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ABSTRACT: Capacitive deionization (CDI) is an environ-
mentally friendly, energy efficient, and low cost water purification
technique in comparison with other conventional techniques, and
it has attracted considerable attention in recent years. Here, we use
biomass byproduct okara as the starting material to fabricate a
boron and nitrogen codoped hierarchically porous carbon (BNC)
with ultrahigh heteroatom contents and abundant in-plane
nanoholes for CDI application. With the interconnected
hierarchical porous structure, the BNC not only exhibits a large
surface area (647.0 m3 g−1) for the adsorption of ions but also
offers abundant ion transport channels to access the entire internal
surface. Meanwhile, the ultrahigh dopants’ content of B (11.9 at%) and N (14.8 at%) further gives rise to the increased surface
polarity and enhanced capacitance for BNC. Owing to these favorable properties, BNC exhibits top-level salt adsorption capacity
(21.5 mg g−1) and charge efficiency (59.5%) at the initial NaCl concentration of ∼500 mg L−1. Moreover, we performed first-
principle simulations to explore the different effects between N-doping and N,B-codoping on the capacitive property, which indicate
that the boron and nitrogen codoping of carbon can largely increase the quantum capacitance over the double layer capacitance. The
results of this work suggest a promising prospect for the BNC material in practical CDI application.

1. INTRODUCTION
Capacitive deionization (CDI) has been burgeoning as an
attractive desalination technology in recent years for the
treatment and purification of brackish water.1,2 The CDI
process consists of two basic steps. When applying an electric
current or voltage on the CDI system, cations and anions move
toward the oppositely charged porous electrodes and adsorb
on their surface, which establishes the electric double layer
(EDL) at the electrode surface and realizes the removal of ions
from salt solution. When the external voltage is removed or
inverted, the adsorbed ions are released from the electrodes
into the solution, while the electrodes are regenerated.3 It is
crucial to rationally design and synthesize electrode materials
for optimizing the performance of a CDI system. Various types
of carbon materials (such as activated carbon,4,5 carbon
nanotubes,6,7 and graphene8,9), owning high conductivity, low
cost, easy availability, large surface area, and excellent chemical
stability, have been regarded as the most important electrode
materials in the CDI system.10,11

The fabrication strategies for carbon materials can be
considered from two main aspects. First, fabrication of high-
surface-area carbon materials with reasonable porosity or pore
size distribution is the prerequisite for achieving high salt
adsorption capacity and fast ion transportation kinetics.12

Recent studies have demonstrated that unimodal micropores
distributed in carbon materials are unfavorable for the efficient
diffusion of ions.13,14 Therefore, hierarchically porous carbon
materials with a multiporosity structure have recently gained
much attention. Specifically, micropores can prominently
increase the specific surface area and thus the salt adsorption
capacity, because high surface area provides more active sites
for ion adsorption.15,16 Meanwhile, mesopores, especially the
ones with a dimension of 2−7 nm, provide the other key
characteristics for EDL formation and for a high-performance
CDI electrode.17−19 This is because such mesopores are large
enough for accommodating the hydrated electrolyte ions and
can serve as an ion-buffering reservoir for facilitating ion
transport from larger pores into the inter micropores by
shortening ion transport pathways. So, the hierarchical
distribution of micropores (<2 nm) along with small sized
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mesopores (<10 nm) in carbon-based materials could be
extremely beneficial for balancing between the salt adsorption
capacity and the mass transfer rate during CDI process.
Second, heteroatom doping of carbon can effectively boost the
CDI capability by introducing additional psudocapacitance to
the overall capacitance, improving the electroconductivity of
the electrode, and enhancing interfacial interaction between
the electrode and electrolyte.20 The effect of N doping on
promoting CDI performance of graphene was first demon-
strated in 2015.21 Since then lots of N-doped carbon materials
have been most extensively investigated for their use as CDI
electrodes.22−31 Furthermore, it was also reported that
simultaneous doping of N with other heteroatoms into carbon
materials is more favorable for promoting the salt adsorption
capability of carbon materials. Wang et al. constructed a B, N
codoped graphene xerogel with a 1.54 at% B and 8.72 at% N
doping via a simple sol−gel method. The as-synthesized
material displays significantly enhanced salt adsorption
capability (18.45 mg g−1) versus pristine graphene xerogel
(13.32 mg g−1).32 Huo et al. prepared a P, N codoped porous
carbon framework with 1.58 at% P and 2.94 at% N doping by a
two-step carbonization-activation process. They demonstrated
that the dual doping of N and P has a positive influence on the
distribution of electron density in carbon, which is greatly
beneficial for achieving the high salt adsorption capability (19.3
mg g−1).33 Generally speaking, a higher heteroatom content
tends to provide more polarized surface and introduce
additional pseudocapacitance, and thus, is greatly beneficial
for yielding a high specific capacitance or salt adsorption
capability.34,35 After a survey of the related literature, it was
noticed that in most cases, the total heteroatom content in
either single- or multiple-heteroatom doped carbon materials is
below 10 at%. Meanwhile, it was lack of a fundamental
understanding for realizing the promotion effect of dual
heteroatom-codoping in CDI performance.
Porous carbon materials can be fabricated from various

natural or synthetic carbonaceous precursors via carbonization-
activation methods.36 In recent years, biomass has been
regarded as promising precursors, because they are not only
low cost, nontoxic and carbon-rich but also contain plenty of
intrinsic hierarchical nanopores, making them suitable for CDI
applications.37,38 For example, Kim et al. developed porous
carbon from sorghum with a specific surface area of 1347 m2

g−1 via etching process and carbonization treatments. The
porous carbon exhibited good desalination performance of
29.4 mg g−1 for CDI.39 Lu et al. prepared hierarchically porous
carbon nanoflakes from xylose, providing a large specific
surface area of 408 m2 g−1 and showing a salt adsorption
capability of 16.29 mg g−1.40 More importantly, some of the
biomass naturally contain abundant heteroatoms (such as N, S,
P atoms), being suitable for preparing heteroatom-doped
porous carbon materials. Among these materials, okara, as a
byproduct in the manufacturing process of tofu, soya milk, and
soya oil, has been produced with annual output in the billions
of tons. It is unfortunate that most of them will be burned
directly, which will aggravate the deterioration of the ecological
environment. Okara is composed of 34.3% crude protein,
11.8% crude fat, 6.7% crude fiber, and 3.6% total high protein
content,41 making it a good starting material for obtaining
highly N-doped carbon materials.
Herein, we fabricated a B- and N- codoped, hierarchically

porous carbon (BNC) as an electrode material for CDI
application (Scheme 1). During the pyrolysis and carbon-

ization process, both appropriate porous structure and B and N
codoping can be achieved simultaneously. On the one hand,
ZnCl2 is an efficient porogen or etching agent for producing
both micro- and meso-pores on the carbon surface.42 On the
other hand, the decomposition of okara and H3BO3 can release
plentiful gasification molecules, which can not only open the
closed pores and further broaden the range of pore
distributions but also provide abundant B and N doping
elements into the carbon matrix. Originating from the above
synergetic porosity and codoping effect, the synthesized BNC,
with a reasonable porous structure (ca. 3:1 area ratio for micro-
to meso-pores) and ultrahigh heteroatom content (>10 at% for
B and N), shows a high specific capacitance, fast ion transport
kinetics, large salt adsorption capacity, and excellent
adsorption−desorption cycling stability. And to deeply under-
stand the difference between N-doped and N,B-codoped
carbon, we evaluated the doping effects on the DOS and
quantum capacitance by performing first-principle simulations.

2. EXPERIMENTAL SECTION
2.1. Preparation of BNC and NC. For the synthesis of

BNC, the dried okara was first ground in a pestle and then
passed through a 20 mesh sieve, obtaining the precursor in
powder form. Boric acid (1.0 g), ZnCl2 (1.0 g), and okara
powder (1.0 g) were respectively added into deionized water
(50 mL). After heating in a water bath with magnetic stirring at
80 °C for 1 h, the obtained concoction suspension was
centrifuged at 5000 rpm and freeze-dried to achieve the fluffy
products. Then, the fluffy products were sonicated at 800 °C
for 2 h (Ar atmosphere, 5 °C min−1). Subsequently, the
collected dark solid powder was soaked in 1 M HCl solution
with a magnetic stirring for 2 h to remove soluble salts and
generated metal nanoparticles. After centrifuging, washing
thoroughly with water, and drying in an oven overnight, the
BNC was obtained. For comparison, N-doped porous carbon
(NC) was synthesized following the similar procedure for
BNC, only except that boric acid was not used.

2.2. Characterization. Surface morphology and micro-
structure of NC and BNC were characterized by scanning
electron microscopy (SEM, Zeiss, Germany) and transmission
electron microscopy (TEM, JEOL, Japan). The crystal
structure and defect degree of the materials were identified
via X-ray diffraction (XRD, Shimadzu, Japan) and Raman
spectroscopy (Thermo Fisher Scientific, America), respec-
tively. The nitrogen adsorption−desorption isotherms were
measured at 77 K using an ASAP 2020 absorption apparatus
(Micromeritics, America). Brunauer−Emmett−Teller (BET)
model and Barrett−Joyner−Halenda (BJH) model were used
to determine the corresponding specific surface area and pore

Scheme 1. Schematic Showing the Preparation of BNC and
the Process of CDI Desalination
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size distributions for the samples, respectively. X-ray photo-
electron spectroscopy (XPS, ThermoFisher-VG Scientific,
USA) was used to characterize the elemental composition
and corresponding bonding states in BNC and NC. All XPS
spectra had been adjusted by C 1s (284.8 eV).

2.3. Electrochemical and CDI Tests. To prepare the
electrode, BNC or NC, acetylene black, and polyvinylidene
fluoride with the weight ratio of 8:1:1 were ground in a mortar
and then dispersed in N-methyl-2-pyrrolidone (NMP) solvent
with the aid of a magnetic stirring process. The obtained slurry
was subsequently coated onto the surface of a graphite paper
with an area of 1 × 1 cm2. After being desiccated at 80 °C for 1
day in a vacuum oven, the BNC or NC electrode was obtained.
The electrochemical features of the samples were investigated
using a three-electrode system, in which the prepared
electrode, a platinum foil, a saturated calomel electrode
(SCE), and 1.0 M NaCl solution were served as working
electrode, counter electrode, reference electrode, and electro-
lyte, respectively. An electrochemical working station (Chen-
hua, CHI660E) was used to measure cyclic voltammetry (CV)
and electrochemical impedance spectroscopy (EIS). Among
these methods, EIS spectra were obtained with a frequency
range of 100 kHz−0.1 Hz at the open-circuit voltage of 0.3 V.
The following equation 1 was used to calculate the specific
capacitance C.43

C
A

v m E2
=

· · (1)

where A, v, m, and ΔE are the integral area of the CV curve,
the scan rate, the weight of electrode materials loaded, and the
potential window, respectively.
CDI desalination performances were investigated using a

CDI device (Figure S1), which consists of a CDI cell, a
conductivity meter, a potentiostat, and a peristaltic pump. The
preparation procedure of CDI electrodes was similar to that of
the working electrode for electrochemical measurements. The
total mass and the geometric area of the loaded electrode
materials on the graphite paper are 40 mg and 20 cm2,
respectively. The CDI experiments were conducted with using
30 mL NaCl solution, 25 mL min−1 flow rate, 1.2 V operating

voltage. The variation of NaCl concentration was evaluated by
a conductivity meter (SevenExcellence Cond meter). The
electrosorption capacity (Q) and charge efficiency (Λ) were
respectively calculated using equations 2 and 3.44

Q
c c V

m
( )0 e=

·
(2)

c c V F

M i t

( )

d
100%0 e=

· ·
· ·

×
(3)

where, c0 and ce are the concentration of NaCl solution at the
initial and equilibrium stage, respectively; V, F, M, i and t are
the volume of the NaCl solution, Faraday constant, molar mass
of NaCl, current density, and time during CDI process,
respectively.

3. RESULTS AND DISCUSSION
The detailed nanostructures of BNC and NC are analyzed by
SEM and TEM studies. SEM images in Figure 1a and 1b reveal
that the BNC presents a honeycomb-like porous framework,
consisting of few-layer graphene-like carbon nanosheets and
abundant submicron level macropores ranging from 50 to 200
nm. Compared with BNC, NC displays a slightly textured
morphology (Figure S2), the BNC shows a relatively fluffier
surface structure. This is ascribed to the decomposition of
H3BO3 to produce HBO2, B2O3, and H2O gases during
annealing process, which act as “nanobombs” to expand the
local space and create more pores. Furthermore, from the
TEM images of BNC shown in Figure 1c, it can be seen that
abundant in-plane nanoholes with the pore size around 4−10
nm distributed across the whole basal plane due to ZnCl2
chemical etching of the carbon sheets. The in-plane nanoholes
can increase the specific surface areas and provide efficient ion
transport channels to reduce ion transport distance between
carbon sheets, which were proved in our previous works.43

Multiple techniques have been employed to analyze the
porous structure and chemical composition of the BNC and
NC. Figure 1d presents the nitrogen adsorption−desorption
isotherms for BNC and NC, exhibiting a combined feature of

Figure 1. (a, b) SEM images and (c) TEM images for BNC. Inset of (c) shows the HRTEM of BNC. (d) N2 adsorption−desorption isotherms, (e)
the pore size distributions, and (f) Raman spectra for NC and BNC.
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type I and IV isotherms.45 The coexistence of micro-, meso-,
and macro-pores in BNC and NC can be demonstrated by the
rapid increase at P/P0 < 0.01, distinct hysteresis between 0.45
and 0.9 (P/P0) and slow increase at P/P0 > 0.9. Figure 1e
displays both ∼1.5 nm micropores and 4−7 nm mesopores
that are predominant in BNC and NC, and the ratio of micro-
to meso-pore surface areas was estimated as ∼3 for both
materials (Table S1). The similarity in the pore size
distribution for NC and BNC results from the effect of
ZnCl2 porogen during carbonization process. However, BNC
demonstrates higher BET surface area (647.0 m2 g−1), pore
volume (0.46 cm3 g−1), micropore (489.3 m2 g−1), and
mesopore (157.7 m2 g−1) surface area than those for NC
(Table S1), consistent with the above SEM observations. XRD
and Raman spectra illuminate the disordered feature of the
BNC and NC. The XRD patterns show two diffraction peaks
at 2θ ≈ 26.4° and 44.3° (Figure S3), which are indexed to the
(002) and (101) lattice planes of graphite (PDF#41-1487).
These diffraction peaks are very broad, indicating both samples
consisted of a mixture of amorphous, turbostratic, and
graphitic carbon phases.46,47 The Raman spectra further
reveals the difference in defect degree between NC and
BNC. Figure 1f shows two characteristic peaks at ∼1336 cm−1

(D band) and 1578 cm−1 (G band), which correspond to the
structural defects and the crystalline graphite, respectively. The
intensity ratio of D band to G band (ID/IG) can be used for
evaluating the defect degree in carbon-based materials.44 So,
the increased ID/IG value from 0.79 for NC to 0.88 for BNC
indicates that further introducing heteroatoms (i.e., B atoms)
into the carbon matrix could increase the number of defective
sites. This may be accompanied both by the opening of closed
pores and by the creation of new small pores inside NC,
leading to a 20 ± 3% increase in the pore volume as well as in
specific surface area from NC to BNC (Table S1).
XPS in combination with element mappings of SEM was

performed to achieve insight into the elemental composition
and corresponding bonding states in BNC and NC. Figure 2a
shows the XPS survey spectra, where BNC presents four peaks
at 190 eV (B 1s), 284 eV (C 1s), 400 eV (N 1s), and 532 eV

(O 1s), respectively. The content for B and N is determined to
be 11.9 and 14.8 at% by integrating the corresponding peak
area. The ultrahigh heteroatom content is attributed to two
features: (1) the okara is rich in the protein, which provides
abundant nitrogen element for self-doping during annealing
process. As is in case of NC, without the addition of H2BO3, it
still maintains an ultrahigh N-doping content of 11.4 at%
(Figure S4); (2) boron atom is easy to dope into the carbon
matrix, since the bond energy of B−C (448 kJ mol−1) is higher
than that of C−C (335 kJ mol−1) yet with comparative bond
lengths (156 pm for B−C bond and 154 pm for C−C). Figure
2b and 2c show the high-resolution N 1s and B 1s spectra for
BNC, respectively, and the corresponding content are
calculated from the deconvoluted XPS spectra and summarized
in Table S2. After curve fitting for N 1s spectra, the peaks at
binding energy of 397.4, 398.1, 399.3, and 400.8 eV are
ascribed to pyridine nitrogen, C−N−B, pyrrolic nitrogen, and
graphitic nitrogen, respectively.33,48 And the fitted B 1s
presents the peaks at 190.2 and 191.3 eV, resulting from the
responses of B−C and B−N bonds.32,49 As shown in Figure 2d,
the corresponding SEM image and elemental mappings
demonstrate the uniform distribution of B and N elements
within BNC nanosheets. The combination of the multiscale
pore structure and B,N-codoping is expected to render BNC a
promising electrode material for ion adsorption/removal from
salt solutions.
The capacitive behaviors of NC and BNC electrodes are

systematically tested by performing CV and EIS measurements
in 1 M NaCl solution using a standard three electrode system.
The CV curves of BNC and NC are evaluated at a range of
potentials from −0.3 to 0.7 V. Figure 3a depicts both curves
exhibit nearly symmetric and rectangular patterns, indicating a
nearly ideal EDL charge−discharge behavior. In comparison
with NC, the BNC reveals a higher integral area of CV curve,
which is indicative of a higher capacitance of BNC owing to
high specific surface area and B, N codoped effect. When the
scan rate is increased from 2 to 100 mV s−1, the CV curves of
BNC can maintain the symmetric and rectangular profiles
under all used scan rates, demonstrating its good rate capability
and laudably capacitive nature (Figure 3b). In contrast, the CV
curve of NC exhibits a slight distortion when the scan rates
above 50 mV s−1 (Figure S5), indicating an ion-diffusion
controlled kinetics for the EDL formation at higher scan
rates.50 This is because ions have no sufficient time to diffuse
into the porous structures at higher scan rates, delaying the
formation of EDL.51 The overall correlation between current
(I) and scan rate (ν) is identified according to the equation I =
aνb,52 where a and b are constants. There are two well-defined
boundary conditions, b = 1 and b = 0.5. The former indicates a
fast surface charge storage or transport process free of diffusion
control, while the later means a slow ion-diffusion controlled
kinetics. Figure S6 shows the logI−logν plots for BNC and NC
electrodes at 0.0, 0.2, and 0.4 V. By performing linear fittings,
the b value was estimated as 0.83 for BNC and 0.77 for NC,
respectively, suggesting the relatively faster charge storage for
BNC, or alternatively, the slower ion diffusion for NC. The CV
features indicate that BNC possesses a favorable porous
structure for rapid ion storage. As a result, the BNC exhibits
higher specific capacitance than NC at any scan rate (Figure
3c) and even achieves a remarkable capacitance of 174.2 F g−1

at 2 mV s−1. The stability of the BNC was tested with repeated
200 CV cycles (Figure 3d). With the almost unchanged CV

Figure 2. (a) XPS spectrum of NC and BNC. High-resolution XPS
spectra of N 1s peak (b) and B 1s peak (c) in the BNC. (d) SEM and
elemental mappings of BNC.
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curve shapes, the capacitance retention is nearly 100%,
indicating satisfactory adsorption−desorption stability.
To understand the improved capacitive ion storage at BNC/

solution interface, we further performed EIS studies for NC
and BNC materials. Figure 3e and 3f show the Nyquist plots
and complex capacitance spectra measured at 0 V. Figure 3e
exhibits a small semicircle at high frequencies, a 45° Warburg
straight line at middle frequencies, and a nearly vertical
capacitive line at low frequencies. While, Figure 3f features a
predominant capacitive semicircle, where the obviously larger
diameter of BNC indicates a significantly increased low-
frequency limiting capacitance. Similar EIS responses were also
measured at 0.3 V (Figure S7). To account for such
characteristics, the equivalent electrical circuit model shown
in Figure S8 was proposed for analyzing the measured EIS
spectra. With a comparison of the estimated electrochemical
parameters for NC and BNC (Table S3), several reasons can
be asserted for the effectively enhanced salt ion removal

performance by N,B-codoping. First, the interfacial contact
property between carbon particles was mended by N,B-
codoping. The relatively smaller contact resistance (Rc) of
BNC indicates a better electronic conductance than NC. At
the same time, the contact capacitance (Cc, which corresponds
to Q-Y0 in Table S3) of BNC is ca. 1/5 of NC, suggest less
parasitic electronic charges at the interface between BNC
particles (or alternatively, more electronic charges can be used
effectively for adsorbing ions). Second, the ion transport
property within the pores of the electrode materials was
improved by N,B-codoping. This can be manifested both by
the decreased Warburg coefficient (σ) from ∼21 Ω mg s−1/2

(at 0 V) for NC to ∼8 Ω mg s−1/2 for BNC, and by the
decreased diffusion resistance (RD) from ∼57 Ω mg for NC to
∼19 Ω mg for BNC. Third, N,B-codoping can accelerates the
rate for the charge/discharge process within the EDL. The
higher values of characteristic frequency (ω0) for NC (<1 Hz)
indicate a slower ion storage/withdrawing process (>1 s). In

Figure 3. (a) CV curves of NC and BNC at a scan rate of 50 mV s−1. (b) CV curves of BNC at various scan rates. (c) Comparison of specific
capacitances vs different scan rates. (d) Cycling stability of BNC at 50 mV s−1 with inset showing the CV curves from 1th to 200th cycles. (e)
Measured and fitted EIS spectra and (f) normalized capacitance versus frequency for the BNC materials.

Figure 4. CDI performance tests. (a−c) Plots of conductivity (a), current (b), and desalination rate (c) variations CDI time for NC and BNC
electrodes in a 50 mg L−1 NaCl solution. (d) The regeneration performance for BNC electrode in a 50 mg L−1 NaCl solution. Inset shows the
conductivity changes in the NaCl solution during 8−13 cycles. (e) The electrosorption capacity curves for BNC electrode in different initial
concentrations of NaCl solutions (from 50 to 500 mg L−1). (f) Plot of electrosorption capacity and charge efficiency vs initial NaCl concentration
for BNC electrode.
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contrast, ω0 > 1 Hz for BNC indicate a faster process (<1 s)
for completing the ion adsorption/desorption. As a result of
the superior figure of merits due to N,B-codoping, BNC
(relative to NC) delivers a ∼60% enhancement in the low-
frequency limiting capacitance (C0).
The desalination performance of NC and BNC was tested

using a symmetric CDI device. Figure 4a presents the
evolution of conductivity vs CDI time for NC and BNC
electrodes. With the saline water continuously flowing through
the CDI cell under an applied voltage of 1.2 V, the
conductivity rapidly decreases within 10 min, and then reaches
a fully saturated absorption after ca. 60 and 30 min for NC and
BNC electrode, respectively. Correspondingly, the salt
adsorption capacity of NC and BNC electrodes is 4.2 and
6.6 mg g−1, respectively. Subsequently, when 0 V is applied, the
conductivity gradually returns to the initial value due to the
release of the adsorbed ions to the solution. While the charge
efficiency, being extracted from the evolution of the transient
current vs CDI time (Figure 4b), is 54.2% for NC and 68.4%
for BNC, respectively, the maximum desalination rate (0.66
mg g−1 min−1) of BNC is 3 times higher than that (0.21 mg g−1

min−1) of NC (Figure 4c). The electrosorption and
regeneration behavior of BNC electrode is evaluated by
tautologically applying the voltage of 1.2 and 0 V for 20 times
at an initial concentration of 50 mg L−1 (Figure 4d). Clearly,
the capacity retention is >90% after 20 adsorption−desorption
cycles (40 h), indicating excellent regenerative ability of BNC
electrode. The CDI performance of BNC was further evaluated
by altering the initial concentration of NaCl solution from 50
to 500 mg L−1 (Figure 4e). It can be seen from Figure 4f that
the electrosorption capacity and charge efficiency of BNC
gradually change from 6.6 mg g−1 and 68.4% to 21.5 mg g−1

and 59.5%. The higher NaCl concentrations usually lead to the
easier formation of EDL on the surface of electrodes, which
benefits to increase the electrosorption capacity of CDI.
Meanwhile, the reduction of charge efficiency is attributed to
the increased co-ion expulsion effect with increasing initial
NaCl concentration.53Table S4 summarizes and compares the
heteroatom contents, structural features, and CDI performance
for various carbon-based materials reported in the literature
and the BNC invested in this work. As is seen from Table S4,
the BNC exhibits a higher electrosorption capacity than most
traditional carbon materials and biomass-derived carbons. Two
factors may be responsible for the better desalination
performances. First, the high specific surface area and large
pore volume of BNC could provide plenty of active sites to
adsorb the ions. Meanwhile, the reasonable pore size
distributions of both <2 nm micropores and 3−8 nm
mesopores can well match with the theoretical calculation
results for the optimum pore dimension (<5 nm),54,55 which
are favorable both for the ion adsorption and for ion diffusion
processes within BNC. Second, comparing with other single-
or multielement doped carbon materials, BNC possesses the
ultrahigh contents of N and B atoms, which can notably
increase the electronic conductance, surface polarity, and
charge/discharge rate for the charge storage process within
EDL.
For deeply understanding the benefit of N,B-codoping for

enhancing the capacitance and thus for increasing the
electrosorption capacity, we also performed density function
theory (DFT) calculations. For this purpose, graphene sheets
can be used as a mimic model to exploring the electronic and
electrochemical properties for carbon-based materi-

als.56,57Figure 5a and 5b show the atomic models used for
calculations, which were constructed with the substitute of

nitrogen or boron atom for carbon atom to simulate the N-
doping and N,B-codoping of the hexagonal carbon network. In
these calculations, the Perdew−Burke−Ernzerhof (PBE)
exchange-correlation functional58 of generalized gradient
approximation was adopted by using the CASTEP module of
Materials Studio.59 A vacuum region of 20 Å along the z
direction was added to avoid the interaction between graphene
sheets, and a 12 × 12 × 1 k-points Monkhorst−Pack grid was
used for calculating the density of states (DOS). The
calculated DOS curves (Figure 5c) clearly manifest that
while N-doping shifts up the Fermi level (by ∼0.9 eV) of
graphene sheet from the Dirac point, it remains almost
unchanged for N,B-codoping. This may be because the
substitution of a carbon atom with a nitrogen atom increases
the number of π elections in the carbon network, leading to an
n-type electronic doping effect.50 In contrast, as boron atom is
short of one 2p election relative to carbon, the incorporation of
both nitrogen and boron atoms in graphene sheets does not
change the total number of π elections, leading to a
compensation and/or complementation effect of N,B-codop-
ing. However, in both cases, the DOS near the Fermi level
(within ±1 eV) is obviously larger than that of undoped
graphene sheet.
From the obtained DOS, we further evaluated the quantum

capacitance based on the assumption of fixed band
approximation.60 Under an applied bias potential (ϕ), the
electrochemical potential (μ) of an electrode material is rigidly
shifted by eϕ, leading to the estimation of the excess charge
(Q) and thus of the quantum capacitance (Cq).

60,61 It is
described based on the below equations 4 and 5:
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Figure 5. Atomic models of (a) N-doped and (b) N,B-codoped
graphene sheet with 6 × 6 supercells, and the calculated density of
state (c) and quantum capacitance (d). In panel (a) and (b), the N
and B atoms are shown respectively in blue and pink, while the black
lines indicate the periodic boundaries. In (c) the Fermi level is set to
zero, and in (d) the typical value for Helmholtz double layer
capacitance (CH ∼ 20 μF cm−2) is indicated with a dotted horizontal
line.
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where D(E) is the DOS, E is the energy relative to Fermi level,
f(E) is the Fermi−Dirac distribution function, f(E) = 1/
[1+exp(E/kT)], and T is temperature (300 K). Figure 5d
shows the theoretical quantum capacitance for undoped, N-
doped, and N,B-codoped graphene sheets. In principle, the
total capacitance (Ctotal) for carbon-based electrode materials is
contributed both from the Helmholtz double layer capacitance
(CH) and from Cq (with 1/Ctotal = 1/CH + 1/Cq),

62 and thus, is
dominated by the smaller one of the two. A typical value for
CH is 20 μF cm−2,62 which is indicated as a reference in Figure
5d. The results clearly demonstrate that, within the bias voltage
window from −0.6 to 0.6 V, the Cq of the undoped graphene
sheet is less than CH. In contrast, the N-doping can
significantly level up Cq at negative biases, but it gradually
decreases Cq at positive biases (Cq < CH above 0.4 V). This
means that although the N-doped carbon is very suitable for its
use as the cathode material in CDI system, the total
capacitance is still limited by the rather low quantum
capacitance at the anode. However, in the case of N,B-
codoping, Cq > CH, both at the negative biases (<−0.3 V) and
at the positive biases (>0.4 V). So, under 1.2 V applied voltage
in CDI (as is used in this work), the bottleneck effect of the
quantum capacitance limited total capacitance can be over-
come. Because Cq depends only on the intrinsic nature of an
electrode material, this result provides a theoretical insight for
recognizing the enhanced capacitance and CID properties of
BNC relative to that of NC.

4. CONCLUSION
In summary, an ultrahigh content N and B heteroatom
codoped hierarchically porous carbon (BNC) was successfully
synthesized from biomass byproduct okara. It was demon-
strated that by using okara as C and N source, boric acid as B
source, and ZnCl2 as porogen, effective carbonization, N,B-
codoping, and etching can be achieved by a single step of
annealing treatment at a moderate temperature (800 °C). This
material consists of few-layer graphene-like carbon sheets and
is rich in both <2 nm micropores and 3−8 nm mesopores.
Owing to its multiscale porous structure, superior specific
surface area, and the N,B-codoping effect, BNC exhibits an
enhanced electrochemical activity for salt removal, with an
extremely high CDI desalination capacity of 6.6 and 21.5 mg
g−1 in 50 and 500 mg L−1 NaCl solution, respectively, and an
excellent cycling stability over 20 cycles. Theoretical
calculations indicate that N and B codoping of carbon can
contribute more DOS around the Fermi level and level up
effectively the quantum capacitance under both positive and
negative biases. In contrast, N-doped carbon is only suitable
for its use as a cathode material for CDI because of its rather
low quantum capacitance at positive bias. Due to the
possibility of scalable synthesis and inexpensive precursors,
the BNC is believed to be a promising candidate for the
applications in desalination, catalysis, energy storage, and other
fields.
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