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Abstract: Cell surface proteoglycans are known to be important regulators of many aspects of cell
behavior. The principal family of transmembrane proteoglycans is the syndecans, of which there
are four in mammals. Syndecan-1 is mostly restricted to epithelia, and bears heparan sulfate chains
that are capable of interacting with a large array of polypeptides, including extracellular matrix
components and potent mediators of proliferation, adhesion and migration. For this reason, it has
been studied extensively with respect to carcinomas and tumor progression. Frequently, but not
always, syndecan-1 levels decrease as tumor grade, stage and invasiveness and dedifferentiation
increase. This parallels experiments that show depletion of syndecan-1 can be accompanied by loss
of cadherin-mediated adhesion. However, in some tumors, levels of syndecan-1 increase, but the
characterization of its distribution is relevant. There can be loss of membrane staining, but acquisition
of cytoplasmic and/or nuclear staining that is abnormal. Moreover, the appearance of syndecan-1 in
the tumor stroma, either associated with its cellular component or the collagenous matrix, is nearly
always a sign of poor prognosis. Given its relevance to myeloma progression, syndecan-1-directed
antibody—toxin conjugates are being tested in clinical and preclinical trials, and may have future
relevance to some carcinomas.
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1. Introduction

Syndecan-1 (CD138) is the founder member of a small family of transmembrane
proteoglycans. It was first characterized biochemically in the NMuMg murine mammary
epithelial cell line, before being cDNA cloned from the same source [1–3]. In short order,
three further mammalian members of the family were successfully cloned, though none has
the same distribution as syndecan-1 [4]. Through immunohistochemistry, it became clear
that syndecan-1 had an epithelial expression pattern in particular, though it is present in
other tissue types, notably plasma cells of the B lineage and some stromal cells [5,6]. Wher-
ever it has been analyzed, syndecan-1 bears heparan sulfate chains, but in some epithelia,
there are additional chondroitin or dermatan sulfate chains. This was noted particularly in
non-stratifying epithelial cell types, including the NMuMg line [7,8]. It is proposed that the
chondroitin/dermatan sulfate chains are located more membrane-proximally, while the
heparan sulfate chains are located distally [8]. The synthesis of glycosaminoglycans has
been covered extensively [9–11] (see also Figure 1). From the biological and biochemical
point of view, heparan sulfate is one of the most variable and anionic of polysaccharides.
The net charge results from extensive sulfate and carboxylate groups but the extent of
sulfation and its location along the chains are subject to considerable variation. It may be
that in a defined location, e.g., the hepatocyte, the variation is less and it is known that HS
chains from this source are of higher net charge than other locations [12]. This can impact
the affinity and specificity of ligands that bind to the chains.

The literature is replete with reports of heparin (or heparan sulfate)-binding polypep-
tides, and it is now clear that scores of potential ligands for heparan sulfate include exam-
ples of extracellular matrix components, growth factors, cytokines, chemokines, enzymes,
lipid metabolites and morphogens [10,13,14]. Very recently, a comprehensive analysis of

Int. J. Mol. Sci. 2021, 22, 4227. https://doi.org/10.3390/ijms22084227 https://www.mdpi.com/journal/ijms

https://www.mdpi.com/journal/ijms
https://www.mdpi.com
https://doi.org/10.3390/ijms22084227
https://doi.org/10.3390/ijms22084227
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/ijms22084227
https://www.mdpi.com/journal/ijms
https://www.mdpi.com/article/10.3390/ijms22084227?type=check_update&version=3


Int. J. Mol. Sci. 2021, 22, 4227 2 of 16

the glycosaminoglycan interactome has been published [15]. In addition, syndecan-1 core
protein can interact directly with integrin receptors, which in concert with growth factor
receptors, can lead to complex formation that influences a number of properties revolving
around the actin cytoskeleton, such as adhesion and migration [16,17]. The use of peptides
corresponding to the binding site on the syndecan core protein as competitors led to the
term synstatins, i.e., inhibitors of syndecan-1 function [18,19].
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All syndecans have a single transmembrane domain that includes a gly-x-x-x-gly motif
that is a strong promoter of dimer formation [20–22]. Likely, syndecans are dimers in their
native state [23]. The cytoplasmic domain of syndecan-1 has remained an enigma. Many
years ago we assigned syndecan cytoplasmic domains into three regions, C1, V and C2. The
membrane proximal C1 and distal C2 (Figure 1) are highly conserved and can be recognized
across species and phyla, for example in Caenorhabditis elegans and Drosophila [23,24].
Interacting partners for the C1 and C2 regions have been elucidated. The former binds
actin-associated proteins and is potentially involved in endocytosis [25]. The C2 region
interacts with a number of PDZ proteins, syntenin being the first reported [26] that was
later associated with the formation of exosomes [27,28], but also important in cytoplasmic
trafficking [29,30]. The central V (variable) region is distinct to each syndecan, though
in the case of mammalian syndecan-1, its sequence is very similar to its nearest relative,
syndecan-3. However, binding partners for the syndecan-1 V region have remained elusive.
Data from the equivalent region of syndecan-4 suggest that syndecan-specific signaling
emanates from interactions through the V region [6], so this remains an important gap in our
understanding. In total, little is understood of the signaling repertoire of this proteoglycan.

2. Syndecan-1 and the Epithelial Phenotype

Not long after the initial characterization of syndecan-1 from NMuMg cells, a key ex-
periment was performed. Depletion of the core protein by antisense RNA led to a profound



Int. J. Mol. Sci. 2021, 22, 4227 3 of 16

change in cellular phenotype [31]. A similar experiment is shown in Figure 2. Formerly
epithelial cells became mesenchymal and it was subsequently established that loss of the
syndecan was accompanied by depletion of E-cadherin from the cell surface [31]. This
provided a valuable insight and suggested that syndecan-1 was in some way essential in
maintaining epithelial morphology, and by extension, the formation of E-cadherin contain-
ing adherens junctions. Moreover, experiments with transformed mammary epithelial cells
showed reciprocity in the syndecan-1-E-cadherin relationship. Manipulation of E-cadherin
levels had a corresponding impact on levels of cell surface syndecan-1 [32]. The molecular
basis of these data remains unknown, but was shown to be post-transcriptional, i.e., mRNA
levels were unchanging. This suggests impact on subcellular localizations and trafficking.
Syndecan-1 itself has not been reported as an adherens junction component and neither
has a direct interaction between the proteoglycan and the cadherin. Moreover, as has been
shown several times, the syndecan-1 null mouse is viable, fertile and does not display
severe developmental defects while epithelial morphology, in particular, seems unaffected.
Epithelial repair processes in the postnatal mouse are compromised, however [33]. It is
also worth bearing in mind that the syndecan-1 gene has been lost in bony fishes, so they
express only three syndecans [34].
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Figure 2. Epithelial–mesenchymal transformation in NMuMg cells. Control (A,B) and syndecan-1-
negative (C,D) NMuMg cells stained for β–catenin (A,C) and F-actin (B,D). Syndecan-1 was depleted
by CRISPR/Cas9 technique. The loss of epithelial morphology accompanies syndecan-1 depletion,
and the resulting fibroblastic morphology is accompanied by microfilament bundle formation. Scale
bar = 50 µm.

One potential explanation for the lack of a developmental phenotype in epithelia may
be redundancy. There are four mammalian syndecans, and syndecan-4, for example, is
widespread, and can be demonstrated as a surface component of many epithelia [6]. Our
own data on epidermal differentiation shed a little light on this area. Murine epidermis
expresses both syndecan-1 (predominantly) and syndecan-4. Single knockout of the corre-
sponding genes does not impact epidermal morphology in the newborn or adult [35], but
this is not the case for the double knockout. Here, the basal layers of the epidermis were
disorganized, and subsequent analysis showed the abnormal expression of P-cadherin
and also N-cadherin [35]. However, terminal differentiation in the strata granulosum
and corneum appeared to be normal, so that the mice displayed no overt phenotype [35].
Altogether, the data suggest the possibility that syndecan-4 can replace syndecan-1 but it is
only when the epidermis is syndecan-null that an observable phenotype is displayed.
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3. Junctions and Syndecan-1

A key component of cellular morphology is the formation of junctions. Experimentally,
syndecan-1 loss leads to a concomitant loss of E-cadherin in NMuMg cells, but whether this
is partially or entirely due to transcriptional repression, trafficking alterations, or to cleavage
and shedding of the cadherin is not clearly resolved. The connection between syndecans
and cadherins has been made many times [36–38], though no data have yet shown a direct
interaction between these two classes of cell surface receptor. It may well be that cadherins
can be associated with syndecans in a complex with other receptors. [38]. NMuMg cells
are particularly sensitive to the loss of syndecan-1. As typical epithelial cells, they express
keratins as intermediate filament proteins [39], but whether they assemble substantial
desmosomes or hemidesmosomes is uncertain; ultrastructural analysis of this cell line is
sparse. In 3D cultures, these epithelial cells locate α6β4 integrin in a basal orientation by
light microscopy immunocytochemistry, suggestive of hemidesmosome formation [40].
ZO-1 distribution also suggests tight junction assembly, but the formation of desmosomes
is not documented. It may be that the lack of a substantial keratin/desmosome network
facilitates the epithelial–mesenchymal morphological transition seen in this cell line.

4. Epithelial–Mesenchymal Transition (EMT) and Syndecan-1

There is now a wealth of literature regarding the process of epithelial–mesenchymal
transition (EMT), with special emphasis on its relevance to tumor progression. Some of
the key factors are shown in Figure 3. However, it is also now apparent that it is not a
simple linear process. The concept has arisen that carcinomas, as they become invasive
and break through the underlying basement membrane become mesenchymal. Dispersal
through migration, potentially including the lymphatics or vasculature then leads to
the establishment of tumor cells at distant sites. These then undergo the reverse (MET)
process to form metastases. However, a recent review summarizes much data that are not
easily reconciled to this simple paradigm [41]. Partial EMT is possible and many invasive
carcinomas retain some epithelial molecular characteristics. For example, most invasive
ductal carcinomas of the breast are E-cadherin positive, and the cadherin was shown to be
a survival factor [42]. Here, collective cell invasion may be characteristic. An important set
of criteria and guidelines for EMT (and MET), including in cancer, have been published
recently [43].

The most well-known protagonist that promotes EMT is transforming growth factor-β
(TGF-β), also known as a promoter of fibrosis in chronic inflammation [44–46]. In many
epithelia it will promote loss of E-cadherin, with its replacement by N-cadherin which
has lower affinity in cell–cell adhesion [47]. Key transcription factors include Snail, Slug
and Zeb1/2. These trigger cadherin switching in addition to up-regulation of vimentin
expression and ECM proteins such as fibronectin (Figure 3). From the many examples of
this pathway it is safe to assume that TGF-β can promote EMT in the continued presence
of syndecan-1. Indeed in NMuMg cells, TGF-β promotes chondroitin/dermatan sulfate
substitution on syndecan-1 [48]. This suggests that the pathway that leads from syndecan-1
downregulation in vitro to a mesenchymal phenotype may not be a canonical EMT pathway.
Indeed when considering epithelia in culture, vimentin and fibronectin as indicators of
EMT may be unsafe, since many cell lines express these proteins as an adaptation to culture.

Our own preliminary data with NMuMg cells support the view that deletion of
syndecan-1 does not initiate a classical EMT program; moreover, there are complex tran-
scriptional changes. A possibility remains that other pathways than EMT are being imple-
mented. It is known, for example, that alongside TGF-β, EMT can also be promoted by Wnt
and Notch pathways (Figure 3). Many of these key molecules bind to heparan sulfate, e.g.,
TGF-β, Wnts, FGFs. Moreover, a further dimension to this puzzle may be cytosolic calcium,
a key second messenger with impact on the actin cytoskeleton. We have reported that the
epidermal phenotype in murine skin that is syndecan-null closely resembles that seen by
deletion of the TRPC4 gene (transient receptor potential canonical 4). This stretch-activated
calcium channel is present in epidermis and its deletion in epidermal cells leads to elevated
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cytosolic calcium, exactly as seen by deletion of syndecan-1 and -4 [35]. Other work has
implicated TRPC6 and/or 7 as being subject to regulation by syndecan-4 in fibroblasts and
kidney cells [35,49]. This regulation of TRP channels by syndecans appears to be an ancient
property since we could also demonstrate it in Caenorhabditis elegans [35]. Calcium is known
as an important player in determining cellular phenotype, notably junction formation, and
can be a factor in EMT [50–53].
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5. Regulation of Syndecan-1 Expression

Many reports have shown that syndecan-1 levels are altered in carcinomas of several
types. The underlying causes of these changes are for the most part poorly understood. At
the transcriptional level, the promoter of the human SDC1 gene is not well characterized.
It does contain a DR-1 element that is responsive to farnesoid X-receptor isoforms [54].
Of potential relevance to prostate carcinoma, the Zeb1 transcription factor, known to be
a relevant factor in EMT, has been demonstrated to bind an E-box in the SDC1 promoter
and silence expression [55]. In the context of gynaecological tumors, estrogen receptor
α signaling negatively regulates SDC1 expression [56]. The murine SDC1 promoter has
been characterized and was shown to contain TATA and CAAT boxes, E-box, and binding
sites for Sp1 and NF-kB [57]. Possibly the Sp1 sites represent a route to constitutive expres-
sion [58]. There is also a binding site for Wilms tumor suppressor 1 that leads to increased
syndecan expression of potential relevance to kidney epithelial differentiation [59]. It has
also been proposed that retinoid suppresses SDC1 transcription in differentiating muscle
cells, in a mechanism independent of E-box and FGF and TGF-β [60].

In many cancers, stromal expression of syndecan-1 is induced and often is an indicator
of poor prognosis reviewed in [61]. This stromal source of the proteoglycan could be
fibroblast, whose activation into cancer-associated fibroblasts has been described [62,63].
Blood vessels arising from tumor angiogenesis are a potential source, but in some cases,
e.g., advanced breast cancer, some syndecan-1 is clearly associated with the collagenous
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extracellular matrix [64]. This is apparently derived from shedding at the cell surface of ep-
ithelial and/or stromal cells. Syndecans are exquisitely sensitive to a number of proteinases,
notably MMPs, and there are many instances of upregulated MMP expression in tumor
progression [65,66]. A “hot spot” for MMP cleavage of syndecan-1 (and other syndecans)
lies in a membrane proximal region. Cleavage results in the release of a large portion of
the core protein with glycosaminoglycan chains attached [67,68]. These can function as
competitive inhibitors of the cell surface population, or may bind ligands and present them
to cell surface receptors [6]. Since in many cases, the presence of stromal syndecan-1 is
a sign of tumor aggressiveness, it appears likely that shed syndecan-1 is a mediator of
invasion, proliferation and permissive alterations in the tumor microenvironment. In the
breast cancer field, for example, shed syndecan-1 promotes invasive behavior, in a manner
sensitive to the MMP inhibitor, TIMP1, and also triggers loss of E-cadherin [69].

Little is known regarding the regulation of syndecan-1 expression by mesenchymal
cells, such as the cancer-associated fibroblast. Some fibroblasts in culture express this
proteoglycan [35] and they can resemble “activated” fibroblasts, with pronounced micro-
filament bundles containing α-smooth muscle actin and OB-cadherin [70] at adherens
junctions [36]. More than 20 years ago, Jalkanen’s group described an FGF-responsive
enhancer region in the SDC1 gene that was specifically activated in mesenchymal cells [71],
but this has not been further investigated. However, an interesting more recent report relat-
ing to breast cancer showed that ionizing radiation triggered senescence in fibroblasts. This
was accompanied by autocrine TGF-β activation and signaling, leading through Smads
and Sp1 to elevated syndecan-1 expression [72]. Moreover, the triple-negative aggressively
invasive MDA-MB-231 breast carcinoma line could also be a source of TGF-β for paracrine
activation of syndecan-1 expression. By contrast, it appears that a number of epithelia
are subject to post-translational upregulation of cell surface syndecan-1 by TGF-β [73].
In this case, the mechanism is protein kinase A-mediated, including a key cytoplasmic
serine residue phosphorylation that led to elevated transport to the cell surface (ser286 at
the C1/V boundary). This provides a clue with regard to the frequent observation that
cytoplasmic syndecan-1 accumulates in many carcinomas (Table 1). There may be scope
for the use of phospho-specific antibodies to examine this further.

An important adjunct to shedding is the enzyme heparanase. There are two isoforms
in the human, but only heparanase-1 has enzymatic activity [6]. This enzyme is notably
upregulated in a number of cancer types and is the focus of trials to determine if its
inhibition can ameliorate tumor aggressiveness [74,75]. Heparanase selectively cleaves
HS chains, liberating oligosaccharides that may be biologically active [76]. In addition,
removal of HS by the enzyme exposes the syndecan core protein, which becomes even
more sensitive to protease cleavage [77].

In 2019, an in-depth study of pancreatic ductal adenocarcinoma shed important light
on another feature of syndecan localization [78]. Expression of oncogenic K-Ras led to
upregulation of syndecan-1 on the surface of tumor cells, in a process mediated by MEK.
The proteoglycan was then involved in macropinocytosis and was, moreover, required for
tumor progression in this model. Roles for the G proteins Arf6 and Rac1 were described
and interactions of the syndecan C2 domain with syntenin were also required for the
endocytic process.

Involvement of syndecans in endocytic events has been highlighted previously. Hep-
atocytes are enriched in syndecan-1, where it performs essential roles in the clearance
of specific lipids from the plasma [79]. All this highlights that although known as a cell
surface HSPG, syndecan-1 can have cytoplasmic localization, and this is reported in several
cancer studies (Table 1). In a much older study, for example, syndecan-1 had a lysosomal
distribution in poorly differentiated breast carcinoma [80]. Altered subcellular distribution
of syndecan-1 may be a significant facet of its biology, and there are also reports of its
nuclear localization, with impact on transcription [81].
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Table 1. Syndecan-1 (CD138) in Carcinomas.

Tissue Normal Distribution Carcinoma Microenviroment References

Skin Viable layers of keratinocytes
positive

Basal and squamous cell positive,
decrease correlates with

aggressiveness.

Stroma positivity correlates with
aggressiveness [82–84]

Melanocytes negative, dermis
negative Malignant melanoma negative

Oral cavity
Viable layers of epithelium

positive
Stroma negative

Oral quamous; decrease is adverse
prognostic factor.

Squamous head and neck; decreased
levels correlate with poor prognosis

Stroma positivity relates to
invasive activity. [84–89]

Airway lung Most epithelial cells positive,
often low levels

SCLC, NSCLC; loss correlates with
dedifferentiation and decreased

survival.

High serum levels correlate with
poor prognosis. [90,91]

Breast Low levels in ducts, myoepthelia
and lobules

Elevated expression correlates with ER-

status, tumor grade, poor prognosis.
Loss of membranous staining and
acquisition of cytoplasmic staining

equates with poor prognosis. May be a
marker for triple negative
inflammatory carcinoma.

Stromal staining, particularly in
association with desmoplastic
collagen is a poor prognostic

indicator. Ectodomain in concert
with αvβ3 integrin may be

causal in collagen reorientation.

[64,92–95]

Ovary Negative Expression relates to tumor grade,
often cytoplasmic and nuclear.

Stromal presence correlates with
decreased survival. [96,97]

Stomach Parietal, chief, columnar and
mucous-secretory cells positive

Low epithelial levels correlate with
intestinal forms, depth of invasion,

increased grade and tumor size
Stroma—as for epithelia [98–102]

Colon Most epithelial cells including
crypt and goblet cells positive

High levels in adenoma, decreased in
adenocarcinoma. Low levels associate
with tumor recurrence, metastasis and

poor survival

Positive tumor-associated
fibroblasts relate to poorer

prognosis
[103–106]

Liver Dominant proteoglycan of
hepatocytes, mostly basolateral

More uniform distribution, some
cytoplasmic and nuclear staining. In

hepatocellular carcinoma with no
cirrhosis, reduced levels correlate with

poor differentiation and metastasis.
Elevated levels in HCC with cirrhosis.

Elevated serum levels correlate
with tumor recurrence and

decreased survival.
[107–113]

Pancreas
Low levels in ductal cells, less
frequent in acinar cells, islets

negative.

Pancreatic ductal adenocarcinoma,
increased levels also in metastases.

Stromal staining correlates with
worse progrnosis, independent

of stage or grade.
[114–116]

Prostate Epithelia positive- basal
orientation.

Increased cytoplasmic expression
associated with stage, Gleason grade
and metastasis, and is a predictor of

recurrence.

Positive stromal cells can be
present in high grade tumors.

High serum levels relate to
worse prognosis.

[117–121]

Global reviews of syndecan-1 in tumors are references [61,122,123].

6. Syndecan-1 in Carcinomas

Of the four syndecans in humans, syndecan-1 has by far received the most attention
in the context of tumor progression. There are more reports on this proteoglycan than the
other three combined. Syndecans and other cell surface HSPGs have attracted attention in
the oncology field for several reasons. In the first place, many potent growth factors bind to
HS chains and may concentrate them at the cell surface, where they can bind high-affinity
receptors and trigger signaling. Syndecan-1, by virtue of its widespread presence and
abundance in epithelia has then been of interest in a wide variety of carcinomas. Most of
these studies are correlative, but nevertheless some clear parallels between syndecan-1
expression and prognosis have emerged. Table 1 lists some of the major tumor types
and the potential involvement of syndecan-1. Figure 4 shows examples of syndecan-1 in
breast carcinoma.

Some interesting overall observations can be made. In most normal epithelia, syndecan-
1 is present, frequently with a basal or basolateral distribution. With oncogenic transforma-
tion, the amount of syndecan-1 and its distribution can change. Frequently, but certainly not
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uniformly, loss of syndecan-1 correlates with tumor aggression, grade, invasive behavior
and poorer prognosis. In some gastrointestinal tumors, e.g., hepatocellular carcinoma and
pancreatic ductal adenocarcinoma, levels of syndecan-1 can be increased. What becomes
clear, however, is that beyond overall levels of the proteoglycan seen by immunohisto-
chemistry, the fine localization is of great importance. Loss of cell surface staining, but
acquisition of cytoplasmic or nuclear staining can be a sign of tumor progression and
worse prognosis. This is particularly seen where stromal cells or the stromal matrix become
positive. In virtually all tumor types, stromal syndecan-1 is an indicator of poor prognosis.
It also appears that increased serum levels in patients is a similar sign of worse outcome.
This would indicate that syndecan-1 shedding, presumably from the tumor and/or stroma
has negative connotations.

Int. J. Mol. Sci. 2021, 22, x FOR PEER REVIEW 8 of 17 
 

 

metastasis.  
Elevated levels in HCC with 

cirrhosis. 

Pancreas 

Low levels in ductal 
cells, less frequent in 

acinar cells, islets 
negative. 

Pancreatic ductal adenocarcinoma, 
increased levels also in metastases. 

Stromal staining correlates 
with worse progrnosis, 

independent of stage or grade. 
[114–116] 

Prostate 
Epithelia positive- 
basal orientation. 

Increased cytoplasmic expression 
associated with stage, Gleason grade 
and metastasis, and is a predictor of 

recurrence. 

Positive stromal cells can be 
present in high grade tumors. 

High serum levels relate to 
worse prognosis. 

[117–121] 

Global reviews of syndecan-1 in tumors are references [61,122,123]. 

6. Syndecan-1 in Carcinomas 
Of the four syndecans in humans, syndecan-1 has by far received the most attention 

in the context of tumor progression. There are more reports on this proteoglycan than the 
other three combined. Syndecans and other cell surface HSPGs have attracted attention 
in the oncology field for several reasons. In the first place, many potent growth factors 
bind to HS chains and may concentrate them at the cell surface, where they can bind 
high-affinity receptors and trigger signaling. Syndecan-1, by virtue of its widespread 
presence and abundance in epithelia has then been of interest in a wide variety of carci-
nomas. Most of these studies are correlative, but nevertheless some clear parallels be-
tween syndecan-1 expression and prognosis have emerged. Table 1 lists some of the 
major tumor types and the potential involvement of syndecan-1. Figure 4 shows exam-
ples of syndecan-1 in breast carcinoma. 

 
Figure 4. Immunoperoxidase staining for syndecan-1 in breast tissues. (A)—benign hyperplasia, 
(B)—ductal carcinoma in situ, (C)—infiltrating ductal carcinoma. In these carcinomas, there is loss 
of membrane staining but acquisition of general cytoplasmic staining. Scale bar = 100 µm. 

Figure 4. Immunoperoxidase staining for syndecan-1 in breast tissues. (A)—benign hyperplasia,
(B)—ductal carcinoma in situ, (C)—infiltrating ductal carcinoma. In these carcinomas, there is loss of
membrane staining but acquisition of general cytoplasmic staining. Scale bar = 100 µm.

7. Syndecan Roles in Murine Breast Cancer Models

Space precludes a comprehensive analysis of all mouse cancer models and involve-
ment of syndecan-1. However, there are some insights into syndecan function that can be
gleaned from some breast cancer model studies. In 2000, Alexander et al. [124] showed that
the syndecan-1 null mouse was resistant to tumor formation induced by Wnt-1. However,
a follow-up study [125] indicated that the major impact of syndecan-1 was not on Wnt
signaling per se, but an alternate pathway that stabilized β-catenin/TCF-responsive tumor
precursor cells. That pathway remains obscure. A third study [126] showed that there was
a growth promoting loop between breast cancer cells and the stromal compartment, which
was dependent on heparan sulfate-bearing syndecan-1. In these cases, it is interesting that
the effects are syndecan-1-specific and there appears to be no compensatory role for other
syndecan family members.

One further study sheds light on syndecan-extracellular matrix interactions. It is
known that single or small clusters of breast carcinoma cells can reside in distant sites in
a dormant or non-proliferative state. Weinberg’s group [127] have shown that there is an
absence of β1 integrin-focal adhesion kinase signaling that could lead to proliferation. In its
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place, syndecan interactions with the matrix signalled a quiescent state. This was achieved
through cytoplasmic domain interactions with a PAR1/PAR6γ/atypical protein kinase C
complex. Specifically it was proposed that the C2 region of syndecans, including syndecan-
1, could interact with PDZ domains intrinsic to PAR proteins [127]. In cases where cells
were of s highly aggressive type, this pathway could be overcome. However, this study is
unique in several respects. Interactions between the C-terminal EFYA motif of syndecan
C2 regions and the polarity complex of PAR/aPKC has not been identified previously.
Syndecan interactions with extracellular matrix are well known, and in fibroblasts promotes
focal adhesion assembly [4,128]. Largely, however, these interactions also involve integrins,
but in this specific case, syndecan-matrix interactions are independent. This presents an
example where syndecan signaling can take place autonomously and promotes quiescence.

8. Targeting Syndecan-1 in Tumors

Syndecan-1 is highly expressed in multiple myeloma and is now considered as an
important target [129]. A chimeric targeting antibody, indatuxumab ravtansine is under
scrutiny [130,131]. The antibody component was developed from the well-known and
widely used BB-4 antibody recognizing the core protein ectodomain. It is conjugated to a
cytotoxic drug, in this case a maytansine derivative. The conjugate has been used in several
preclinical studies and has been in phase I/IIa clinical trial in myeloma patients [132].
Early signs are encouraging and it may perhaps be utilized in a combination therapy
approach [133,134]. More recently, a second promising monoclonal antibody has been
developed, VIS832 recognizing a distinct epitope from BB-4. Maximal binding requires
two non-contiguous regions of the syndecan-1 ectodomain [135].

Preclinical studies have been extended to triple-negative breast cancer [136]. Cell lines
and a xenograft model were examined, and indatuximab ravtansine was reported to be
efficacious alone or in combination with paclitaxel. A study with a human phage display
antibody against syndecan has reported inhibition of tumor vasculature maturation in
both melanoma and ovarian cancer models [137]. Here, the principle is to alter the tumor
microenvironment, and this study reported that an association between syndecan-1 and
vascular endothelial growth factor receptor2 (VEGFR2) was broken in the presence of
the antibody. Linkage between syndecan-1 and this receptor together with integrin in
a ternary complex has been implicated at early stages of angiogenesis [138]. Moreover,
shed syndecan-1 ectodomain can promote VEGFR2 signaling, again in a complex with
integrin [139]. Very recently, syndecan-4 was reported to be essential in pathological angio-
genesis, where VE-cadherin internalization was induced by VEGF-A signaling, through
VEGFR2 [38].

This last study highlights two important features of syndecan biology once again.
The first is linkage to cadherins, where in this case syndecan-4 was shown to associate
with VE-cadherin at junctions. Second, syndecan-mediated internalization comes to the
fore. The propensity for syndecans to be involved in receptor internalization may be
very favorable in clinical and preclinical settings, since endocytic events that take bound
antibodies into the cell will also carry conjugated drugs. Cell killing may be enhanced as a
result. However, it is also clear from the known distribution of syndecan-1 that besides
being enriched in some tumors and tumor microenvironments, it is widespread in normal
epithelia. While levels may be low, it is a reminder that targeting syndecan-1 may have
unwanted side-effects.

9. Conclusions

Proteoglycans are under ever-increasing scrutiny as participants in tumor progression.
The overwhelming majority of the data apply to syndecan-1, and it is important to recognize
that while many studies are correlative, there are now direct data implicating syndecan-1
with tumor aggressiveness. This is particularly relevant to myeloma, but may also be
pertinent to some carcinomas. In recognition of this fact, research has moved from solely
basic to include preclinical and more recently clinical studies with monoclonal antibody-
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directed therapeutic approaches. Since syndecan-1 is expressed in many normal epithelia
it will be interesting to see whether toxic payloads can be delivered to tumors without
severe side-effects. These clinical studies are at an early stage, but it certainly highlights
that understanding syndecan function can be relevant to human disease.

The heparan sulfate chains of syndecans have an ability to interact with a wide variety
of polypeptides, including potent growth and migration promoters [15]. It remains unclear
how ligands binding to heparan sulfate chains trigger signaling through the core protein.
However, an important facet of syndecan function is that they can associate with other
classes of receptors through which signaling occurs, e.g., integrins, fibroblast growth
factor receptors (FGFRs), VEGFRs and TGF-βRs, Frizzleds, Robo/Slit [6,17,38,138,140]
Additionally, syndecan functions increasingly appear to include internalization of ligand-
receptor complexes. This may be useful when targeting syndecans for therapeutic purposes.

A survey of the many studies on syndecan-1 and carcinomas shows that mis-localization
of the proteoglycan may be a key feature. Therefore, studies on syndecans in disease should
take account of their detailed distributions. In many cases, abnormal cytoplasmic, nuclear
and stromal populations of syndecan-1 have been recorded. The molecular basis for these
observations is largely unknown and stand out as an important area for future research.
A detailed understanding of syndecan-1 core protein signaling through its cytoplasmic
domain also remains obscure, despite this member of the family receiving more attention
than any other. Overall, it can be concluded that syndecans, as a small family of trans-
membrane proteoglycans with a long evolutionary history, have an important role in many
diseases, including carcinomas. They therefore remain an area for future exploration at
several levels, molecular, structural, genetic and pathological.
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