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Abstract

Cell-type specific gene expression profiles are needed for many computational methods

operating on bulk RNA-Seq samples, such as deconvolution of cell-type fractions and digital

cytometry. However, the gene expression profile of a cell type can vary substantially due to

both technical factors and biological differences in cell state and surroundings, reducing the

efficacy of such methods. Here, we investigated which factors contribute most to this varia-

tion. We evaluated different normalization methods, quantified the variance explained by dif-

ferent factors, evaluated the effect on deconvolution of cell type fractions, and examined the

differences between UMI-based single-cell RNA-Seq and bulk RNA-Seq. We investigated a

collection of publicly available bulk and single-cell RNA-Seq datasets containing B and T

cells, and found that the technical variation across laboratories is substantial, even for genes

specifically selected for deconvolution, and this variation has a confounding effect on decon-

volution. Tissue of origin is also a substantial factor, highlighting the challenge of using cell

type profiles derived from blood with mixtures from other tissues. We also show that much of

the differences between UMI-based single-cell and bulk RNA-Seq methods can be explained

by the number of read duplicates per mRNA molecule in the single-cell sample. Our work

shows the importance of either matching or correcting for technical factors when creating

cell-type specific gene expression profiles that are to be used together with bulk samples.

Introduction

RNA Sequencing is a well-established method for comparing the transcriptome between dif-

ferent cell types, conditions and cell states [1]. Cell types can be separated from samples, for

example by using fluorescence-activated cell sorting (FACS) [2] or magnetic activated cell sort-

ing (MACS) [3] before sequencing, and recent advances have made it possible to use RNA-Seq

at the single-cell level and to sequence hundreds of thousands of cells [4]. The ever-growing

collection of publicly available data enables integrative data analysis across many datasets,

making it possible to discover system-wide phenomena. Such analyses are however made
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difficult by systematic batch effects across laboratories and technologies, posing a large chal-

lenge for data analysis.

Single-cell RNA-Seq facilitates the study of distinct cell types. However, the number of

patients involved in such experiments is usually small compared to datasets containing bulk

data from biopsies, such as The Cancer Genome Atlas (TCGA). It is therefore desirable to be

able to conduct studies on bulk data with mixed cell types, with the help of mathematical tools

that can help extract similar information as is available in single-cell data. One example of

such a tool is cell type deconvolution, which estimates the fractions of different cell types in a

mixed sample from the RNA-Seq data. This is implemented in for example CIBERSORTx [5],

EPIC [6], CPM [7], MuSiC [8], and xCell [9] (although xCell is based on gene set enrichment

analysis rather than deconvolution). Most implementations require gene expression profiles

(GEPs) for each of the cell types into which the mixed sample is to be deconvolved. Some

methods work with single-cell data [7, 8], others with a representative expression profile [6],

but in general they need a representative expression of the cell types in the sample. Other tools

that also need gene expression profiles for cell types include an extension of deconvolution

often referred to as digital cytometry, which is implemented in CIBERSORTx [5], and auto-

matic cell type annotation of cell types in single-cell data [10, 11].

Representative RNA-Seq gene expression profiles for cell types can be created from either

FACS/MACS-sorted bulk samples or single cell datasets where the average expression of cell pop-

ulations can be used. However, the RNA-seq profiles for a cell type can vary substantially, both

due to biological differences between samples and technical biases. It is therefore challenging to

construct universal gene expression profiles for cell types that perform well in all conditions. The

variation in RNA-Seq originating from sequencing at different laboratories has previously been

examined [12, 13]. In these studies, each laboratory has been given detailed sample preparation

and sequencing instructions, enabling estimation of technical variation introduced from distinct

technical factors. These studies, however, do not describe the typical case encountered for meth-

ods such as deconvolution of cell type fractions. In such cases, the cell type profiles are typically

generated once and reused for many studies, often using different laboratory procedures, or even

generated from single-cell data [5]. In addition, the cell type profiles and samples may be gener-

ated from different tissues. An example of such a case is using immune cell profiles from blood

for estimation of cell type fractions in bulk tumor data from TCGA, which is made available by

xCell [9]. Examples of generic cell type profiles generated for the purpose of deconvolution of cell

type fractions are LM22 from CIBERSORT [14], IRIS [15, 16], and immunoStates [17].

There are a number of methods for measuring the impact of different factors, such as cell

type, tissue of origin, or dataset on gene expression. ANOVA is commonly used to estimate

such differences, for example. Another example is variancePartition [12], a method developed

by Hoffman et al. that is based on mixed effects modeling and specifically adapted for RNA-

Seq data. Hoffman et al. showed that variancePartition outperforms ANOVA for such analy-

ses, supporting it as a strong candidate for the analysis of cell type profiles in the present study.

Normalization is a crucial step when analyzing RNA-Seq data. In the beginning of the RNA-Seq

era, library size normalization, for example FPKM [18] and TPM [19], was commonly employed.

It was later discovered that the library size is often strongly affected by a few highly expressed genes

with stochastic behavior, which introduces a bias across samples. This shortcoming of library size

normalization is remedied by methods such as the trimmed mean of M values (TMM) [20] and

Relative Log Expression (RLE) in DESeq2 [21]. These methods are designed to operate directly on

gene counts and work under the assumption that most genes are not differentially expressed across

samples. The restriction to work on gene counts makes it more difficult to normalize single-cell

data based on unique molecular identifiers (UMIs) together with bulk RNA-Seq. Bulk counts need

to be normalized by transcript length, such as in FPKM and TPM normalization, to yield a
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representative gene expression, since longer transcripts will yield more mRNA fragments, which

are all counted. On the other hand, droplet-based 3’ single-cell data, such as 10X Chromium data,

should not be normalized by transcript length, since only the mRNA fragments closest to the

polyA tail are counted. Consequently, the methods working on counts cannot directly account for

transcript length, while library size normalization, which allows for such length correction, is sensi-

tive to highly expressed noisy genes. An extension of TMM, GeTMM [22], addressed the issue of

transcript length by dividing the counts for each gene by gene length before TMM normalization.

An additional challenge with single-cell data is the high zero content, which causes problems for

TMM and RLE normalization. In the case of cell type profiles, this issue can be remedied by simply

pooling the transcriptomes of many cells before normalization. Alternatively, a deconvolution

approach can be used to address this issue [23].

A common technique used to overcome technical biases is to computationally remove

batch effects. The batch effect removal tool ComBat [24] implements a strategy where differ-

ences across batches in mean and dispersion of each gene are removed, regardless if the source

of the variation is technical or biological. Another common method is to model the batch

effect as a covariate in a generalized linear model, which is supported by for example edgeR

[25] for differential expression. However, ComBat and similar tools require overlapping sam-

ples with similar biological traits across the datasets. This overlap does not exist between

expression profiles of distinct cell types and biopsies containing a mix of cell types. CIBER-

SORTx employs a batch correction strategy using ComBat where mixed samples are created in
silico by mixing the cell type expression profiles at different fractions. The batch correction

applied on the synthetic mixed samples is then projected back to the cell types. A drawback of

this approach is that it introduces a bias depending on the cell fractions selected in the syn-

thetic mixture. Acquiring representative cell type profiles for a given dataset of mixed samples

remains a challenge. In this study, we sought to quantify the relative importance of the most

important factors that cause undesired variation between gene expression profiles of individ-

ual cell types for typical cases encountered in deconvolution and other methods that use cell

type profiles. We assembled a collection of public datasets and evaluated normalization and

batch correction methods, quantified different sources of variation between samples for differ-

ent sets of genes, and investigated technical biases between single-cell and bulk RNA-Seq. In

addition, we evaluated the impact of using different cell type profiles in deconvolution.

Results

Data preparation

To limit the complexity of the study, only B and T cell profiles were used. We gathered 74 pub-

licly available RNA-Seq bulk samples of B and T cells from 5 different sources, and pooled 31

cell populations from single-cell data from 7 public datasets, for a total of 105 samples

(Table 1, S1 Table). The data sources were chosen to span different laboratories and contain

samples with different cell subtypes and tissues of origin. In addition, we investigated a dataset

[26] containing both bulk and single-cell data from the same samples to examine biases

between single-cell and bulk RNA-seq.

Normalization and batch effects

First, we investigated data normalization approaches, which is challenging since our dataset

contains both bulk data and pooled single-cell samples from UMI-based methods. This pre-

vents the typical use of normalization methods that operate on counts, since the counts are not

directly comparable between these sequencing technologies. In short, the bulk samples need to

be corrected for transcript length, whereas the drop-seq based samples should not. We
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therefore decided to test three well-established methods that can operate on non-count data:

library size normalization (TPM/CPM) [19], Trimmed Mean of M-values (TMM) [20], and

quantile normalization [27]. TMM was originally designed to work on counts with a known

library size; we therefore scaled the TPM values to pseudo-counts (Methods). To avoid the sto-

chasticity from lowly expressed genes, we only analyzed genes with a mean expression of at

least 1 TPM across all samples.

Fig 1 Comparing the relative log expression across all genes and samples for three normali-

zation methods highlights the inadequacy of library size normalization for these samples (Fig

1). The drop-seq-based pooled single-cell samples (all single-cell samples except SC Mela-

noma) are especially problematic; a large portion of the genes are lowly expressed compared to

the bulk samples. TPM normalization between bulk samples also fails to scale the samples

properly, which has been shown previously [20]. TMM and quantile normalization succeed in

overcoming most of the normalization issues, both in terms of mean and variation of the rela-

tive log expression. The advantage of TMM over quantile normalization is that it only scales

the samples, minimizing the introduction of additional technical biases, while quantile

Table 1. List of RNA-Seq datasets used in this study.

ID Description Data Type Source

HCA CB Umbilical cord blood PBMCs from the Human Cell

Atlas; in total ~254,000 cells from 8 patients.

Single cell, 10x genomics, UMI counts. Li et al [38], Rozenblatt-Rosen et al [39]. The data

can be downloaded from https://data.

humancellatlas.org/, Census of immune cells.

LC ~39,000 cells from the tumor microenvironment of lung

cancers and ~13,000 cells from adjacent healthy tissue.

The cells originate from 5 patients.

Single cell, 10x genomics, UMI counts. Lambrechts et al [40]. The data is available in in

ArrayExpress under accessions E-MTAB-6149 and

E-MTAB-6653.

PBMC68k ~68,000 PBMCs from blood, one patient. Single cell, 10x genomics, UMI counts. Zheng G.X.Y. et al [4]. The data is available at 10x

Genomics’ home page.

B10k ~10,000 FACS-sorted CD19+ B cells from blood, one

patient.

Single cell, 10x genomics, UMI counts. Zheng G.X.Y. et al [4]. The data is available at 10x

Genomics’ home page.

CD4TMEM ~10,000 FACS-sorted CD4+/CD45RO+ Memory T

Cells, one patient.

Single cell, 10x genomics, UMI counts. Zheng G.X.Y. et al [4]. The data is available at 10x

Genomics’ home page.

TCD8 ~10,000 FACS-sorted CD8+ T cells from the blood of a

single patient.

Single cell, 10x genomics, UMI counts. Chen et al [41]. The data is available for download

on GEO data repository, accession number GSE

112845.

MEL ~4,600 cells from the tumor microenvironment of

Melanoma, 19 patients.

Single cell, SMART-Seq2, TPM Tirosh et al [42]. The data is available for download

on GEO data repository, accession number GSE

72056.

EVAL Dataset produced for evaluating the performance of

existing single-cell technologies. Data from mouse brain,

PBMC and cell lines. Data includes 7 single-cell

technologies and bulk, all performed on the same

samples.

Single cell data from 7 different

technologies and corresponding bulk

samples, counts/ UMI counts/ TPM

Ding et al [26]. The data is available for download at

the Single Cell Portal, id SCP425.

BULK 1 In total 6 bulk samples from B cells of varying origin. Bulk RNA-Seq, FASTQ files The ENCODE Consortium [43, 44], Gingeras. The

samples can be downloaded individually from

ENCODE.

BULK 2 In total 7 bulk samples from B cells (1) and T cells (6) of

varying origin.

Bulk RNA-Seq, FASTQ files The ENCODE Consortium [43, 44],

Stamatoyannopoulos and Weng. The samples can

be downloaded individually from ENCODE.

BULK 3 In total 12 bulk samples from B cells (6) and T cells (6) of

varying origin.

Bulk RNA-Seq, FASTQ files The functional annotation of the mammalian

genome 5 (FANTOM5) [45, 46]. The data can be

downloaded from FANTOM5.

BULK 4 In total 39 bulk samples from B cells (16) and T cells (23)

of varying origin.

Bulk RNA-Seq, FASTQ files The BLUEPRINT Epigenome Project [47]. The

samples can be downloaded individually from

BLUEPRINT.

BULK 5 In total 10 PBMC bulk samples from B cells (5) and T

cells (5).

Bulk RNA-Seq, RPKM/counts Pabst et al [48], GSE 51984.

https://doi.org/10.1371/journal.pone.0239495.t001
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normalization replaces all expression values. On the other hand, TMM assumes that most

genes are not differentially expressed. This is a reasonable assumption here, but it may be inap-

propriate when comparing mixed bulk samples and GEPs for cell types. For the analyses in

this study, we selected TMM as the normalization method unless otherwise noted.

We used PCA to investigate the batch effects between different labs and between single-cell

and bulk data. Fig 2 shows that without any batch correction, samples group by dataset, and

the first principal component mainly describes technical variation between datasets. The drop-

seq-based 10x datasets tend to cluster together, and the same holds for the bulk samples. The

only Smart-Seq2 single-cell data present (SC Melanoma) seem to be more similar to bulk than

the other single-cell samples. The normalization method clearly matters; the first component

explains less of the variation with a better normalization method, and the batch effects are

more pronounced due to the reduced technical noise. We applied ComBat [24] from the sva

[28] R package to remove batch effects between datasets, with the instructions to preserve cell

type differences. ComBat effectively removes all systematic differences in mean and dispersion

between datasets, except for those specified in the model matrix (cell type in our case), however

it does not distinguish between biological and technical variation. Applying Combat will thus

remove any biological differences across datasets not specified in the model matrix, such as in

our case differences in cell subtype and tissue distribution between the datasets, which may

affect downstream analysis. We did not include cell subtype and tissue in the design matrix

since these properties are represented by too few samples. To illustrate that biological effects

may be lost, we used ComBat without specifying cell type in the design matrix followed by

PCA (S1 Fig). Since the Bulk 3 dataset only contains B cells, ComBat interprets that samples in

Fig 1. Evaluation of normalization methods for combined single-cell and bulk data. Each bar is a boxplot over all genes

describing the log2 fold change in gene expression between the expression in the sample and the mean expression over all samples.

All genes� 1 TPM on average across all samples, in total 12,072 genes, were included for each sample.

https://doi.org/10.1371/journal.pone.0239495.g001
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this dataset on average look more like B cells. ComBat incorrectly compensates for this effect,

placing these samples between the B and T cells of the other datasets along the PC1 axis (cell

type).

Sources of variation between samples

To quantify sources of variation in gene expression across samples we investigated to what

extent different factors could explain the variance in gene expression. Factors examined were

laboratory (which here includes different laboratory procedures and sequencing methods),

UMI-based single-cell vs bulk, cell type, cell subtype (distinguishing between different types of

B and T cells), tissue of origin (distinguishing between samples containing the same cell types

but being collected from different tissues), individual, and whether samples are technical repli-

cates. We normalized the 105 samples using TMM as described above and used the R package

variancePartition [12] to estimate the importance of the factors to be investigated for each

gene.

Fig 3 shows the variation induced by the different factors across bulk samples, investigating

the factors laboratory, cell type, cell subtype, and tissue of origin. Fig 3A shows the explained

variance for factors when including all genes. Fig 3B–3D show how the explained variance

Fig 2. Visualization of normalization and batch effects using PCA. All genes� 1 TPM on average across all samples, in total

12,072 genes, were included for each sample.

https://doi.org/10.1371/journal.pone.0239495.g002
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changes for different gene sets: housekeeping genes, genes used in deconvolution of immune

cells (the genes selected for deconvolution when using the LM22 cell type profiles, developed by

the CIBERSORT [29] team), and a subset of LM22 genes that exhibit substantial expression dif-

ferences between B and T cells (absolute log2 fold change> 1, henceforth named LM22S). When

including all genes, lab is the dominating factor, highlighting the importance of working with a

reduced gene set for methods such as deconvolution. For housekeeping genes, defined as genes

having a stable expression across tissues and cell types [30], lab explains more of the variance

compared to the case where all genes were used, which is consistent with the expectation of lower

biological variation in this gene set. As expected, cell subtype is the most important factor for

explaining variance among the LM22 genes (Fig 3C), and even more so for the genes in the

LM22S subset (Fig 3D). Interestingly, cell subtype still only explains roughly half of the variation

in the LM22S gene set, posing a challenge for deconvolution and similar methods. Fig 3E shows

the explained variances for the LM22S genes if cell type is used as a factor instead of cell subtype.

The lower explained variance indicates that many of the LM22S genes differ in expression

between cell subtypes. This result is consistent with the formulation of the LM22 gene set (which

LM22S is derived from), which was optimized for separating immune cell subtypes including

those of T and B cells. To verify that the results were not dominated by outlier samples, we

repeated the analysis for bulk samples excluding one sample each iteration. The maximum

change for any factor was less than 2 percentage points, suggesting a negligible outlier effect.

To investigate the influence of gene expression on explained variance, we estimated

explained variance as a function of gene expression for all genes (Fig 3F). As expected, the

residuals explain more of the variance for lowly expressed genes, since sampling noise lead to

higher variation for such genes. Although lab remains the dominant factor for much of the

gene expression range, tissue becomes more important for highly expressed genes. The same

analysis was performed for the LM22 genes only, which as expected yielded a higher impor-

tance for cell subtype, while tissue was less important (S2 Fig). The increasing importance of

tissue with gene expression was not observed for these genes, suggesting that this effect is of

less importance for applications such as deconvolution of cell type fractions.

To evaluate the effect of batch correction using ComBat, we performed the same analysis as

in Fig 3 for batch-corrected data (S3 Fig). The lab factor now had very little influence on the

variation, while cell type became more important and tissue approximately retained its impor-

tance. This effect is expected from the batch correction performed, where the goal was to

remove differences across datasets and preserve differences across cell types. We also investi-

gated the impact of using quantile normalization instead of TMM by comparing the explained

variance of factors for these two methods across all samples (S4A and S4B Fig). Although lab

explains slightly less variation for quantile normalization, the difference is small.

We also investigated the variance reduction from using samples from the same individual

(taken at different time points) and technical replicates (the same sample sequenced multiple

times) (S4E–S4H Fig). Our results indicate that technical replicates, although here represented by

only a few samples, exhibit lower variance in gene expression than different biological samples.

Samples from the same individual taken at different time points however show similar variance

compared to samples taken from different individuals, which is contradictory to previous results

indicating the importance of individuals for explaining variance [12]. In that study, however, the

samples from the same individual were technical replicates, which show a lower variation in our

measurements as well. Given the small number of samples, our results here should be interpreted

with caution, and further studies are needed to fully characterize this source of variation.

To investigate the factors explaining the variance between profiles from pooled single-cell

data, we used variancePartition on the single-cell samples to analyze the factors lab, cell type,

and tissue. The SC melanoma dataset was excluded from the analysis because it was the only
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Fig 3. Explained variance in gene expression for bulk RNA-seq samples. A. All genes (12072 genes). B. Housekeeping genes

(3393 genes). C. LM22 (395 genes). D. LM22S genes. E. Identical to D, with the difference that cell subtype is replaced with cell type
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dataset using the Smart-Seq2 technology, and consequently had a high impact on the variance

explained by lab (S4C and S4D Fig). We evaluated the effect of outliers the same way as

described above for the bulk samples, and similarly found that the maximum change for any

factors obtained by removing any one sample was less than 2 percentage points. Fig 4A and 4B

show the explained variance when including all genes or LM22S genes, respectively. The frac-

tion of unexplained variance (residuals) is larger for single-cell than bulk, indicating that there

is much variation that we fail to model, and it is therefore likely more challenging to work with

single-cell data for deconvolution and other computational methods that require cell type pro-

files. Potential sources of the increased unexplained variation include higher technical noise in

single-cell data and the presence of misclassified cells. Fig 4C and 4D shows the explained vari-

ance in LM22S across all samples, both bulk and single-cell (still excluding the Smart-Seq2

samples). Specifically, the figures highlight the difference in explained variance between lab

(where each lab is modeled separately) or by just separating single-cell and bulk samples (SC/

B). Although there seem to be systematic differences in gene expression between single-cell

and bulk, a large part of the variance is still explained by lab-specific factors.

Differences between single-cell and bulk

To unravel the sources of variation between pooled single-cell data and bulk, we investigated

the EVAL dataset which contains bulk and single-cell (10x) data generated from the same sam-

ples [26]. We used the cortex 1 and cortex 2 samples, originating from mouse brain, to deter-

mine if it was possible to identify technology-driven differences between 10x data and bulk.

We first pooled the single cells for each cortex and normalized them together with the bulk

data using TMM (FPKM data and UMI counts, as described earlier). A small set (232) of out-

lier genes were filtered (Methods).

We defined difference in gene expression per gene as the log2 fold change between the 10x pool

and bulk data (TMM normalized as described above) and investigated to what extent that differ-

ence could be explained by different technical covariates across genes. First, we calculated the num-

ber of discarded UMI duplicates per UMI for each gene. We defined the UMI copy fraction as

UMICF ¼
total counts � UMI counts

total counts

for each gene, representing the fraction of the counts that are filtered as UMI duplicates. Fig 5A

shows a clear negative correlation (-0.50, Pearson correlation) between the difference in gene

expression and UMICF (p< 2.2 � 10^-16, F Test). There could be several explanations for this

effect. The covariate could represent differences in PCR amplification between genes. We reason

that although such biases are mostly removed in the 10x data due to discarding of UMI duplicates,

they are present in the bulk data, and the PCR amplification could be similar for the same gene in

both cases. An alternative explanation could be that copies of the same molecules are assigned to

different genes with similar sequence, such that they are counted as different molecules in the sin-

gle-cell data. Such an effect would increase the total count for genes sharing copies of the same

original molecule. A third possible reason for the negative slope could be that for some genes more

reads are discarded due to alignment failure or quality filtering. Since there are often several copies

per UMI, such an effect would be limited in the single-cell data but would have a large impact for

bulk gene quantification.

(B/T). F. Explained variance per gene expression. The plot shows how the explained variance by the different factors change with

gene expression (Loess fit, span = 0.3).

https://doi.org/10.1371/journal.pone.0239495.g003
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Second, we investigated if transcript length introduces a bias due to differences in the

sequencing protocol between 10x and bulk. Bulk reads can come from the entire transcript

whereas the 10x reads originate from the sequences close to the polyA tail and is thereby less

affected by transcript length. Fig 5B indicates that this covariate introduces a bias, although

modest (Pearson correlation = 0.10), where longer transcripts in general seem to be over-

penalized by the division of gene length in bulk (p < 2.2 � 10^-16, F Test).

Third, we investigated the effect of the GC content of genes since this is a known source of

bias in RNA-Seq [31]. We investigated two covariates, the GC content of the entire transcript

(Fig 5C) and the GC content of the 150 base pairs closest to the polyA tail (Fig 5D), to see if

those better could explain the variability between 10x data and bulk. The transcript tail was

investigated since only the mRNA fragment closest to the tail is used in the quantification of

the 10x single-cell data, while all transcript fragments are quantified for bulk. Differences in

GC content between the tail and the rest of the transcript could therefore theoretically

Fig 4. Explained variance for single-cell samples. A. Only single-cell samples, all genes. B. Only single-cell samples, LM22S. C. Mix

of single-cell and bulk samples, LM22S. D. Identical to C, with the exception that lab is replaced by a flag indicating if the samples are

single-cell or bulk.

https://doi.org/10.1371/journal.pone.0239495.g004
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introduce a bias between 10x single-cell data and bulk. Fig 5C and 5D shows that a higher GC

content in general gives a higher expression in bulk compared to 10x (p< 2.2 � 10^-16 for

both covariates, F Test), which could be related to PCR amplification biases.

Fig 5. Log2 fold change between 10x data and bulk for each gene, plotted as a function of different covariates. The green line

represents a linear fit, whereas the orange line shows a Loess fit. The data shown is from cortex 1 of the EVAL dataset. Each plot

shows the p value for the linear fit (F-test) and the Pearson correlation. A. UMI copy fraction. Only genes with more than 5

molecules available for calculating UMICF are shown. B. Transcript length. C. The GC content of the entire transcript. D. The GC

content of the 150 bases closest to the transcript tail.

https://doi.org/10.1371/journal.pone.0239495.g005
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To evaluate how much of the differences between 10x data and bulk can be explained by the

technical covariates, we measured the improvement in correlation between 10x and bulk data

after regressing out the covariates. To exclude the possibility that the differences originate

from stochasticity, i.e. lack of reproducibility of data, we first checked the log space correlation

between cortex 1 and 2. Although the samples originate from slightly different parts of the

brain, the different samples had a Pearson correlation of 0.989 for bulk and 0.981 for 10x,

showing low stochasticity. Fig 6 shows the correlation improvement after regressing out differ-

ent combinations of covariates, using both a linear and loess fit. It is evident that regressing

out the UMICF covariate increases the correlation more than the other covariates (p< 2.2 �

10^-16, both Cortex 1 and 2, both loess and linear), though the other covariates explain some

variation on their own. When all covariates are combined, the tail GC content does not add

information (the correlation is nearly identical) and transcript length has a neglectable effect

on correlation improvement (mean correlation improvement is 7.7 � 10^-4, although signifi-

cant, p< 2.2 � 10^-16). The negligible effect of the GC content tail covariate could potentially

be explained by a reduction in PCR bias due to UMI-collapsing, and because the first out of

two amplification steps in the 10X Chromium protocol is conducted on full length transcripts.

We conclude that the combination of UMICF and GC content is a good choice (significant

improvement vs UMICF alone, p< 2.2 � 10^-16). The differences between regressing out a

loess or linear fit for a covariate are generally small, although loess performs slightly better.

We also investigated the role of sampling effects when regressing out the UMICF variable

(S1 Note, S5 and S6 Figs), concluding that sampling effects likely do not explain most of the

correlation increase obtained from regressing out the UMICF variable.

Deconvolution of cell type fractions

To assess the impact of technical sources of variation on deconvolution of cell type fractions,

we conducted a qualitative comparison of deconvolution performance across profiles gener-

ated from different datasets. We generated in total 40 synthetic mixed bulk samples containing

50% from a B cell sample and 50% from a T cell sample, both produced at the same lab. We

further generated in total 12 pairs of cell type profiles (B cells and T cells from the same lab),

originating from both single-cell and bulk data. Fig 7 shows the deconvolution performance

from CIBERSORTx, which varies largely across profiles. As expected, the best results are

obtained when using profiles and in-silico mixtures from the same lab, with no difference in

tissue of origin or cell subtypes. The general conclusion that can be drawn is that the uncer-

tainty in deconvolution performance is large unless the profiles and mixtures are generated

under similar conditions, using similar technologies and laboratory procedures. Our results

also suggest that using cell type profiles developed from single-cell data is more challenging.

Furthermore, the performance varies much between sets of cell type profiles, where profiles

generated from some datasets, such as HCA CB, performs much better than others (e.g. pro-

files generated from PBMC68k). Some of the single-cell profiles come from different tissues,

which could partly explain the reduced deconvolution performance in those cases. However,

the SC PBMC68k profiles originate from blood and contain a mix of cell subtypes. The lower

performance for those profiles as compared to bulk profiles from similar cells (e.g. Bulk 4) can

thus not be attributed to differences in tissue of origin or cell subtype only. CIBERSORTx sup-

ports two batch correction methods to remedy such issues; B-mode for cell type profiles from

bulk and S-mode for single-cell profiles. We found that the S-mode batch correction seems to

improve the performance considerably for single-cell profiles, while the B mode batch correc-

tion has a less pronounced effect.
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Fig 6. Improvement in correlation between 10x Chromium and bulk from regressing out covariates. A. Gene expression for

cortex 1 from the EVAL dataset plotted as 10x vs bulk. The orange line represents a perfect correlation. B. Gene expression for cortex

1 from the EVAL dataset after regressing out the differences in UMICF and GC content between 10x and bulk using a loess fit, which

improves the correlation. C. Average Pearson correlation coefficient between 10x data and bulk in log scale after regressing out

technical covariates (UMI copy fraction, transcript length, GC content and GC content tail), using linear or loess regression. The

correlation shown is the average of the correlations from cortex 1 and 2 of the EVAL dataset. The error bars represent the confidence

interval, based on bootstrapping of genes to include in the correlation.

https://doi.org/10.1371/journal.pone.0239495.g006
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Fig 7. Deconvolution performance for different cell type profiles tested against in-silico generated bulk mixtures with 50% T cells

and 50% B cells. A. Overview of the profiles and mixtures used for deconvolution. The rows represent deconvolution runs and the

columns data sources. B. Deconvolution performance. The figure shows the relative error of the B cell fraction estimated by

CIBERSORTx. The Bulk 4/5 Internal profiles were generated from the Bulk 4/5 lab and were tested against mixtures generated from

other samples from the same lab. The remaining profiles were tested against 40 mixtures generated from Bulk 1, 2, 4, and 5 (Bulk 3 has

no T cell samples).

https://doi.org/10.1371/journal.pone.0239495.g007
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Discussion

Cell-type specific gene expression profiles are useful for analyzing bulk RNA-Seq samples con-

taining mixed cell types, since it enables the use of advanced computational methods such as

deconvolution of cell type fractions and digital cytometry. In this study, we investigated the

impact of different sources of variation on cell-type specific gene expression profiles. We eval-

uated normalization methods and the effect of batch correction and used variancePartition to

quantify the contribution of variance originating from differences in lab, cell-type, cell subtype

and tissue of origin for different gene sets. Furthermore, we investigated the biases between

UMI-based single-cell and bulk RNA-Seq. Finally, we examined the effect of cell type profile

features on the performance of deconvoluting cell type fractions.

We found that the variance explained by different factors is heavily dependent on the gene

set, where lab explains the most variance when considering all genes. For deconvolution of cell

type fractions and similar methods, the genes that separate cell types are of greater interest.

Although cell type/cell subtype is the factor that explains most variance here, other factors

such as lab and tissue of origin also have a substantial effect on gene expression for these genes.

Consistent with our findings, large variation across experiments together with small differ-

ences between some cell subtypes has previously been shown [32]. Our deconvolution results

similarly show that indeed the performance of deconvolution decreases substantially when cell

type profiles and mixed samples originate from different labs, and even more so if the profiles

are generated from single-cell data. Hoffman et al has previously shown that the variance

explained by lab is low [12]. In that study, however, they used data where all laboratories were

given precise instructions on how to perform the experiment. Such an experiment does not

reflect the usual use case for deconvolution and other such methods; that the cell profiles are

generated beforehand using one method, and that the mixtures are generated by another lab,

potentially using other protocols, or by using a different technology. Our results show that for

the typical use case, the technical factors are substantial.

Normalization and batch correction are important steps in the analysis of RNA-Seq data. In

this study, we have shown that while library size normalization is inadequate, TMM [20] applied

to pseudo counts and quantile normalization [27] both work well for normalizing between bulk

and single-cell data. T and B cells are both immune cell types; for more diverse cell types, more

advanced normalization methods such as smooth quantile normalization [33], implemented for

example in YARN [34], may be a useful approach since it can handle differences in gene expres-

sion distribution across different types of samples. We also show that ComBat [24] effectively

removes technical batch effects. There are also other methods for batch correction, for example

to model the batch effect as a covariate in a generalized linear model; this method is commonly

used for differential expression analysis, for example in edgeR [25]. Such an approach would

likely yield similar results as ComBat. These normalization and batch correction methods are

limited in that they either assume that most genes are not differentially expressed or require

some biological overlap across samples. Neither of these criteria are generally fulfilled when nor-

malizing and correcting bulk data from mixed samples with cell-type specific gene expression

profiles. The major challenge for batch correction is likely thus about how to batch correct sam-

ples containing mixtures of cell types against the cell type profiles, while selection of batch cor-

rection method, for example ComBat or GLM, is less important. CIBERSORTx [5] addresses

this issue by implementing a method for using ComBat with in-silico mixtures of cell type pro-

files together with mixed bulk samples (S-Mode batch correction) which clearly improves the

deconvolution performance, but there are still challenges remaining to obtain accurate decon-

volution results when the technical platforms are not matched.

PLOS ONE Sources of variation in cell-type RNA-Seq profiles

PLOS ONE | https://doi.org/10.1371/journal.pone.0239495 September 21, 2020 15 / 24

https://doi.org/10.1371/journal.pone.0239495


Our strategy for TMM normalization is very similar to that of GeTMM [22], where counts

are divided by gene length before calculating TMM. However, we see two advantages with our

approach: 1) Although it is impossible to produce the correct number of counts for each gene for

statistical calculations, we reason that our approach, where the total number of counts are pre-

served, will give a closer estimate than division by gene length. 2) By using TPM, where the tran-

script length is accounted for at transcript level rather than gene level, the length of each transcript

is better corrected for. At gene level, a single length needs to be used for all transcripts, which may

bias the calculation depending on differences in expressed splice variants of different lengths.

We also sought to examine in detail the technical biases present for cell-type specific gene

expression profiles derived from UMI-based single-cell RNA-Seq when compared to bulk

RNA-Seq data. We found that the number of duplicate reads per mRNA molecule in the sin-

gle-cell data (UMICF) can explain a substantial fraction of the differences between single-cell

and bulk, whereas transcript length biases are generally small in comparison to other effects.

GC content has previously been reported to introduce bias [35], and it is likely that, to a large

extent, this bias is caused by PCR [31]. We show that the UMICF covariate can explain more

of this bias than GC content, and that these effects are partly correlated, suggesting that they at

least partly describe the same underlying phenomenon. However, the combination of both

covariates explains more of the variation between single-cell and bulk. A potential explanation

is that GC content also provides information for genes with few reads for which duplicate

reads per mRNA molecule is poorly estimated, or that GC content can explain other technical

effects that are not captured by UMICF. It is likely that the true PCR effect in bulk is larger

than what can be measured with the UMICF covariate; the PCR effect per gene is most likely

different between 10x and bulk, since the amplification process is different. Although the

UMICF covariate apparently is useful for estimating the PCR amplification in bulk, regressing

out the true effect would most likely give a larger improvement in correlation between single-

cell and bulk. Furthermore, we have recently shown that UMI collapsing does not fully remove

PCR effects in single-cell [36], suggesting that the true PCR effect in bulk is larger than the dif-

ference in amplification between UMI-collapsed single-cell data and bulk. These results high-

light the need for methods to compensate for PCR effects in bulk, perhaps by utilizing unique

molecular identifiers or by using other methods to estimate PCR amplification per gene. In

addition to the covariates we have examined, there are many other technical biases contribut-

ing to differences between single cell and bulk that could be investigated, such as differences in

processing pipelines (in this case RSEM [37] for bulk vs Scumi [26] for single-cell), where

UMIs mapped to multiple genes are discarded in the single-cell pipeline.

This study is limited in that we only investigated two cell types. We can thus not claim that

the technical variation is of the same magnitude as differences across cell types in general, but

only between B and T cells. Furthermore, the study was not fully balanced; some sources of

variation are represented more strongly than others, which can have a slight effect on the

results. For example, most samples originate from blood, increasing the influence of that spe-

cific environment when estimating the importance of the tissue of origin variation factor. In

addition to these limitations, we only investigated one deconvolution software since the focus

of this study was cell type profiles and not deconvolution algorithms; it could be that other

methods are less sensitive to batch effects between profiles and mixtures.

Our work suggests that estimating the number of duplicate reads per mRNA molecule can

help in predicting and correcting for technical bias and thereby yield more comparable sam-

ples, both across bulk samples, single-cell samples and between bulk and single-cell. These

results need to be further validated in more datasets, and the factors introducing this bias need

to be investigated in more detail. Although such factors may differ across experiments, it is

possible that a library of factor patterns aggregated from many single-cell experiments could
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be used for a more generalized prediction and correction of bias in bulk data. Such a method

would be useful for a broad range of applications extending beyond the generation of gene

expression profiles for deconvolution or digital cytometry.

Conclusions

In this study, we investigated the sources of variation in cell-type specific gene expression pro-

files. We demonstrated that technical effects resulting from different laboratory procedures

and data types explains much of the variance across samples and confounds analyses such as

deconvolution, but also that biological traits such as cell subtype and tissue of origin are impor-

tant to consider when generating cell-type specific gene expression profiles. These results pro-

vide valuable insight to users of computational methods such as deconvolution of cell type

profiles and digital cytometry, highlighting the importance of matching both technical proto-

cols and biological traits between cell type profiles and bulk data samples.

Methods

Data preparation

We downloaded the publicly available RNA-Seq datasets listed in

Table 1, in total 74 bulk samples of B and T cells in addition to 8 single-cell datasets. The

bulk B and T cell samples have different composition; some samples contain a mix of all cell

subtypes of either B or T cells, while others contain specific cell subtypes (8 different subtypes

in total for T cells, 3 for B cells).

We downloaded fastq files for BULK 1–4 to reduce the technical variability across datasets

induced by the computational pipeline, and processed them using Kallisto [49] (v. 0.45.0). We

pseudo-aligned to the HG38 (version GRCh38.p12) genome with the parameters “kallisto

quant -i transcripts.gtf.gz -o [output folder] -b 1 [fastq file 1] [fastq file 2]”. For BULK 5, we

did not have access to fastq files and instead used the RPKM expression values produced by

the authors, converted to TPM.

For single-cell datasets, cell type classifications were retrieved from the authors of the study

in cases where it was not publicly available. For Smart-Seq2 data (the MEL dataset), we used

the TPM values produced by the authors, and pooled the cells within a cell population by cal-

culating the average expression per gene. For 10x data, we pooled the cells by first summing

the counts from all cells for each gene, and then scaled the expression to a total sum of 106 for

all genes. For simplicity, only genes that existed in all datasets and could be properly converted

to HGNC symbols were used in this study. The datasets B10k, CD4TMEM and TCD8 were

treated as if they had been produced in the same laboratory (called “SC Mixed 10x data”) even

though they had not, which was motivated by their use of similar techniques and too low sam-

ple numbers to be treated as separate labs.

All samples are described in more detail in S1 Table, including the design matrix and

detailed information of each sample, for example cell subtype, tissue of origin and the number

of cells in each pooled single-cell sample.

Normalization, PCA and batch correction

TPM normalization was performed according to

TPMi ¼
106 � EiP

jEj
;
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where TPMi represents the normalized expression for gene i and Ex is the expression of gene x
before normalization.

TMM normalization was performed using the calcNormFactors [20] function in the edgeR

package [25] (version 3.26.7). For pooled 3’ single-cell data TMM was applied directly to the

pooled data. For bulk data, the following procedure was used: TMM was originally designed to

work on counts, and needs to know the library size, but can work with non-integer data.

Before applying TMM, the TPM values were scaled to pseudo-counts (PCi), where the sum of

all gene expression values equals the original library size, according to

PCi ¼ TPMi

P
jOCj

P
jTPMj

;

where OCx is the original counts for gene x. The pseudo-counts differ from the original counts

in that they are corrected for transcript length, but with identical library size. The purpose of

this scaling was to make the number of counts in the TMM normalization as similar as possible

to the original counts, since this number is used in the normalization calculations. The same

procedure should ideally be applied to Smart-Seq2 data, but since we didn’t have access to raw

counts, TMM normalization was applied directly to TPM values for these two samples.

For quantile normalization we used the function normalize.quantiles in the preprocessCore

package [50] (version 1.46.0).

PCA was performed using the R function prcomp with the parameter scale set to FALSE.

For batch correction we used the ComBat function in the SVA package, specifying that dif-

ferences related to cell type should be preserved (in the model.matrix, using “~1 + cellType”).

As batch, we used dataset id with one modification; the datasets PBMC68k, B10k and

CD4TMEM were treated as the same dataset since they had to few samples to be batch cor-

rected separately. We deemed that this was reasonable, since the data is produced in a similar

way and published in the same publication.

Log transformation

We applied log transformation for many analyses to make the expression data more normally

distributed. The log transform was applied according to Li = log2(Ei+b), where Li is the log

transformed expression of gene i, Ei is the expression of gene i in pseudo-TPM, and b is a con-

stant set to 1, which is added to avoid taking the logarithm of zero values.

We use the term “log2 fold change” (LFC) throughout the results to compare the expression

of a gene between two samples. This was calculated as

LFCi ¼ log
2

Ei;1 þ b
Ei;2 þ b

 !

;

where Ei,1 and Ei,2 represent the expression of gene i in the two samples which are to be compared.

Measuring the explained variance of factors

We used the functions “fitExtractVarPartModel” and “plotVarPart” from the R package var-

iancePartition [12] to calculate and plot the variance of factors, using TMM-normalized data.

All factors were modeled as random effects.

Deconvolution with CIBERSORTx

For generation of cell type profiles used for deconvolution with CIBERSORTx, the bulk profiles

were generated by inputting data sample-wise, TPM normalized, in a data matrix to CIBERSORTx.
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The reason for using TPM normalization was that this is recommended by the CIBERSORTx team

and it was of interest to see the difference in performance between TPM and quantile normalization

(TMM is expected to be in between given the normalization performance). The pooled single-cell

profiles were handled in a similar way, where each pooled sample from the design matrix was

treated as a single bulk sample. Profiles were created using only cells from datasets within the same

lab. The final calculation of profiles was done by CIBERSORTx, using the “Create Signature Matrix”

function (specifying RNA-Seq). For single-cell data, the cells of each type were sorted into 100 bins

for disk quota reasons in CIBERSORTx. Each bin was given the gene expression of the mean of all

the cells in the bin, TPM normalized. The final profiles were then generated using the CIBERSORTx

“Create Signature Matrix” function (specifying sc RNA-Seq).

For generating mixtures used for deconvolution, the expression values of one T-cell sample

multiplied by 0.5 was added to a similarly treated B-cell sample, both TMM normalized. The

mixture samples were then TPM-normalized before being processed by CIBERSORTx. The

reason for this procedure is that TPM-normalization before mixing the data could confound

the mixture, creating a mixture where one cell type is given more weight, since library size nor-

malization is sometimes inaccurate.

For the LM22 results, the fraction of B cells is the sum of the fractions for “B cells naive”, “B

cells memory”, and “Plasma cells”. For the single-cell profile sets labeled “pooled” (7 and 8)

cells were pooled and input to CIBERSORTx as bulk profiles. For the remaining single-cell

profile sets (9–13) cells were pooled into 100 B cells and 100 T cells for each profile pair due to

disk quota reasons and input as single-cell profiles. For evaluation of profiles generated from

bulk data, the mixtures generated from the same lab as the profiles were removed to avoid

using mixtures and profiles generated from the same data.

CIBERSORTx deconvolution was run using the function “Impute Cell Fractions”, specify-

ing batch correction (B or S) and quantile normalization to produce such results. For quantile

normalization, separate cell type profiles were produced, specifying that the cell type profiles

should be quantile normalized.

CIBERSORTx was used from the CIBERSORTx web page (https://cibersortx.stanford.edu/

), accessed 2020-06-05.

Retrieval of transcript length and GC content

Transcript length was retrieved using the GenomicFeatures [51] R package (version 1.36.4)

together with the biomaRt [52] package (version 2.40.0). We used the biomart ENSEMBL_-

MART_ENSEMBL (version 98) and the dataset mmusculus_gene_ensembl (version

GRCm38.p6). We calculated GC content by using the R package BSgenome.Mmusculus.

UCSC.mm10 [53] (version 1.4.0), together with GenomicFeatures and Biostrings [54].

The UMICF covariate

The EVAL dataset contains both UMI counts and total counts, which makes it possible to cal-

culate the number of copies per molecule. The UMICF covariate is calculated as

UMICF ¼
total counts � UMI counts

total counts
:

Regressing out covariates

To regress out one or more covariates, a linear or loess (R package stats v3.6.1 using default

parameter values) curve was first fitted to the log2 fold change between 10x and bulk in the

covariates space. The curve was then regressed out of the 10x gene expression in log space as

Lcorr,i = Lorig,i−pi+mean(p), where Lcorr,i is the corrected gene expression for gene i, Lorig,i is
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the original gene expression, pi is the predicted value of gene expression from the fit and mean
(p) is the mean of all predicted values from the fit. The UMICF covariate was set to NA unless

more than 5 unique UMIs were available for the gene, to avoid the noise induced by too few

measurement points.

For all analyses, we removed a few outliers with extreme values for transcript length and

GC content, in total 232 genes. UMICF was set to NA for all genes for which we had five or

fewer UMIs (5321 and 6126 genes for cortex 1 and 2, respectively), since we deemed the ampli-

fication measure to be too noisy otherwise. All excluded genes were left untouched by the

regression. In total (including genes for which UMICF was set to NA) 26,563 genes were used

in the calculations for both Cortex 1 and Cortex 2. The genes where UMICF was set to NA

were still used in the correlation calculation.

Statistical tests

For estimating the confidence intervals in Fig 6, we bootstrapped the genes to include in the

correlation for 10,000 iterations. The confidence intervals were then calculated as the values

located at 2.5% and 97.5% in the sorted vector of correlations.

We used the function R function wilcox.test for the Wilcoxon signed rank tests for investi-

gating if correlation differences between covariates were significant, with the parameters alter-

native = "greater", paired = TRUE. The same bootstraps were used for all covariates, making it

possible to compare them with a paired test.

Software

The data was analyzed using R version 3.6.1 and MATLAB R2018b. MATLAB was used for

assembling the single-cell data and exporting the pooled samples to a text file; the rest of the

analysis was done in R. The MATLAB code uses the component SingleCellToolbox for import-

ing public single-cell datasets (https://github.com/SysBioChalmers/SingleCellToolbox). The

processed data and source code are available at: http://doi.org/10.5281/zenodo.4011593. To

ensure the quality of our analyses, we verified and validated the code using a combination of

test cases, reasoning around expected outcome of a function and code review. The details of

this activity are available in the verification matrix available with the code.

Supporting information

S1 Fig. PCA of batch corrected data using ComBat where cell type is not specified in the

design matrix.

(PDF)

S2 Fig. Explained variance per gene expression for the LM22 geneset across all bulk sam-

ples. The plot shows how the explained variance by the different factors change with gene

expression (Loess fit, span = 0.3).

(PDF)

S3 Fig. Explained variance in gene expression for bulk RNA-seq samples using batch cor-

rected data. A. All genes (12072 genes). B. Housekeeping genes (3393 genes). C. LM22 (395

genes). D. LM22S genes. E. Identical to D, with the difference that cell subtype is replaced with

cell type (B/T). F. Explained variance per gene expression. The plot shows how the explained

variance by the different factors change with gene expression (Loess fit, span = 0.3).

(PDF)
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S4 Fig. Additional plots for explained variance. A, B: Comparison between TMM and Quan-

tile Normalization. C-D: The effect of including Smart-Seq2 samples. E. Variance explained by

having samples from different individuals compared to samples from the same individual but

taken at different time points. F. Variance explained by having different samples compared to

technical replicates, where the same sample has been sequenced several times. G, H. Same data

as E, but separated on cell type into two groups to make individual factor more comparable to

the technical replicates shown in F.

(PDF)

S5 Fig. Average gene expression per gene vs the UMICF covariate. The figure presents data

from the EVAL dataset, Cortex 1, 10x single-cell data, normalized using TMM. Only genes

with 5 molecules or more is shown.

(PDF)

S6 Fig. Version of main Fig 6 calculated on quantile normalized data. A. Gene expression

for cortex 1 from the EVAL dataset plotted as 10x vs bulk. The red line represents a perfect cor-

relation. B. Gene expression for cortex 1 from the EVAL dataset after regressing out the differ-

ences in UMICF and GC content between 10x and bulk using a loess fit, which improves the

correlation. C. Average Pearson correlation coefficient between 10x data and bulk in log scale

after regressing out technical covariates (UMI copy fraction, transcript length, GC content and

GC content tail), using linear or loess regression. The correlation shown is the average of the

correlations from cortex 1 and 2 of the EVAL dataset, using quantile normalization.

(PDF)

S1 Table. Sample Information.

(XLSX)

S2 Table. The number of cells used for each single-cell profile pair used in Fig 7 in the

main text.

(PDF)

S1 Note. The role of sampling effects when regressing out the UMICF variable.

(PDF)
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