜇0𝜌𝑥𝑚𝜅𝑇
⋅ ∫

FOV
𝑐 (𝑥) ∫𝑇/2

−𝑇/2
L̇ (𝜅𝐻) 𝜕𝐻𝐷𝜕𝑡 𝑒−i𝑘𝜔0𝑡d𝑡 d𝑥.

(8)
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By defining the function

𝑆𝑘 (𝑥) ≜ −𝜇0𝜌𝑥𝑚𝜅𝑇 ∫𝑇/2
−𝑇/2

L̇ (𝜅𝐻) 𝜕𝐻𝐷𝜕𝑡 𝑒−i𝑘𝜔0𝑡d𝑡, (9)

(8) can be written as

𝑉𝑘 = ∫
FOV

𝑆𝑘 (𝑥) 𝑐 (𝑥) d𝑥. (10)

𝑆𝑘(𝑥) are the so-called system function, which in fact are
the Fourier coefficients of an induced voltage by a point-like
distribution of particles at position 𝑥.
Remark 1. The region of integration in (3) is “object” if the
particles are ideal (i.e., have a step-like magnetization cure).
When the particle magnetization is modeled by the Langevin
function, the field of view is slightly different from the object
to be imaged. Therefore, in the remaining equations, the
region of integration is replaced by “FOV.”

For a homogeneous harmonic drive field with cosine
waveform as

𝐻𝐷 (𝑡) = 𝐴 cos𝜔0𝑡 (11)

and a linear selection field 𝐻𝑠(𝑥) = 𝐺𝑥𝑥, where 𝐺𝑥 is the
gradient of the selection field in the 𝑥-direction, it has been
shown in [20] that 𝑆𝑘(𝑥) can be written by a convolution as

𝑆𝑘 (𝑥) = −2𝜇0𝜌𝑥𝑚𝜅𝑇 iL̇ (𝜅𝐺𝑥𝑥)
∗ (𝑈𝑘−1 (𝐺𝑥𝑥𝐴 )√1 − (𝐺𝑥𝑥𝐴 )2) , (12)

where

𝑈𝑘 (𝑥) = sin ((𝑘 + 1) arccos (𝑥))
sin (arccos (𝑥)) (13)

is the Chebyshev polynomial of order 𝑘. Now, substituting
(12) in (10), one has

𝑉𝑘 = −2𝜇0𝜌𝑥𝑚𝜅𝑇 i∫
FOV

L̇ (𝜅𝐺𝑥𝑥)
∗ (𝑈𝑘−1 (𝐺𝑥𝑥𝐴 )√1 − (𝐺𝑥𝑥𝐴 )2)𝑐 (𝑥) d𝑥
= 12 ∫FOV L̇ (𝜅𝐺𝑥𝑥) ∗ 𝑆ideal𝑘 (𝑥) 𝑐 (𝑥) d𝑥,

(14)

where 𝑆ideal𝑘 represent the system function for the ideal
particles, which are defined as

𝑆ideal𝑘 (𝑥) = −4𝜇0𝜌𝑥𝑚𝜅𝑇 i𝑈𝑘−1 (𝐺𝑥𝑥𝐴 )√1 − (𝐺𝑥𝑥𝐴 )2. (15)

Now, one can rewrite (14) as follows:

𝑉𝑘 = 12 ∫FOV ∫
𝐴/𝐺𝑥

−𝐴/𝐺𝑥

L̇ (𝜅𝐺𝑥 (𝑥 − 𝑥̃)) 𝑆ideal𝑘 (𝑥̃) d𝑥̃
⋅ 𝑐 (𝑥) d𝑥
= 12 ∫

𝐴/𝐺𝑥

−𝐴/𝐺𝑥

𝑆ideal𝑘 (𝑥̃)
⋅ ∫

FOV
L̇ (𝜅𝐺𝑥 (𝑥̃ − 𝑥)) 𝑐 (𝑥) d𝑥 d𝑥̃

= 12 ∫
𝐴/𝐺𝑥

−𝐴/𝐺𝑥

𝑆ideal𝑘 (𝑥) 𝑐̂ (𝑥) d𝑥,

(16)

where

𝑐̂ (𝑥) ≜ L̇ (𝜅𝐺𝑥𝑥) ∗ 𝑐 (𝑥) . (17)

From (15) and (16), one can conclude that 𝑉𝑘 correspond
to coefficients of a Chebyshev series (see, e.g., [21]), and
therefore 𝑐̂(𝑥) can be written based on the Chebyshev series
as follows:

𝑐̂ (𝑥) = 𝐺𝑥𝑇𝜋𝐴𝜇0𝜌𝑥𝑚𝜅 i
∞∑
𝑘=1

𝑉𝑘𝑈𝑘−1 (𝐺𝑥𝑥𝐴 ) . (18)

This equation is used in the following subsection to
describe the 1D 𝑥-space reconstruction method.

2.2. 𝑥-Space Imaging and LSI Characteristics. In the 𝑥-space
reconstruction method, the image is defined to be 𝑐̂(𝑥(𝑡)) at
position 𝑥(𝑡) = 𝑥FFP(𝑡), where 𝑥FFP(𝑡) denotes the position of
the FFP. 𝑐̂(𝑥FFP(𝑡)) can bemeasured from the induced voltage
V(𝑡) through the following relation [13]:

𝑐̂ (𝑥FFP (𝑡))
= V (𝑡)𝜇0𝜌𝑥𝑚𝜅𝐺𝑥𝑥̇FFP (𝑡)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑡=(1/𝜔0)arccos(𝐺𝑥𝑥FFP/𝐴) ,
(19)

where 𝑥̇FFP(𝑡) is the time derivative of 𝑥FFP(𝑡), that is, the
velocity of the FFP. The formulation of 𝑐̂(𝑥) by a convolution
in (17) demonstrates that the 𝑥-space MPI image is a linear
and shift-invariant image, properties which are characteristic
of most clinical imaging systems, for example, ultrasound,
CT, and magnetic resonance imaging (MRI). However, to
acquire an MPI image while retaining its LSI properties, one
needs the measurement of the true value of V(𝑡), which is
not available in practice. In fact, a band-stop filter is used
in practice to segregate V(𝑡) from the signal induced by the
drive field (11) in the receive coil.The filter suppresses the first
harmonic of the signal at the frequency of the drive field and
leaves the signal at higher harmonics.

According to (13) and (18), the filtered first harmonic can
be written as [16]

𝑐̂ (𝑥)lost = 𝐺𝑥𝑇𝜋𝐴𝜇0𝜌𝑥𝑚𝜅 i𝑉1 (20)
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Figure 1: Effect of the filtering on an 𝑥-space image of particles located at different positions in the FOV.

which is a constant value in the image. It should be noted that
since𝑉1 is the Fourier coefficient of an odd real function (as a
result of the sinusoidal drive field, V(𝑡) is an odd function), its
value is imaginary and therefore, according to (20), the lost
image is a real constant value. Using (15) and (16), one can
write (20) as follows:

𝑐̂ (𝑥)lost = 2𝐺𝑥𝑇𝜋𝐴 ∫𝐴/𝐺𝑥
−𝐴/𝐺𝑥

𝑐̂ (𝑥)√1 − (𝐺𝑥𝑥𝐴 )2d𝑥 (21)

which shows that the lost value varies when 𝑐̂(𝑥) is shifted due
to the velocity term√1 − (𝐺𝑥𝑥/𝐴)2, and hence its envelope at
different positions resembles the sinusoidal excitation pattern
(note that sin(arccos𝑥) = √1 − 𝑥2). This means that the lost
value is maximal at the center of the FOV and minimal at its
edges. In the next subsections, the effect of this constant loss
is analyzed and a compensation algorithm is proposed.

2.3. LSI Analysis. According to the definition, theMPI image
is linear when the image intensity is linearly proportional
to the concentration of the particles and is shift-invariant
when the image intensity is independent of the location of the
particles. Considering the expression of the lost image in (21)
and the fact that the image loss depends on the location of the
particles, it can be verified that the lost information destroys
the LSI properties of the MPI image [16].

To visualize the abovementioned phenomenon, consider
Figure 1 which shows the 𝑥-space MPI images of a set of
magnetic nanoparticles located at different positions of the
FOV with concentration 𝑐1(𝑥). As demonstrated, there is
a difference in the maximum value of the acquired image
intensity for the same particles at different locations. Also, it
is clear from this figure that the lost constant value is larger
when the particles are located at the center of the FOV, since
the velocity of the FFP is maximum at the center.

2.4. Recovery Algorithm. Based on the results in the previous
section, it can be verified that an 𝑥-space MPI without first
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Figure 2: Recovery of the lost constant image, for the example of
Figure 1, finding the global minimum of the image.

harmonic information does not exhibit LSI and, to provide
an image for quantitative medical diagnosis, the lost constant
image should be recovered. An algorithm is presented in
[16, 18], which can recover the lost image by dividing the FOV
mechanically or electronically, into several pFOVs having
sufficient overlap to reliably match the successive pFOVs.
This overlapping requirement increases the imaging time
to cover the entire object. The algorithm also requires an
image of a location having no particle, for example, a location
outside the patient. Although the method fully recovers the
lost image, its computational load may be prohibitive for fast
and real-time applications.

If the FOV includes a zero-particle area (the reference
location for the previous algorithms), finding the lost image
is a straightforward task. For example, in MPI images of
Figure 1, FOVs have at least one edge at which no particle
is located. Therefore, in these cases, finding the global
minimum of the image is enough to completely recover
the lost image (see Figure 2 for an example). This method,
however, fails to completely recover the lost image in general.
For example, for the sets of particles shown in Figure 8, only a
partial image loss can be compensated by using this method.
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The proposed method in this paper is a model-based
compensation algorithm, which can be applied in general
cases. The approach does not require overlapping of suc-
cessive FOVs to cover the object, and accordingly it can
reduce the imaging time.Themethodutilizes themodel of the
point spread function (PSF) of 1D 𝑥-space image (denoted by
L̇(⋅)), which, as noted in [14], can be obtained theoretically
with precise matching with experiment. The algorithm also
assumes that the particle distribution can be described as
the sum of discrete point-like particles with known locations
in the FOV. This is achievable through deconvolution of the
original image and looking at the local maxima of the signal
to determine the location of particles (a common approach
to find the local maxima is to find the first-order difference
information of the signal; whenever a smooth signal is
available, it is easy to use the available basic algorithms to
find the particles, which are very robust; in the simulation
results, the “findpeaks” command ofMATLAB is used to find
the particles and their positions). A deconvolution method
is studied for MPI signal in [15]. The reported experimental
results ofMPI signal show an acceptable noise level to roughly
deconvolve the signal for the proposed algorithm [13, 22]. In
addition, the approach requires a priori information, which
can be obtained theoretically or from a reference image,
having the same property as used in [16] for initialization.
However, unlike the previous studies, this information can be
obtained before imaging.

Based on the above explanation, the following assump-
tions, besides the general assumptions of the 𝑥-space recon-
struction [13], turn out to be crucial within the development
of the recovery algorithm.

Assumption 2. A theoretical model of PSF is available which
matches the experimental one.

Assumption 3. The noise level of the signal is attenuated
enough before applying the recovery algorithm.

Assumption 4. A robust deconvolution method is applied to
roughly represent the MPI signal as the sum of signals of
discrete particles with definite positions.

In the following, first, an approach is developed for the
case in which the particles in the FOV are not in close
proximity; that is, the tails of the image for one set do not
affect the image of the other sets. Then, the approach is
modified for the more general case.

According to (17), the image for the set of point-like
particles can be written as

𝑐̂𝑖 (𝑥𝑖) = L̇ (𝜅𝐺𝑥𝑥𝑖) 𝑐𝑖, (22)

where the subscript 𝑖 denotes the 𝑖th particle. Also, it is
obvious from (21) that the image loss for this set of particles
(voxel) is proportional to the particle concentration and an
integral termdepending on L̇ and the velocity of the FFP. For
point-like particles, the derivative of the Langevin function
is nonzero only in a small region, and therefore the velocity
term can be assumed to be constant in this region (however,
for a case inwhich the PSF is not very narrow, this assumption

is valid up to a certain accuracy). As a consequence, the lost
image for the set of particles with concentration 𝑐𝑖 located at𝑥𝑖 can be approximated as

𝑐̂𝑖 (𝑥𝑖)lost ≈ 𝑘󸀠𝑐𝑖𝛼𝑖, with 𝛼𝑖 ≜ √1 − (𝐺𝑥𝑥𝑖𝐴 )2, (23)

where 𝑘󸀠 includes the constant terms in (21) and also the
integral of the derivative of the Langevin function (which
is the PSF of the image). Equation (23) indicates that the
image loss for a set of particles is linearly proportional to the
velocity of the FFP at the position of the particles, and hence
its envelope, throughout the FOV, resembles a sinusoidal
pattern.

Using (22), one can write (23) as in the following:

𝑐̂𝑖 (𝑥𝑖)lost ≈ 𝑘𝑐̂𝑖 (𝑥𝑖) 𝛼𝑖, (24)

where 𝑘 ≜ 𝑘󸀠/L̇(𝜅𝐺𝑥𝑥𝑖) is a constant value for all positions
in the FOV (the value of PSF, L̇, is maximum and constant
at 𝑥𝑖). This value, which is required in the subsequent devel-
opment, can be identified theoretically or experimentally
through the imaging of a simple set of particles, whose image
loss can be easily obtained by finding the global minimum of
the signal. In other words, a boundary condition as satisfied
in Figure 2, similar to the previous pFOV methods [16], is
enough to experimentally measure this value. It should also
be noted that, unlike the pFOV methods, this measurement
is only required to be done once.

Based on the above result, assuming that the 𝑥-space
imaging conditions are satisfied, the image loss for the
particles with concentration 𝑐𝑗 located at position 𝑥𝑗 can be
related to the image loss of the particles with concentration 𝑐𝑖
at position 𝑥𝑖, as follows:

𝑐̂𝑗 (𝑥𝑗)lost ≈ 𝑐̂𝑗 (𝑥𝑗) 𝛼𝑗𝑐̂𝑖 (𝑥𝑖) 𝛼𝑖 𝑐̂𝑖 (𝑥𝑖)lost . (25)

Since image 𝑐̂(𝑥) is linear, it can be considered as the
sum of the images of the point-like particles distributed
throughout the imaging axis [20]. The lost image 𝑐̂(𝑥)lost
associated with 𝑐̂(𝑥), therefore, can also be considered as the
sum of the image losses associated with each set of particles.
Then, assuming that 𝑐̂(𝑥) is the image of the 𝑛 sets of particles
located in the FOV, it can be written as

𝑐̂ (𝑥) = 𝑛∑
𝑖=1

𝑐̂𝑖 (𝑥𝑖) . (26)

Also, for each individual set, one has

𝑐̂𝑖 (𝑥𝑖)read = 𝑐̂𝑖 (𝑥𝑖) − 𝑐̂ (𝑥)lost ≈ 𝑐̂𝑖 (𝑥𝑖)lost𝑘𝛼𝑖 − 𝑐̂ (𝑥)lost , (27)

where 𝑐̂𝑖(𝑥𝑖)read is the measured value for the particles noted
by index 𝑖 at position 𝑥𝑖. Therefore, it can be verified that, for
twoparticle sets of 𝑖 and 𝑗, the subtraction ofmeasured values,
defined by 𝛽𝑖𝑗, is equal to the subtraction of the real image
values at 𝑥𝑖 and 𝑥𝑗, respectively; that is,

𝛽𝑖𝑗 ≜ 𝑐̂𝑖 (𝑥𝑖)read − 𝑐̂𝑗 (𝑥𝑗)read = 𝑐̂𝑖 (𝑥𝑖) − 𝑐̂𝑗 (𝑥𝑗) , (28)
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which can be measured from the filtered image, based on the
assumption that the particles can be identified in the FOV.
Now, using (24) and (25), one has

𝑐̂𝑗 (𝑥𝑗)lost ≈ (𝑐̂𝑖 (𝑥𝑖) − 𝛽𝑖𝑗𝑐̂𝑖 (𝑥𝑖) ) 𝛼𝑗𝛼𝑖 𝑐̂𝑖 (𝑥𝑖)lost
≈ 𝛼𝑗𝛼𝑖 𝑐̂𝑖 (𝑥𝑖)lost − 𝑘𝛼𝑗𝛽𝑖𝑗.

(29)

Therefore, considering an initial particle set, noted here by
index 1, the total image loss can be written based on 𝑐̂1(𝑥1)lost
as follows:

𝑐̂ (𝑥)lost ≈ 𝑐̂1 (𝑥1)lost(1 + 1𝛼1
𝑛∑
𝑖=2

𝛼𝑖) − 𝑘 𝑛∑
𝑖=2

𝛼𝑖𝛽1𝑖. (30)

Now, substituting (27) in (30), the image loss can bemeasured
based on available information as follows:

𝑐̂ (𝑥)lost ≈ 𝛾𝑐̂1 (𝑥1)read1 − 𝛾 − 𝑘1 − 𝛾
𝑛∑
𝑖=2

𝛼𝑖𝛽1𝑖 (31)

with

𝛾 ≜ 𝑘 𝑛∑
𝑖=1

𝛼𝑖. (32)

Equation (31) can be applied for cases in which the
discrete particles are sufficiently distant from each other such
that the tails of the image for one set do not affect the images
of other particles. However, when the particles are close to
each other, the algorithm should be modified. This issue is
discussed below for the case of two particles; however, it can
be easily extended to cases involving multiple particles.

Consider the particles 𝑖 and 𝑗 to be very close to each
other; therefore, for these particles, (27) will be as follows:

𝑐̂𝑖 (𝑥𝑖)read = 𝑐̂𝑖 (𝑥𝑖) + 𝑐̂𝑗 (𝑥𝑖) − 𝑐̂ (𝑥)lost ,
𝑐̂𝑗 (𝑥𝑗)read = 𝑐̂𝑗 (𝑥𝑗) + 𝑐̂𝑖 (𝑥𝑗) − 𝑐̂ (𝑥)lost , (33)

where 𝑐̂𝑖(𝑥𝑗) denotes the effect of the image of the particles at
position 𝑥𝑖 on the image of the particles at 𝑥𝑗. Therefore, to
find the lost image, the values of 𝑐̂𝑖(𝑥𝑗) and 𝑐̂𝑗(𝑥𝑖) should be
identified. Knowing the PSF, the relations for these values are
given by

𝑐̂𝑖 (𝑥𝑗) = 𝑐̂𝑖 (𝑥𝑖) L̇ (𝜅𝐺𝑥 (𝑥𝑖 − 𝑥𝑗)) ,
𝑐̂𝑗 (𝑥𝑖) = 𝑐̂𝑗 (𝑥𝑗) L̇ (𝜅𝐺𝑥 (𝑥𝑗 − 𝑥𝑖)) . (34)

Substituting for 𝑐̂𝑖(𝑥𝑖) and 𝑐̂𝑗(𝑥𝑗) from (33), (34) can be
written as

𝑐̂𝑖 (𝑥𝑗) = (𝑐̂𝑖 (𝑥𝑖)read − 𝑐̂𝑗 (𝑥𝑖) + 𝑐̂ (𝑥)lost)
⋅ L̇ (𝜅𝐺𝑥 (𝑥𝑖 − 𝑥𝑗)) ,

𝑐̂𝑗 (𝑥𝑖) = (𝑐̂𝑗 (𝑥𝑗)read − 𝑐̂𝑖 (𝑥𝑗) + 𝑐̂ (𝑥)lost)
⋅ L̇ (𝜅𝐺𝑥 (𝑥𝑗 − 𝑥𝑖)) ,

(35)

which is a system of linear equations for the variables 𝑐̂𝑖(𝑥𝑗)
and 𝑐̂𝑗(𝑥𝑖). The solution of this system gives the values of
interaction terms which are a function of 𝑐̂(𝑥)lost. Finally,
these terms should be subtracted from the “read” values
in (28) and (31), and the total lost image can be obtained
from (31). In the case of multiple particles with multiple
interactions, a similar system of equations as in (35) can be
developed, where the number of equations is equal to the
number of interaction terms.

The image loss recovery algorithm is summarized as
follows.

Image Loss Recovery for 1D 𝑥-Space MPI

Require.Themodel of the 1D PSF:

(1) In an initialization scanning, find the image loss for
one set of particles bymeasuring the global minimum
of the image signal, and then compute 𝑘 in (24). This
step can be omitted when the value of 𝑘 is measured
theoretically.

(2) Deconvolve the original image to find the particles
and their positions in the FOV through a searching
algorithm, and then compute 𝛼𝑖 using (23) and𝑐̂𝑖(𝑥𝑖)read for each set of particles.

(3) Compute the interaction values of each particle set
on the neighbors by solving the system of linear
equations, such as (35).

(4) Consider a particle set (indexed 1) as the reference
set and measure 𝛽1𝑖 for all sets using (28), taking into
account the effect of the neighbor particles.

(5) Compute the image loss through (31).

Remark 5. An important note which should be mentioned is
that the algorithm requires knowing as narrow convolution
kernel (PSF) model (and its image loss to measure 𝑘) as
possible, which can be used to deconvolve the MPI signal to
roughly represent it as the sumof discrete point-like particles.
Apparently, when the noise level of the signal allows using a
narrower PSF, then the error of approximation in (23) would
be less, and the overall performance of the algorithm would
be improved.

Remark 6. From the theoretical point of view, any particle
set can be considered as the initial set, indexed by 1 in
(31). However, in case that a nonideal filter is implemented
in practice, the initial set may affect the accuracy of the
algorithm. Selecting this set from those in the center of FOV
with a medium concentration can be a proper choice. But, in
general, the best choice, which depends on the performance
of the filter, can be determined from the results of the
first experiments (which can be considered as a calibration
procedure).

Remark 7. Considering the case of a nonideal filter, the same
procedure as in Remark 6 can be applied tomeasure the value
of 𝑘; that is, an appropriate choice is to measure it for the
particle at the center of trajectory.
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Remark 8. The approach of [16] uses the average of several
scans to find the image loss, and it is guaranteed to be
robust with respect to the noise, provided that the image
noise has zero mean. Similarly, if this condition is satisfied,
the assumption of having smooth signal (introduced in
Assumption 3), and accordingly the robustness property, for
the proposed approach can be readily achieved by using
multiple scans.

2.5. Evaluation for Multidimensional MPI. Before studying
multidimensionalMPI, it is worthmentioning that the reason
that the lost image is constant in 1DMPI is that theChebyshev
polynomial of order zero 𝑈0(𝑥) is constant and does not
depend on the spatial position. On the other hand, the 𝑥-
space image can be written as the Chebyshev series (18)
since the system function is expressed by the Chebyshev
polynomials. This notation for the system function is the
direct effect of a cosine (harmonic) drive field. This means
that, for other waveforms of the drive field, the system
function cannot be written as the Chebyshev polynomials.

Based on the above discussion, it can be verified that,
in general, the image loss in multidimensional MPI is not
a dc value. However, one method of maintaining a constant
image loss in multidimensional 𝑥-space is to combine the 1D
images of the object to generate a 2D/3D image.This method
is experimentally studied in [23], which requires only one pair
of drive coils and one receive coil.

Using the above method, the image loss would be con-
stant and recoverable for 1DMPI images, but the signal equa-
tion of multidimensional MPI differs from that of 1D MPI.
Then, a question arises of whether it is possible to use the
proposed recovery algorithm for 2D/3D MPI. This question
is investigated below by studying the multidimensional MPI
signal.

The generalized 3D MPI signal is given by [23]

k (𝑡) = 𝜌 (r)𝑚𝑐 (r) ∗ ∗ ∗ h (r) ṙFFP󵄨󵄨󵄨󵄨r=rFFP(𝑡) , (36)

where r = [𝑥 𝑦 𝑧]⊤ and h(r) is a matrix PSF which is con-
volved in 3D (denoted by ∗∗∗) with the particle distribution.
When the multidimensional image is reconstructed from 1D
images, which is by a collinear arrangement of detection coil
and drive coil trajectory, then the collinear PSF ℎ‖(r) should
be considered. Assuming the drive field trajectory is in the𝑥-direction, one has [23]

ℎ‖ (r) = L̇ (𝜅𝐻 (r)) 𝜅𝐺3𝑥𝑥2𝐻(r)2
+ L (𝜅𝐻 (r))𝜅𝐻 (r) (1 − 𝐺3𝑥𝑥2𝐻(r)2)

(37)

with 𝐻(r) = √(𝐺𝑥𝑥)2 + (𝐺𝑦𝑦)2 + (𝐺𝑧𝑧)2. Supposing the
particles are located at line 𝑦 = 𝑧 = 0, the second term in (37)
will disappear when a drive field trajectory is on this line.The
remaining PSF is identical to the 1D PSF, which depends on
the time derivative of the Langevin function, and is assumed
to be known by the proposed algorithm.When the trajectory
moves away from this line, the resultant PSF depends not only
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Figure 3: Collinear PSF: (a) a point-like particle and trajectories of
the FFP; (b) collinear PSFs at different positions.

on the derivative of the Langevin function, but also on the
function itself. Therefore, in different spatial positions for the
drive field, the PSF would no longer be the same as the one
used by the algorithm.However, the collinear PSF is similar to
Gaussian curves, which has a narrow shape at line 𝑦 = 𝑧 = 0
and becomes broader with distance from this line. Figure 3
illustrates a collinear PSF for a point-like sample of particles
at different positions of the drive field.

It is well investigated in [22] that it is always possible
to reconstruct a broad Gaussian-like curve from linear
superposition of a narrow one, which is why multicolor
imaging is not possible in 1D MPI of Langevin particles
with FFP motion being a single line. This property provides
the possibility of describing an MPI signal, obtained from
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Figure 4: Image representation by 1D PSF: (a) 2D distribution of
particles and the position of the drive field; (b) representation of the
image signal based on 1D PSF.

a linear FFP trajectory, based on the linear superposition
of 1D MPI images resulting from the spatial distribution of
the particles along the trajectory line. This distribution can
be obtained by deconvolution of the 1D 𝑥-space PSF from
the obtained signal. To clarify this property, an example is
illustrated in Figure 4. In this figure, the dashed MPI signal
is the output of the band-stop filter, which is induced by the
particles at the center of imaging area and the available large
set of particles at the border, due to a linear trajectory of
the drive field at the center. One should note that although
the drive field in Figure 4 does not pass through the large
particle set, this set also induces a signal in the receive coil
because the FFP is not only a small area for medium-level
selection field power, which is generally used in practice.

Using a deconvolution algorithm, the solid line in the figure
shows a new representation of the signal based on the 1D
PSF, which can be interpreted as the superposition of 1DMPI
images of several particles with the same PSF. Therefore, this
representation property shows that the proposed recovery
algorithm is applicable in multidimensional MPI.

Remark 9. Image of particles with broad PSF, similar to the
case where they are close to each other or, in the extreme case,
cover the entire FOV, can be expressed as the sumof images of
particles with narrow PSF. In fact, the algorithm, regardless of
the dimension of particle distribution or imaging, simply tries
to find the level of the received signal by expressing the signal
as the sum of images of point-like particles (like Figure 4),
and then, knowing the effect of a sample set of particles (𝑘 in
(24)), the algorithm estimates the total image loss.

Remark 10. Nonlinearity of the gradient field or the relax-
ation effectsmay cause an asymmetry in the PSF. Considering
the point in Remark 9, as long as a model of the PSF is
available and the image loss is quasi-constant, the algorithm
can still be applied regardless of the asymmetry of the signal.
Keep in mind that when the magnetic fields are far from
being ideal (ideal magnetic fields: a linear selection field
and a homogeneous drive field), the MPI image cannot
be formulated as a convolution like (17), and therefore the
assumption of constant image loss is not also valid.

3. Results and Discussion

In this section, simulation results are presented to evaluate
the effectiveness of the recovery algorithm proposed in
Section 2.4. In the following, simulations are first presented
for 1D imaging, and then the result for application of the algo-
rithm to a 2D MPI image is illustrated. MATLAB codes are
used to simulate both 1D and 2D images. In 1D simulations,
point-like particles are considered in the FOV, and since the
algorithm is derived based on the shape/model of the PSF,
all images are normalized according to the maximum level of
concentration; this means the results are reported regardless
of the concentration level of the particles. 1D simulations are
conducted in three cases for the distribution of particles, and
two different particle sizes are analyzed: particles with a core
diameter of 30 nm which have a narrow PSF (considered in
the first two cases) and particles with a core diameter of 22 nm
(considered in the third case). This is to evaluate the error
of the approximation used to derive (23). The PSFs for these
particles are illustrated in Figure 5.

Case 1. As the first study, three sets of particles with different
concentrations are considered in the FOV, having no inter-
action. Since the image of particles does not affect the image
of other particles, then the location of particles can be easily
determined, and step (3) of image loss recovery for 1D 𝑥-
spaceMPI is not required. However, since the particles do not
have similar concentrations,𝛽𝑖𝑗must be computed.The result
for this case is shown in Figure 6. As the figure demonstrates,
in this case, the algorithm can detect the image loss with high
accuracy.
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Figure 6: Case 1: filtered 1D 𝑥-space MPI image and recovered
image applying the proposed algorithm for a particle diameter of
30 nm.

Case 2. In the second case, four sets of particles are con-
sidered in the FOV, where particles indexed by “2” and “3”
are very close to each other and interact. By deconvolving
the image, it is possible to easily determine the position of
particles. For this case, it is required to use (35) to cancel
the interaction effect. The result for this case is shown in
Figure 7, which demonstrates the proper compensation of the
lost information. It should be noted that if the particles were
closer, then deconvolving could not segregate the particles
and they would be considered as one set of particles with a
higher concentration.

Case 3. In the final case, four sets of particles with a wide
PSF are considered in the FOV. In this simulation, the images
of particles indexed by “1,” “2,” and “3” undergo interactions
with each other. Also, particles “3” and “4” experience inter-
actions. There are a total of eight interactions in the image;
therefore, the equivalent model for (35) includes a system of
eight linear equations. To simulate the measurement errors,
the level of interactions, obtained by (34), is considered to be90% of its true value. The result of using the algorithm for
this case is illustrated in Figure 8, which shows satisfactory
recovery of the image, with a small deviation, despite thewide
PSF and error in the measurements.
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Figure 7: Case 2: filtered 1D 𝑥-space MPI image and recovered
image applying the proposed algorithm for a particle diameter of
30 nm.
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Figure 8: Case 3: filtered 1D 𝑥-space MPI image and recovered
image applying the proposed algorithm for a particle diameter of
22 nm.

To simulate the algorithm for 2D imaging, the MPI sim-
ulation toolbox developed in [24] is utilized. This MATLAB
toolbox simulates the magnetic fields and magnetization
of the particles and uses the system function method to
reconstruct the image. This program is appropriately mod-
ified for the 𝑥-space imaging and the FFP trajectory is
changed to meet the requirements for constant image loss
in multidimensional imaging. Measurement error, similar
to “Case 3,” is also considered in this simulation. Figure 9
illustrates the result of applying the recovery algorithm to a
2D image. It is worth mentioning that, in the result, one may
expect that Figure 9(c) is better that Figure 9(d), but in fact
the concentration of particles shown by Figure 9(d) is more
close to the true value. In terms of the image quality, it can be
easily improved by combining the images of two orthogonal
line-scan drive fields [25].

4. Conclusion

This paper analyzes the LSI characteristics of the 𝑥-space
MPI image and proposes an algorithm to recover these
characteristics, which are important for quantitative medical
diagnosis. Although the theoretical model of the 𝑥-space
image is known to exhibit LSI, it is shown that filtering
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Figure 9: 2D image recovery: (a) imaging phantoms, (b) ideal 𝑥-
space image, (c) filtered image, and (d) recovered image.

the fundamental excitation frequency, which is necessary
in practice to manifest the particle signal, destroys the LSI
properties. The lost image could be constant and hence
recoverable when a 1D harmonic drive field is applied in
both 1D and multidimensional imaging. To recover the lost
information, an algorithm is proposed using 𝑥-space PSF
model of the particles and the properties of the mathematical
model of the image. The algorithm tries to find the level of
the received signal by expressing it as the sum of images
of point-like particles, and then, knowing the image loss of
a sample set of particles, the algorithm estimates the total
image loss.The initial image loss information can be obtained
offline and is enough to be measured for one time. In this
regard, the proposed approach has an advantage over the
previous methods, where a priori information is required
to be measured online at the beginning of each test. The
complexity of the proposed approach depends on a small-
sized system of linear equations, and therefore it has low
computational load, which preserves the real-time advantage
of𝑥-space imaging.This is another advantage of the proposed
approach with respect to current available approaches, where
overlapping of successive FOVs is required which increases
the imaging time to cover the entire object. The results of
simulations for 1D and 2D imaging, for both narrow and
broad PSFs, demonstrate the effectiveness of the algorithm.

The algorithm is developed based on the assumptions
expressed in Assumptions 2–4. Although in simulation study
these assumptions are released up to some level and the
results are still promising, they seem to be the most chal-
lenging parts of implementing the algorithm in practice. In
this regard, the future work is devoted to the study, through
experiments, of the sensitivity of the algorithm to derive a
robustness level with respect to the assumptions. The future
work is also devoted to the comparison of the processing
times of the proposed algorithm with the previous ones.
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