
Supplementary Materials 

Supplementary Results 

Alignment and assembly of poorly aligned reads 
In addition to extracting unaligned reads against the references, we also investigated the looser 
threshold of poorly aligned reads, defined as reads that align with quality score <20, which 
results in about 20-30x as many extracted reads as the unaligned metric. As with the unaligned 
reads, there was a decrease in the number of poorly aligned reads when moving to 
T2T-CHM13; however the extent of this decline varies greatly across samples, ranging from 
11% to 42%. 
 
Assembling the poorly aligned reads against T2T-CHM13 resulted in 50 Mb of sequence 
assembled per individual, filtered down to 20 Mb in non-contaminant >1 Kb contigs. Assembling 
the poorly aligned reads against GRCh38 resulted in >60 Mb of sequence in assembled, filtered 
contigs, approximately 3x what was assembled against T2T-CHM13 (Supplementary Figure 
16). Against Minigraph and Minigraph-Cactus, we observe decreases in the amount of 
sequence assembled from these poorly aligned reads, down to 15-18 Mb per individual in 
non-contaminant >1 Kb contigs. 

Comparison to non-SAS placements 
We repeated the placement and intersection steps with unaligned read contigs from the 210 
non-SAS individuals from the 21 non-SAS populations in 1KGP. Across this set there were 
4,105 intersections with 88 unique non-LOC genes. The distribution of intersections across the 
genome was similar to what we see with the SAS set, and most of the intersected genes were 
intersected in only a few individuals (Supplementary Figure 26). 
 
Of the 88 intersected non-LOC genes, 70 were also intersected in the SAS set’s placements. 
There were 66 genes that only have intersections in the SAS set, and 18 that were only found in 
non-SAS individuals (Supplementary Figure 27). The majority of genes intersected in both sets 
were intersected in 10 or fewer individuals, with 19 intersected in >100 and 7 intersected in 
>500. 
 
55 of the genes present only in the SAS set were protein coding, and all 55 were intersected in 
<2% of the set. They included a number of genes associated with ocular disorders and 
conditions (CPAMD8, KIF4, MYO7A, PPEF1, WDR17), and genes associated with forms of 
cancer (ITGA9, KIF4, PTPRO, SPECC1). 15 of the genes present only in the non-SAS set were 
protein coding, and all but two were intersected in <3 individuals. The two most prevalent genes 
are IYD and PTPRN2, which are intersected in >25 individuals, and mutations in which are 
associated with congenital hypothyroidism and insulin secretion respectively.  
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When grouped by the 1KGP super-population groups, the SAS populations have a similar 
number of average gene intersections per individual as the AMR and EUS groups, and slighter 
lower number than the AFR groups, and slightly higher counts than the EAS groups (Figure 3d, 
Supplementary Figure 28). 

GWAS intersections with the non-SAS set 
We repeated this GWAS catalog analysis with the placed contigs from the non-SAS set. At a 
threshold of 100 bases, there were 2,240 potential interactions across 26 unique GWAS sites, 
rising to 5,190 across 90 unique sites and 19,268 across 551 unique sites at thresholds of 5 Kb 
and 10 Kb respectively. As the non-SAS set is roughly a third of the size of the SAS set, the total 
number of potential interactions was what we expect. However, the number of unique GWAS 
sites that are within the threshold distances of a contig did not decrease proportionally in the 
non-SAS set. 

Identifying patterns within the shared contig set 
We investigated if the sharing of certain sequences could allow us to identify patterns within the 
SAS set. This was done by recording the presence/absence of each of the ~14K shared 
sequences in each of the 640 individuals, and performing PCA on the resulting matrix. 
 
We found the 1KGP SAS individuals split into two groups (split approximately 5:3), with the 39 
SGDP individuals clustering separately. This ratio loosely resembled what we would expect from 
the Hardy–Weinberg principle, with p = 0.75 and q = 0.25, suggesting that these clusterings may 
be due to the presence or absence of a particular allele in each of the sub-groups. These 
clusters became more clear when we limited the shared sequences to only those present in >5 
individuals, and further to include sequences present in both the 1KGP and SGDP sets. With 
these additional requirements, the SGDP individuals still clustered separately, while the 1KGP 
individuals split into two main clusters (Supplementary Figure 29, Supplementary Figure 30). 
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Supplementary Methods 

Alignment and assembly of poorly aligned reads 
We tested a number of definitions for what defines a poorly aligned reads, including a range of 
quality score thresholds and the edit distance of a read alignment. We settled on selection 
based on a quality value below q20, as this was the best compromise between capturing 
potentially interesting reads without broadening the set too much. 

PCA clustering based on presence/absence of shared sequence 
We performed PCA on the scaled 640 x 13,875 binary grid representing the presence (1) or 
absence (0) of each of the 13,875 shared sequences (or those that have been collapsed down 
into them) in each of the 640 SAS individuals. As we added further constraints, we selected the 
relevant columns that correspond to those sequences. For example, when narrowing down to 
only the 660 contigs that are shared in >5 individuals, placed again T2T-CHM13, and present in 
individuals in both the SGDP and 1KGP, we narrowed the grid down to 640 x 660, and 
performed PCA on the resulting grid. 
 
 We then plotted each of the first 10 PCs against each other. To investigate the loadings of each 
contig, we multiplied each component by the square root of its corresponding eigenvalue. We 
then plotted the loading for each contig, sorted across the genome. All PCA analysis and 
plotting was performed in Python using sklearn and matplotlib. 
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Supplementary Figures 

 
Supplementary Figure 1: Discrepancies in representation in genomics. The 
disproportionate presence European populations have in genomics, with South Asians and 
Africans having the least representation; GWAS individual ancestry data is from Sirugo et. al. (1) 
using the GWAS catalog from EBI through January 2019, the population data is from UNFPA 
(25) as of 2023.  

4 



 

 

5 



Supplementary Figure 2: Pipeline Overview. Figures (a) through (e) outline the key steps of 
our method: (a) We align existing short read data against a range of chosen reference 
genomes, and extract unaligned or poorly aligned reads. (b) These extracted reads are 
assembled into larger contigs, with smaller or contaminant contigs discarded during the filtering 
process. (c) These contigs are then compared against the reference again, with some being 
placed and their placements being investigated, and others being identified as novel or highly 
variant sequences. (d) We can evaluate the functional impact of these contigs using auxiliary 
RNA-Seq data, and then use BLAST to search for contigs with a large number of RNA-Seq 
matches. (e) We use long read data from a subset of these individuals, and simple long read 
genome assemblies of each individual’s reads, to perform validation of the assembled unaligned 
read contigs and to rescue previously unaligned short reads. 
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Supplementary Figure 3: T2T-CHM13 vs GRCh38 cross-alignment. Cross-alignment results 
for the T2T-CHM13-relative unaligned contigs and the GRCh38-relative unaligned contigs. 
Majority of T2T-CHM13 contigs align well to the GRCh38 contigs (top left), but the majority of 
the GRCh38 contigs do not align well back (bottom left). This is to be expected, as T2T-CHM13 
resolves a number of issues and gaps present in GRCh38, which is where a number of the 
GRCh38 contigs are assembled from. However, the majority of GRCh38 contigs have a good 
alignment to the T2T-CHM13 reference itself (right), further confirming that these were artifacts 
or unresolved sequences from GRCh38 that have been now resolved in T2T-CHM13. 
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Supplementary Figure 4: 1KGP vs SGDP assembled sequence distribution. Comparison of 
the amount of sequence assembled from unaligned reads into >1 Kb non-contaminant contigs in 
the 1KGP set (blue) and the SGDP set (orange). Unaligned reads from the SGDP set assemble 
into, on average, 3-4x as much sequence per individual.  
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Supplementary Figure 5: SGDP total assembled sequence: Counts of total assembled 
sequence from unaligned reads against T2T-CHM13 across the 39 SGDP SAS individuals. (a) 
Distribution with the two outlier Kusunda individuals included, and (b) with these outliers 
removed. 
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Supplementary Figure 6: Analysis of Kusunda Outliers. The two Kusunda individuals from 
the SGDP set assemble 100x as much sequence from their unaligned reads than any other 
individual in the SGDP set, in contigs as large as 700 Kb. (a) The assembled sequence in these 
two individuals is highly similar, and dissimilar to the sequence assembled from unaligned reads 
in the other 37 individuals, as shown in this Mash similarity visualization (a clustering based on 
this distance can be found in Supplementary Figure 25). (b) & (c) Genomescope plots 
generated from the input reads of the two Kusunda individuals, which show the estimated 
genome size to be >3.5Gb, compared to the 2.9Gb estimates for the rest of the SAS set. (d) - 
(g) Key metrics from FASTQC of the four read sets of the two Kusunda individuals and ten read 
sets of five more SGDP individuals. The number of unique reads (d), mean (e) and per 
sequence (g) quality scores and GC content (f) are consistent across the seven individuals. 
BLAST analysis also does not obviously flag any of this sequence as from a potential 
contaminant. 
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Supplementary Figure 7: Population-level sequence comparison. (Left) Comparison of the 
amount of sequence assembled from unaligned reads across 26 1KGP populations, sorted by 
the average amount of assembled sequence per individual in the population. The 21 non-SAS 
populations consist of 5 XX and 5 XY individuals each, with the SAS superpopulation (red) 
containing all 600 SAS 1KGP individuals across the 5 sub-populations. The 7 AFR populations 
are in blue, and the 14 non-SAS, non-AFR populations are in orange. (Right) The amount of 
sequence present in each of the 10 individuals in each of the 21 non-SAS populations, sorted 
by the average amount of assembled sequence in each population and colored based on which 
of the 21 non-SAS populations they occur in. The first 7 populations (YRI-LWK) are from the 
AFR superpopulation, while the PUR subpopulation is the only non-AFR group with a higher 
amount of assembled sequence on average than the average across the 1KGP SAS set. 
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Supplementary Figure 8: 1KGP Mash Distance. Mash Distance between the assembled 
unaligned read contigs from the 601 1KGP SAS individuals. The distances range between 
40-50% for the whole set, with a handful of outliers. 
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Supplementary Figure 9: Sub-population contig sharedness. Fraction of the shared contigs 
that are shared between individuals in the same sub-population, both across the whole set 
(left), and in each of the five SAS 1KGP populations (right). These plots are generated by 
iterating through every assembled contig, and keeping track of the number of contigs it was 
similar to during the all-vs-all alignment phase. For each contig, we then track the number of 
“similar contigs” that were also in the same population as the individual it was assembled from. 
As each of the 5 1KGP populations make up ~20% of the set each, if variation was spread 
evenly across the entire SAS cohort, we expect ~20% of the similar contigs to be from the same 
group. If significant amounts of variation were present only in a single population, the fraction 
would be higher for contigs of that group, and the peak would shift to the right for that plot. In the 
overall plot, the fact that the SGDP individuals only have 1-3 members of their community in the 
set means they all fall into the left-most bin, creating a small second peak absent when looking 
at each 1KGP population. 
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Supplementary Figure 10: Shared contig distribution. Distribution of the number of contigs 
(left) and individuals (right) each of the shared contigs have similarity to. 
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Supplementary Figure 11: Minimap2 contig alignments. Number of contigs placed by direct 
alignment in each of the 24 chromosomes. For these placements, we require a > 500 bp stretch 
of the contig to be aligned well to the reference genome. 
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Supplementary Figure 12: Bedtools intersections with annotated elements. Number of 
intersections between the placed contigs and annotated elements in each of the 24 
chromosomes. 
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Supplementary Figure 13: SAS gene intersection distribution. Number of individuals each 
of the intersected genes are intersected in. 
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Supplementary Figure 14: Comparison of assembled sequence to Manta insertions. 
Manta largely detects small insertions (left), with significantly fewer insertions larger than 500 bp 
being called, and none above 1 Kb (right). In comparison, our approach focuses only on > 1 Kb 
contigs assembled from unaligned reads, resulting in many times as much sequence being 
discovered. 
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Supplementary Figure 15: Comparison of placed contigs to Manta insertions. Comparison 
of the number of large (>500 bp) insertions called by Manta against the number of placed, >1 
Kbp contigs we find through the assembly of unmapped reads. 
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Supplementary Figure 16: Poorly aligned read sequence assembly against T2T-CHM13. 
Amount of assembled sequence from poorly aligned (<q20) reads in >1 Kb, non-contaminant 
contigs per individual across the 1KGP set.  
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Supplementary Figure 17: Lengths of 1KGP RNA-Seq aligned contigs. All contigs from the 
1KGP set that have >100 RNA-Seq alignments against the 140 individual RNA-Seq dataset, 
with the number of RNA-seq alignments plotted against the contig length, stratified based on 
karyotype (left) and sub-population (right). 
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Supplementary Figure 18: High-scoring RNA-seq aligned contigs. All contigs from the 
1KGP set that have >1000 (top) or >100 (bottom) RNA-Seq alignments against the 140 
individual RNA-Seq dataset, stratified based on sub-population.  
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Supplementary Figure 19: Lengths of SGDP RNA-Seq aligned contigs. All contigs from the 
SGDP set that have >100 RNA-Seq alignments against the 140 individual RNA-Seq dataset, 
stratified based on sub-population (left) and geographical location (right). 
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Supplementary Figure 20: Long read validation of GWAS interactions. Fraction of GWAS 
interactions (placements within 1 Kb of a GWAS site) in 21 individuals with long read data that 
are in “long read validated” contigs. 
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Supplementary Figure 21: Average coverage and mapping quality against T2T-CHM13. 
Mean coverage (left) and mapping quality (right) of the 1KGP SAS (green), 1KGP non-SAS 
(red) and SGDP (blue) reads against the T2T-CHM13 autosomal chromosomes. 
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Supplementary Figure 22: Read coverage depth against T2T-CHM13. Mean read coverage 
depth for alignments against T2T-CHM13 across the 1KGP SAS (green), non-SAS (red) and 
SGDP SAS (blue sets) for chromosomes 1, 2, 9, 13, X and Y. Across all 24 autosomal and sex 
chromosomes, the SGDP individuals have higher average coverage.  
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Supplementary Figure 23: Average mapping quality against T2T-CHM13. Mean mapQ of 
the read alignments to T2T-CHM13 across the 1KGP SAS (green), non-SAS (red) and SGDP 
SAS (blue sets) for chromosomes 1, 2, 9, 13, X and Y. Across all 24 autosomal and sex 
chromosomes, the SGDP individuals have consistently lower average mapQ. 
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Supplementary Figure 24: Mapping quality across SGDP chromosomes. Mean MapQ 
across the autosomal and sex chromosomes in the SGDP set (left) and distribution of MapQ 
scores per read across the SGDP set (right). The majority of reads that do align align well, with 
a significant drop in mapping quality against chromosome Y. 
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Supplementary Figure 25: MASH-based clustering of SGDP contigs. Mash distance-based 
clustering of the assembled unaligned read contigs across the 39 SGDP SAS individuals. The 
two Kusunda individuals are highly similar to each other, and significantly diverged from the rest 
of the set. 
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Supplementary Figure 26: Non-SAS gene intersection distribution. Number of non-SAS 
individuals (out of 210) that each of the 88 non-LOC genes intersected in the non-SAS set are 
intersected in. 
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Supplementary Figure 27: SAS vs non-SAS exclusive gene distribution. Genes that only 
appear in the SAS set or non-SAS set, ordered based on the number of individuals in the 
corresponding set that they appear in. Does not include genes intersected by contigs from 
individuals in both sets. 
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Supplementary Figure 28: Gene intersections per individual across 1KGP populations. 
Comparison of the number of gene intersections per individual (a) across the 26 1KGP 
populations, (b) in the 21 non-SAS populations, and (c) in the 5 SAS populations. 
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Supplementary Figure 29: Clustering of SAS unaligned read contigs using PCA. PCA 
plots using the presence/absence of 13,875 shared contigs in each of the 640 SAS individuals, 
across the first three PCs (left). Adding constraints of only including contigs shared in 5 or more 
individuals and placed against T2T-CHM13 (top right) or further requiring the contigs to be 
present in both the 1KGP and SGDP subsets (bottom right) still largely recreates the same 
clusters. In both cases, the SGDP individuals cluster together, while the 1KGP SAS individuals 
split in roughly a 5:3 ratio. 
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Supplementary Figure 30: Clustering of placed SAS unaligned read contigs against 
GRCh38 using PCA. PCA plots using the presence/absence of shared contigs that are placed 
against GRCh38 in each of the 640 SAS individuals, across the first two PCs. As with the PCA 
plots of placements against T2T-CHM13, the SGDP individuals cluster together, while the 1KGP 
SAS individuals split in roughly a 5:3 ratio. 
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Supplementary Figure 31: Sharedness of long-read validated contigs. Sharedness of all 
long read-validated contigs in the 21 SAS individuals with long read data. 
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Supplementary Figure 32: Possible associations across shared SAS contigs. R2 scores 
between the presence/absence of each of the 13,875 contigs across the 640 SAS individuals. 
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Supplementary Notes 

Supplementary Note 1: Alignment and Read Extraction 
Alignment of input reads to chosen reference: 
 
# Index reference 
bowtie2-build ref.fa indexes/ref --threads ${THRDS} 
 
# Align reads 
bowtie2 -p ${THRDS} -x indexes/ref -1 ${RDS}_1.fastq -2 
${RDS}_2.fastq > ${EXP}.sam 
 
# Post-processing 
samtools view -@ ${THRDS} -S -b ${EXP}.sam > ${EXP}.bam 
samtools sort -@ ${THRDS} ${EXP}.bam -o ${EXP}.sorted.bam 
 
 
Extraction of unaligned read pairs, and unaligned reads with a mapped mate: 
 
# Get unaligned reads 
samtools fastq -f 12 $ALGN -1 unmapped_R1.fq -2 unmapped_R2.fq -@ 
${THRDS} 
 
# Get first reads that are unmapped but have a mapped mate 
samtools fastq -f 68 -F 8 $ALGN > mateMapped_R1.fq -@ ${THRDS} 
 
# Get second reads that are unmapped but have a mapped mate 
samtools fastq -f 132 -F 8 $ALGN > mateMapped_R2.fq -@ ${THRDS} 
 
# Get all unaligned reads into one file 
echo "Extracting All Unaligned Reads" 
samtools view -b -f 4 $ALGN > unmapped.bam -@ ${THRDS} 
samtools sort unmapped.bam -o unmapped_sorted.bam -@ ${THRDS} 
 
Extraction of reads based on quality value: 
samtools view -h $ALGN -q 20 -o greater_than_q20.sam -U q20.sam -@ 
${THRDS} 
samtools sort q20.sam -o q20_sorted.sam -@ ${THRDS} 
samtools fastq q20_sorted.sam -1 q20_R1.fq -2 q20_R2.fq -@ ${THRDS} 
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Supplementary Note 2: Assembly and Filtering 
Assembly of extracted reads using MEGAHIT: 
megahit --num-cpu-threads 48 --out-dir ./megahit -1 unmapped_R1.fq -2 
unmapped_R2.fq -r mateMapped_R1.fq, mateMapped_R2.fq 
 
Extracting only contigs >1 Kb: 
# Turn multiline into single line per sequence 
awk '/^>/ { print (NR==1 ? "" : RS) $0; next } { printf "%s", $0 } 
END { printf RS }' $ASM > collapsed.fa 
# Extract 1Kb contigs 
awk -v RS='>[^\n]+\n' 'length() >= 1000 {printf "%s", prt $0} {prt = 
RT}' collapsed.fa > contigs_1Kb.fa 
 
Running Centrifuge on the assembled contigs: 
centrifuge -x centrifuge-1.0.3-beta/DB/p_compressed+h+v --report-file 
/centrifuge.report -k 1 --host-taxids 9606 -f contigs_1Kb.fa > 
centrifuge.output 
 
Running BLAST on the assembled contigs: 
blastn -db ref_prok_rep_genomes -query contigs_1Kb.fa -out 
blast_output.out 
 
The output files from Centrifuge and BLAST are then parsed to remove non-human sequence. 
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Supplementary Note 3: Placement 
Minimap2 alignment of contigs to the chosen reference: 
# Alignment 
minimap2 -a -t 16 ref.fa megahit_unaligned_1kb_tagged.fa > 
megahit_unaligned_1kb_tagged_mapped.sam 
minimap2 -c -t 16 ref.fa megahit_unaligned_1kb_tagged.fa > 
megahit_unaligned_1kb_tagged_mapped.paf 
 
In addition to this, we use the mate-pair linking approach taken in the African Pangenome effort 
15. 
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Supplementary Note 4: Intersection with Annotated Elements 
Bedtools intersection with annotated elements: 
# Bam to Bed conversion 
samtools view -Sb megahit_unaligned_1kb_tagged_mapped.sam | bedtools 
bamtobed -i - | bedtools sort -i - > 
megahit_unaligned_1kb_tagged_mapped.sorted.bed 
 
# Intersect with annotations file - keep details of intersection 
bedtools intersect -a megahit_unaligned_1kb_tagged_mapped.sorted.bed 
-b chm13v2.0_RefSeq_Liftoff_v5.1.gff3.gz -wb > 
megahit_unaligned_1kb_tagged_mapped.intersect.bed 
 
# No details, simple .bed file 
bedtools intersect -a megahit_unaligned_1kb_tagged_mapped.sorted.bed 
-b chm13v2.0_RefSeq_Liftoff_v5.1.gff3.gz > 
megahit_unaligned_1kb_tagged_mapped.intersect_simple.bed 
 
Bedtools intersection with GWAS sites (for direct overlap): 
# Intersect with annotations file - keep details of intersection 
bedtools intersect -a megahit_unaligned_1kb_tagged_mapped.sorted.bed 
-b chm13v2.0_GWASv1.0rsids_e100_r2022-03-08.vcf.gz -wb > 
megahit_unaligned_1kb_tagged_mapped.intersect_gwas.bed 
 
# No details, simple .bed file 
bedtools intersect -a megahit_unaligned_1kb_tagged_mapped.sorted.bed 
-b chm13v2.0_GWASv1.0rsids_e100_r2022-03-08.vcf.gz > 
megahit_unaligned_1kb_tagged_mapped.intersect_gwas_simple.bed 
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Supplementary Note 5: RNA-Seq alignments 
STAR alignment of MAGE data to assembled contigs: 
 
# Index the target sequences (combined set of all SAS MEGAHIT 
post-filtering assemblies) 
STAR --runThreadN 32 --runMode genomeGenerate 
--limitGenomeGenerateRAM 125000000000 --genomeSAindexNbases 13 
--genomeDir RNASeq/indexes/megahit_unaligned_1kb_tagged/ 
--genomeFastaFiles 
RNASeq/combined_seqs/megahit_unaligned_1kb_tagged.fa 
 
# Align 
STAR --runThreadN 32 --genomeDir 
RNASeq/indexes/megahit_unaligned_1kb_tagged/ --readFilesIn 
SA_R1.fastq.gz SA_R2.fastq.gz --outFileNamePrefix RNASeq/alignments/ 
--readFilesCommand gunzip -c 
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Supplementary Note 6: BLAST querying 
BLAST querying of unplaced and placed contigs: 
# BLAST querying against nt db 
# Unplaced 
blastn -db nt -query megahit_unaligned_1kb_tagged_unplaced.fa -out 
megahit_unaligned_1kb_tagged_unplaced.out -num_threads 32 
# Placed 
blastn -db nt -query megahit_unaligned_1kb_tagged_placed.fa -out 
megahit_unaligned_1kb_tagged_placed.out -num_threads 32 
 
# Extract the top 50 hits for each sequence 
grep 'Query=' megahit_unaligned_1kb_tagged_unplaced.out -A 50 > 
megahit_unaligned_1kb_tagged_unplaced_summary50.out 
grep 'Query=' megahit_unaligned_1kb_tagged_placed.out -A 50 > 
megahit_unaligned_1kb_tagged_placed_summary50.out 
 
# Post process to analyze these hits 
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Supplementary Note 7: Long Read Assembly and Validation 
Long read assembly using Flye: 
# Convert unaligned read .bam to .fasta 
samtools -@ 42 fasta sample.ONT.unaligned.bam > sample_ONT.fasta 
 
# Flye assembly 
mkdir flye_ONT_raw 
flye --nano-raw sample_ONT.fasta --out-dir ./flye_ONT_raw --threads 
42 -g 3.1g --debug | tee flye.log 
 
Alignment of unaligned reads to long read assembly: 
# Index 
bowtie2-build sample_ONT.fasta indexes/sample_ONT --threads 36 
 
# Align 
(bowtie2 -p 24 -x indexes/sample_ONT -1 unmapped_R1.fq -2 
unmapped_R2.fq -S unmapped.sam) 2> unmapped_ONT.log 
 
Alignment of assembled contigs to long read assembly: 
# Alignment in sam/paf format 
minimap2 -a -t 32 ONT_assembly.fasta sample_contigs_1kb.fa > 
unaligned_1kb_contigs.sam  
minimap2 -t 32 ONT_assembly.fasta sample_contigs_1kb.fa > 
unaligned_1kb_contigs.paf 
 
# Counting total contigs 
grep '>' sample_contigs_1kb.fa | wc -l 
# Counting alignments with alignment length > 1Kb 
awk '$11>1000' unaligned_1kb_contigs.paf | cut -f 1 | sort | uniq | 
wc -l 
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Supplementary Note 8: All vs all alignment to identify shared sequences 
# Self alignment with no limit on the number of secondary alignments 
# Option 1 
minimap2 -c -x asm5 -N1000 --cs -t 24 
all_sas_megahit_unaligned_1kb_tagged_no_outliers.fa 
all_sas_megahit_unaligned_1kb_tagged_no_outliers.fa > 
all_sas_1kb_tagged_no_outliers_nolimit.paf 
 
# Option 2 
minimap2 -DP -cx asm5 -t 24 
all_sas_megahit_unaligned_1kb_tagged_no_outliers.fa 
all_sas_megahit_unaligned_1kb_tagged_no_outliers.fa > 
all_sas_1kb_tagged_no_outliers_ava.paf 
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Supplementary Note 9: Pangenome Processing 
# Alignment using GraphAligner 
GraphAligner -g hprc-v1.0-minigraph-chm13.gfa -f reads_1.fastq 
reads_2.fastq -a sample_ga.gam -x vg -t 20 
GraphAligner -g hprc-v1.0-minigraph-grch38.gfa -f reads_1.fastq 
reads_2.fastq -a sample_ga.gam -x vg -t 20 
 
# Conversion to sam/bam/cram 
vg surject -x hprc-v1.0-minigraph-chm13.xg -b sample_ga.gam > 
sample_ga.bam 
vg surject -x hprc-v1.0-minigraph-grch38.xg -b sample_ga.gam > 
sample_ga.bam 
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Supplementary Note 10: Running Manta, Lumpy and PopIns2 
## Manta ## 
 
# prepare the analysis job 
configManta.py \ 
  --bam sample~{bam_ext} \ 
  --referenceFasta ~{reference_fasta} \ 
  --runDir . && 
 
./runWorkflow.py \ 
  --mode local \ 
  --jobs ~{num_jobs} \ 
  --memGb $((~{num_jobs} * 2)) 
 
# inversion conversion, then compression and index 
python2 /usr/local/bin/manta/libexec/convertInversion.py \ 
  /usr/local/bin/samtools \ 
  ~{reference_fasta} \ 
  results/variants/diploidSV.vcf.gz \ 
  | bcftools reheader -s <(echo "~{sample_id}") \ 
  > diploidSV.vcf 
 
bgzip -c diploidSV.vcf > ~{sample_id}.manta.vcf.gz 
tabix -p vcf ~{sample_id}.manta.vcf.gz 
 
 
 
## Lumpy ## 
 
# Cram to Bam conversion 
samtools view -h -T ~{ref_fasta} ~{input_cram} | samtools view -b -o 
${inputBam}.bam 
 
# Get discordant reads 
samtools view -h -@ ${threads} -F 1294 -u -b -h  ${inputBam} > 
${inputBam}.temp && \ 
samtools sort -@ ${threads} -m 16G ${inputBam}.temp > discords.bam && 
rm ${inputBam}.temp 
 
# Get split reads 
samtools view -h -@ ${threads} ${bamToSplits} | \ 
/app/lumpy-sv/scripts/extractSplitReads_BwaMem -i stdin | \ 
samtools view -@ ${threads} -b -u - > ${bamToSplits}.temp && \ 
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samtools sort -@ ${threads} -m 16G ${bamToSplits}.temp > splits.bam 
&& rm ${bamToSplits}.temp 
 
# Run LumpyExpress 
lumpyexpress -B ${inputBam} -t ${threads} -S ${bamSplits} -D 
${bamDiscords} -o ~{sample_name}_calls.vcf 
 
 
## PopIns2 ## 
 
# Link the reference genomes 
ln -s CHM13.fa genome.fa 
ln -s CHM13.fa.fai genome.fa.fai 
 
# Assemble samples 
popins2 assemble --sample sample1 sample1_CHM13.sorted.bam -t 24 
... 
popins2 assemble --sample sample10 sample10_CHM13.sorted.bam -t 24 
 
# Merge 
popins2 merge -r PopIns2/CHM13/ -di 
 
# Contigmap 
popins2 contigmap sample1 -t 24 
... 
popins2 contigmap sample10 -t 24 
 
# Place 
popins2 place-refalign 
popins2 place-splitalign sample1 
... 
popins2 place-splitalign sample10 
popins2 place-finish 
 
# Genotype 
popins2 genotype sample1 
... 
popins2 genotype sample10 
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