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Abstract

Tumors exploit angiogenesis, the formation of new blood vessels from pre-existing vascula-

ture, in order to obtain nutrients required for continued growth and proliferation. Targeting

factors that regulate angiogenesis, including the potent promoter vascular endothelial

growth factor (VEGF), is therefore an attractive strategy for inhibiting tumor growth. Com-

putational modeling can be used to identify tumor-specific properties that influence the

response to anti-angiogenic strategies. Here, we build on our previous systems biology

model of VEGF transport and kinetics in tumor-bearing mice to include a tumor compart-

ment whose volume depends on the “angiogenic signal” produced when VEGF binds to its

receptors on tumor endothelial cells. We trained and validated the model using published in

vivo measurements of xenograft tumor volume, producing a model that accurately predicts

the tumor’s response to anti-angiogenic treatment. We applied the model to investigate how

tumor growth kinetics influence the response to anti-angiogenic treatment targeting VEGF.

Based on multivariate regression analysis, we found that certain intrinsic kinetic parameters

that characterize the growth of tumors could successfully predict response to anti-VEGF

treatment, the reduction in tumor volume. Lastly, we use the trained model to predict the

response to anti-VEGF therapy for tumors expressing different levels of VEGF receptors.

The model predicts that certain tumors are more sensitive to treatment than others, and the

response to treatment shows a nonlinear dependence on the VEGF receptor expression.

Overall, this model is a useful tool for predicting how tumors will respond to anti-VEGF treat-

ment, and it complements pre-clinical in vivo mouse studies.

Author summary

One hallmark of cancer is angiogenesis, the formation of new blood capillaries from pre-

existing vessels. Angiogenesis promotes tumor growth by enabling the tumor to obtain

oxygen and nutrients from the surrounding microenvironment. Cancer drugs that inhibit

angiogenesis ("anti-angiogenic therapies") have focused on inhibiting proteins that
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promote the growth of new blood vessels. The response to anti-angiogenic therapy is

highly variable, and some tumors do not respond at all. Therefore, identifying a biomarker

that predicts how specific tumors will respond would be extremely valuable. This work

uses a computational model of tumor-bearing mice to investigate the response to anti-

angiogenic treatment that targets the potent promoter of angiogenesis, vascular endothe-

lial growth factor (VEGF), and how the response is influenced by tumor growth kinetics.

We show that certain properties of tumor growth can be used to predict how much the

tumor volume will be reduced upon administration of an anti-VEGF drug. This work

identifies tumor growth parameters that may be reliable biomarkers for predicting how

tumors will respond to anti-VEGF therapy. Our computational model generates novel,

testable hypotheses and nicely complements pre-clinical studies of anti-angiogenic

therapeutics.

Introduction

Angiogenesis is the formation of new blood vessels from pre-existing vasculature and is impor-

tant in both physiological and pathological conditions. Numerous promoters and inhibitors

regulate angiogenesis. One key promoter of angiogenesis is the vascular endothelial growth

factor-A (VEGF-A), which has been extensively studied and is a member of a family of pro-

angiogenic factors that includes five ligands: VEGF-A, VEGF-B, VEGF-C, VEGF-D, and pla-

cental growth factor (PlGF). VEGF-A (or simply, VEGF) promotes angiogenesis by binding to

its receptors VEGFR1 and VEGFR2 and recruiting co-receptors called neuropilins (NRP1 and

NRP2). The VEGF receptors and co-receptors are expressed on many different cell types,

including endothelial cells (ECs), cancer cells, neurons, and muscle fibers [1]. Together, VEGF

and its receptors and co-receptors initiate the intracellular signaling necessary to promote ves-

sel sprouting, and ultimately, the formation of fully matured and functional vessels. The new

vasculature formed following VEGF signaling enables delivery of oxygen and nutrients and

facilitates removal of waste products [2].

Regulating angiogenesis presents an attractive treatment strategy for diseases characterized by

either insufficient or excessive vascularization. In the context of excessive vascularization seen in

many types of cancer, inhibiting angiogenesis can decrease tumor growth. Anti-angiogenic treat-

ment targeting tumor vascularization is a particular focus area within cancer research [3]. One

anti-angiogenic drug is bevacizumab, a recombinant monoclonal antibody that neutralizes VEGF

(an “anti-VEGF” drug). Bevacizumab is approved as a monotherapy or in combination with che-

motherapy for several cancers, including metastatic colorectal cancer, non-small cell lung cancer,

and metastatic cervical cancer [4]. In 2008, the drug gained accelerated approval for treatment

of metastatic breast cancer (mBC) through the US Food and Drug Administration (FDA), based

on evidence from pre-clinical studies and early phase clinical trials. Though initial clinical trials

showed that bevacizumab improved progression-free survival (PFS), subsequent results revealed

that bevacizumab failed to improve overall survival (OS) in a wide range of patients and that the

drug elicited significant adverse side effects [5]. Consequently, the FDA revoked its approval for

the use of bevacizumab for mBC in late 2011 [6].

The case of bevacizumab illustrates that although anti-angiogenic therapy can be effective,

not all patients or cancer types respond to the treatment. This underscores the need for bio-

markers that can help select patients who are likely to respond to anti-angiogenic treatment.

Numerous studies have sought to identify biomarkers for anti-angiogenic treatment. Biomark-

ers can be used to determine which tumors will respond prior to any treatment being given
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(“predictive”), or to evaluate efficacy following treatment (“prognostic”) [7]. Biomarkers can

also be used to determine optimal doses, to design combination therapies, and to indicate resis-

tance to therapies [8]. The concentration range of circulating angiogenic factors (CAFs), and

VEGF in particular, is one possible predictor of the response to anti-angiogenic therapy [7].

Alternatively, expression of angiogenic receptors such as NRP1 and VEGFR1 on tumor cells, in

the tumor interstitial space, or in plasma can serve as biomarker candidates [5,9]. Unfortu-

nately, though some of these candidates are promising, a marker that predicts bevacizumab

treatment outcome has not yet been validated [5,7]. In fact, relying on the concentrations of

CAFs has produced inconclusive and inconsistent results [7,8,10]. Tumor growth kinetics have

also been investigated as prognostic biomarkers of the response to anti-angiogenic treatment

[11–15]. The most recent studies take advantage of improved imaging technology that can

assess tumor volume, rather than only providing two-dimensional information [11]. The imag-

ing analyses show that tumor growth kinetics may be a reliable indicator of treatment efficacy

and are in good agreement with standardized approaches for assessing response treatment.

However, utilizing tumor growth kinetics as a predictive biomarker has not been extensively

studied.

Mouse models present a useful platform for cancer research, including biomarker discov-

ery. Despite differences in the mouse and human anatomy and immune system, pre-clinical

mouse studies are useful in understanding human cancer progression and response to therapy

[16]. Advances in molecular biology techniques have generated relevant mouse models (i.e.,

patient-derived tumor models and genetically engineered models). These mouse models

enable biomarker discovery for early detection of cancer [17], to identify non-responders to a

particular treatment [18], and to classify tumors as being drug-sensitive or drug-resistant [19].

Excitingly, computational analyses are being combined with pre-clinical models to identify

biomarkers for early detection and progression [17,19].

There is a substantial and productive history of applying computational modeling to study

cancer at multiple scales, from initiation through metastasis [20–22]. The model predictions

provide testable hypotheses that have been experimentally and clinically validated. Given the

multiple cell types, molecular species and signaling pathways involved in angiogenesis, systems

biology approaches are used to understand the dynamic ligand-receptor interactions that

mediate angiogenesis and tumor growth. Systems biology studies how individual components

of biological systems give rise to the function and behavior of the system and aims to predict

this behavior by combining quantitative experimental techniques and computational models

[23]. Our previous work and the work of others demonstrate that mathematical models com-

plement pre-clinical and clinical angiogenesis research [8,24]. These models have been used to

identify prognostic biomarkers that can predict which patients will benefit from anti-angio-

genic therapies [24–26].

In this work, we use a computational systems biology model to investigate the utility of

tumor growth kinetics in predicting response to anti-VEGF treatment. We make use of quanti-

tative measurements from pre-clinical mouse studies and use those data to train the com-

putational model. This work builds upon our previous computational model of VEGF

distribution and kinetics in tumor-bearing mice [27] by changing the dynamic tumor volume

to be dependent on the pro-angiogenic complexes involving VEGF-bound receptors (the

“angiogenic signal”). This new element of the computational model allows us to simulate anti-

VEGF treatment and predict the effect of the treatment on tumor volume. We apply the new

model to identify conditions and characteristics of tumor growth that may be predictive of a

favorable response to anti-angiogenic treatment. Our work contributes to the identification of

validated biomarkers that could be used to determine tumors that are sensitive to anti-angio-

genic treatment.

Tumor growth kinetics and response to anti-angiogenic treatment
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Results

Model construction

We have previously developed compartmental models to investigate the kinetics and transport

of VEGF, a key regulator of angiogenesis [28–32]. In our previous computational model, the

dynamic tumor volume was given by an exponential function and was not linked to the con-

centrations of pro-angiogenic species. We now address this limitation of our previous work.

Specifically, we expand our previous computational model of VEGF distribution in tumor-

bearing mice [28] to incorporate the effect of VEGF on tumor growth. Having the dynamic

tumor volume be a function of the concentration of VEGF bound to receptors on tumor endo-

thelial cells is a significant improvement and generates a more physiologically relevant compu-

tational tool to investigate anti-angiogenic treatment strategies.

Details regarding the model structure and molecular species are provided in the Methods

Section. Here, we detail the equation for tumor growth. Tumor growth is given by an adapted

Gompertz model focusing on the exponential and linear phases of the tumor, as previously

described [8,33]. Thus, the differential equation for the tumor volume (termed “Tumor

Growth Model 1”) is:

dVðtÞ
dt
¼

k0 � VðtÞ

1þ
k0

k1
� VðtÞ

� �c
� �1

c

� 1 �
Ang0 � AngðtÞ

Ang0

� �

ð1AÞ

We note that Eq (1A) simplifies to:

dVðtÞ
dt
¼

k0 � VðtÞ

1þ
k0

k1
� VðtÞ

� �c
� �1

c

�
AngðtÞ
Ang0

� �

ð1BÞ

Here, V(t) is the tumor volume in cm3 at time t, k0 and k1 are parameters describing the rate of

exponential and linear growth, respectively. The units of k0 and k1 are s-1 and cm3 tissue/s,

respectively. The ψ parameter represents the transition from exponential to linear tumor

growth and is unitless. The Ang0 parameter represents the basal angiogenic signal (at time

t = 0), and Ang(t) is the angiogenic signal at time t. The value of Ang at any time is calculated

as the total concentration of pro-angiogenic VEGF-receptor complexes on tumor endothelial

cells. This includes VEGFR1 and VEGFR2 bound to either mouse or human VEGF isoforms,

with or without the NRP1 co-receptor. Thus, Ang(t) and Ang0 have units of concentration

(mol/cm3 tissue). The values of the tumor growth parameters were estimated by fitting the

model to experimental data, as described in the following section.

Model fitting

We fit the model to control data from published experimental datasets quantifying tumor vol-

ume in mice bearing MDA-MB-231 xenograft tumors without any anti-VEGF treatment [34–

38]. The raw data used for fitting (extracted from published references; see Methods for details)

are provided in the S1 Table. Although all of the datasets were generated using the same breast

cancer cell line, tumor growth is variable in each case, with the final tumor volume ranging

from 0.8–2.5 cm3. Additionally, the tumors follow different growth profiles (S2 Table). These

differences in the final volume and growth kinetics can be attributed to differences in the exper-

imental methods from each dataset, including the mouse strain used, number of tumor cells

injected, and the location of the tumor cell injection. Finally, the researchers quantify tumor

volume using different equations. We aim to identify tumor growth kinetic parameters for

Tumor growth kinetics and response to anti-angiogenic treatment
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individual tumors; therefore, we fit each dataset individually in the parameter estimation. This

allows us to determine tumor-specific growth parameters, even for mice with the same type of

tumor.

We used nonlinear least squares optimization to fit the model and estimate the optimal

parameter values, minimizing the error between the model predictions and the experimental

measurements. Before pursuing model optimization, we first performed a global sensitivity

analysis to identify which of the four tumor growth kinetic parameters most significantly influ-

ence the predicted tumor volume. We utilize the eFAST approach (described in the Methods),

which we have routinely used in our previous work [28,39,40], to guide the model fitting.

Results from the sensitivity analysis indicate that k0, k1, and Ang0 are influential parameters

across all six data sets, where the total sensitivity index is greater than 0.4 (S1 Fig). Therefore,

we estimated the values of these three tumor growth parameters, and we hold ψ constant at a

value of 20 [8]. We performed the model fitting 30 times for each of the six datasets (see Meth-

ods section for more details), obtaining 30 sets of optimized parameter values per dataset.

Overall, the model does a good job of recreating the growth dynamics of untreated tumors

(Fig 1, blue shading). One limitation is the fit to data from Volk et al. [38], where the model

fails to capture the sigmoidal shape of the experimental tumor growth curve (Fig 1F).

Fig 1. Model fit and validation using full tumor growth time course for fitting. The whole-body mouse model was used to fit measurements of tumor

xenograft volumes, and the tumor growth kinetic parameters were estimated. The predicted tumor volume over time is shown for the six datasets. A, Roland

[34]. B, Zibara [35]. C, Tan [36]. D, Volk 2008 [37]. E, Volk 2011a [38]. F, Volk 2011b [38]. The model is able to reproduce experimental data for tumor

growth without treatment and predict validation data not used in parameter fitting. Blue triangles and purple squares are control and treatment experimental

data points, respectively. Shading indicates the 95% confidence interval. Note different scales on both axes.

https://doi.org/10.1371/journal.pcbi.1005874.g001
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We also explored an alternate equation for predicting tumor growth. In this case, we aug-

ment Eq (1) to include a coefficient (CAng) that describes how dependent the tumor growth is

on the concentration of the VEGF-VEGFR species (termed “Tumor Growth Model 2”):

dVðtÞ
dt
¼

k0 � VðtÞ

1þ
k0

k1
� VðtÞ

� �c
� �1

c

� 1 �
Ang0 � CAng � AngðtÞ

Ang0

� �

ð2Þ

We again applied the eFAST global sensitivity analysis to determine which of the five tumor

growth kinetic parameters (k0, k1, ψ, Ang0, and CAng) significantly influence the predicted

tumor volume. This analysis shows that the influence of CAng on the tumor volume is compara-

ble to the effects of k0, k1, and Ang0. However, we find that the CAng parameter is tightly corre-

lated to Ang0 (based on parameter identifiability analysis used in our previous work [40,41]).

This means that it is not appropriate to fit both CAng and Ang0 at the same time, as their values

may not be estimated with tight confidence intervals. Therefore, we moved forward with

Tumor Growth Model 1, which includes four parameters that characterize the kinetics of

tumor growth (Eq (1)), with three of the parameter values estimated in the model fitting

described above. The estimated parameter values are listed in S3 Table.

Model validation

We validated the model with data not used in the fitting. Using the same fitted kinetic parame-

ters as the control case, we simulated the treatment regimens described in the in vivo mouse

studies. The model does an excellent job of matching the experimental data (Fig 1, purple

shading), capturing the effect of anti-VEGF treatment on tumor growth for the majority of

datasets. Based on these results, the model is in agreement with experimental data of untreated

tumor growth and can be appropriately validated using treatment data. Thus, our model is

able to recreate the growth dynamics of untreated breast tumor xenografts in mice and can

predict the tumor volume in response to anti-angiogenic treatment.

Model fitting to early tumor growth data

We investigated whether it is possible to accurately predict the response to anti-VEGF treat-

ment when the model fitting only includes the initial tumor growth data. We selected the data-

sets that included at least three tumor volume measurements prior to administration of

bevacizumab (two out of the six datasets fit this criterion). We fit those initial experimental

data points for the control (no anti-VEGF treatment) and validated the fitted model using the

anti-VEGF treatment data. We again performed the model fitting 30 times for each dataset.

The optimized model fit using only the initial tumor growth data was able to predict the tumor

volume following treatment (Fig 2). Although the 95% intervals were wider in this fitting as

compared to the results obtained when all of the data points were used for model fitting (see

Fig 1), the newly optimized model still predicted reasonable values for the tumor size and the

confidence intervals contained the experimental data points for validation (tumor volume

with treatment), as shown in the right panels of Fig 2. These results demonstrate that the

model can recreate treatment dynamics even when parameter fitting is performed using a lim-

ited number of experimental measurements. However, the estimated parameter values varied

widely when fitting to the pre-treatment measurements only compared to fitting to all of the

available control data (S3 Table). Therefore, we only used the model obtained by fitting the full

set of control data to make meaningful comparisons amongst the parameter values from each

dataset.

Tumor growth kinetics and response to anti-angiogenic treatment
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Analysis of the estimated parameter values

We evaluated the optimized parameters estimated from fitting the model to all of the available

control data. The estimated parameter values for the fits with the lowest errors are given in Fig

3. For all of the fitted parameters, the estimated 95% confidence intervals are within one order

of magnitude or less, and there are few outliers. This indicates that the parameter values can be

determined with high confidence, and allows statistical analysis to compare the parameter val-

ues obtained from fitting each dataset. Visual inspection shows that when fitting to the datasets

from Volk et al., the model fitting and parameter estimation showed higher k0/k1 ratios than

the other three datasets (Fig 3D). Since there appear to be other differences in the estimated

parameter values, we wanted to determine if the differences in the parameter values influence

the predicted response to anti-angiogenic treatment. Below, we present simulations obtained

Fig 2. Model validation after fitting initial tumor growth data. Predicted tumor volume over time for the two datasets with at

least three pre-treatment measurements for tumor volume. A, Roland [34]. B, Volk 2011a [38]. Experimental data points: triangles

are control (left panel) and squares are treatment (right panel). Only the triangles outlined in blue are used for fitting. Shading

shows the 95% confidence interval on the best fits. Note different scales on both axes.

https://doi.org/10.1371/journal.pcbi.1005874.g002

Tumor growth kinetics and response to anti-angiogenic treatment
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using the optimized parameter sets estimated from fitting the control data and compare the

responses to treatment.

Predicting the response to anti-VEGF treatment

Having validated our model, we used the optimized parameter sets to predict the tumor vol-

ume in response to anti-VEGF treatment. We ran the model for each of the six datasets, using

all 30 sets of optimized parameter values. For each set of parameters, the model was simulated

for three cases: no treatment (control) and two treatment conditions (2 and 10 mg/kg bevaci-

zumab). For the treatment cases, twice-weekly injections were simulated, starting when the

tumor volume reached 0.1 cm3 (termed “Tstart”). We selected this volume, since it is established

that this is the critical time at which tumors typically start secreting higher levels of angiogenic

factors in order to recruit the vasculature necessary to support further growth (~1–2 mm in

diameter). For all cases, the model was simulated for 6 weeks after Tstart. We used the model to

predict the relative tumor volume (RTV), the ratio of the final tumor volume for the control

and treatment cases:

RTV ¼
Vtreatment

Vcontrol
ð3Þ

where Vtreatment and Vcontrol are the tumor volumes at the end of the simulation with treatment

and without treatment, respectively. Thus, the RTV represents the fold-change in tumor size

Fig 3. Estimated model parameters obtained from fitting. The whole-body mouse model was used to fit

measurements of tumor xenograft volumes, and the tumor growth kinetic parameters were estimated. The

estimated parameter values from the best fits are plotted for each dataset. A, k0. B, k1. C, Ang0. D, k0/k1.

Horizontal bar indicates the median of the best fits obtained from fitting the model to each dataset; error bars

indicate the 95% confidence interval. Statistical comparison of the estimated parameter sets is given in Fig 5.

https://doi.org/10.1371/journal.pcbi.1005874.g003
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due to treatment, where an RTV value less than one indicates that the treatment reduced the

tumor volume, compared to the control. We use the RTV value to characterize the response to

anti-VEGF treatment. The predicted responses to bevacizumab treatment at a dose of 2 or 10

mg/kg using the best fit parameter values are shown in Fig 4. The range of predicted RTV val-

ues indicates that certain tumors are more responsive to anti-VEGF treatment than others (Fig

4). In particular, the predicted RTV values obtained using fitted parameter values from fitting

to data from Volk are higher than the predicted response for the other datasets for the 10 mg/

kg dose. Interestingly, the ordering of the most responsive tumors differs for the two dosage

levels, indicating nonlinear effects of the drug that vary with the amount administered. We

next performed a thorough statistical comparison of the RTV and the estimated parameter val-

ues obtained in the fitting.

Our statistical analysis indicates a relationship between particular kinetic parameters that

characterize tumor growth and the effectiveness of treatment. We used statistical analyses to

determine whether the sets of estimated parameters or the predicted RTV values were statisti-

cally significantly different (p< 0.05) across the six datasets (Fig 5). Based on this analysis, we

found that all datasets with significantly different predicted RTV values had significantly dif-

ferent k0, k1 or k0/k1 ratios. Interestingly, there was no statistically significant difference in the

estimated Ang0 values, the “basal angiogenic signal”, between any of the datasets. Overall, the

statistical analysis reveals that certain kinetic parameters (particularly, k0/k1) varied consider-

ably between datasets and corresponded to significantly different treatment response (as indi-

cated by the RTV value). The values of those parameters, which characterize the kinetics of

tumor growth, may be used to predict the response to treatment.

Determination of relationship between tumor growth parameters and

response to treatment

We applied partial least squares (PLSR), a multivariate regression analysis, to further quantify

the importance of specific tumor growth characteristics in predicting the response to anti-

VEGF treatment. We used the values of k0, k1, Ang0, and k0/k1 as inputs (predictors) and the

RTV at the two dosage levels for bevacizumab (2 and 10 mg/kg) as the responses. We deter-

mined the optimal PLSR model by varying the number of components from one to four and

calculating the fitness metrics R2X, R2Y, and Q2Y values (see Methods section). We also varied

the number of inputs, using different combinations of the estimated parameters. The fitness

Fig 4. Predicted response to anti-VEGF treatment. The whole-body mouse model, including the dynamic

tumor compartment whose volume is predicted using Eq (1), was used to simulate bevacizumab treatment at

a dose of A, 2 mg/kg or B, 10 mg/kg. The relative tumor volume (RTV) predicted by the model is shown.

Horizontal bar indicates the median of the predicted RTV for the best fits from each dataset.

https://doi.org/10.1371/journal.pcbi.1005874.g004
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metrics for all PLSR models that we evaluated are listed in S4 Table. The final PLSR model

(i.e., the model that best predicted the responses without over-fitting) had two components

and included four inputs (k0, k1, Ang0, and k0/k1). This PLSR model is able to accurately predict

the RTV at both dosage levels (Fig 6A), captures the variance in the inputs and outputs (high

R2X and R2Y, respectively), and performs well with leave-one-out cross validation (Q2Y =

0.89). All PLSR models that included the k0/k1 ratio but excluded k0, k1, or Ang0 performed

equally well in the cross validation analysis; however, the fitness metrics are the same, and

we cannot objectively select one model over another. Therefore, we moved forward with the

model that included all four inputs.

We analyzed the PLSR model to obtain insight regarding how the four inputs relate to the

outputs. The variable importance of projection (VIP) scores for the four model inputs indicate

that the value of k0/k1 is the largest contributor to predicting the RTV (Fig 6B). This suggests

that the value of k0/k1 could be used to distinguish tumors that will respond to therapy or not.

Although the PLSR components do not explicitly correspond to a physiological variable,

plotting the loadings for the inputs and outputs provides some insight into the meaning of

each component. A plot of the loadings for the outputs (Fig 6C) reveals that both components

capture the treatment efficacy. Here, we consider both components, as together, they account

for 99% of the variance in the output. Decreasing in component 1 and increasing in compo-

nent 2 corresponds to increased efficacy of the anti-VEGF treatment. The datasets in which

anti-VEGF treatment is the least effective in reducing tumor growth (collectively, across the

two drug doses) compared to the other datasets, have the highest loading in component 1 and

lowest loading in component 2 (i.e., appearing in the lower right portion of the plot). In com-

parison, measurements from tumors in which anti-VEGF treatment leads to more growth

inhibition appear in the upper left quadrant of the plot.

A plot of the loadings for the inputs reveals how the estimated tumor growth parameters

are associated with treatment efficacy. We focus first on the loadings for component 1, as this

component accounts for 94% of the variance in the inputs. We find that k0/k1 is positively cor-

related with low treatment efficacy, as it has a positive loading in component 1 (Fig 6D). The

k0/k1 ratio also has the highest loading in component 2. Together, these results suggest that a

Fig 5. Statistical analysis of the optimized parameter sets. Standard ANOVA analysis followed by pairwise comparisons was used to determine

whether the sets of optimized parameter values were statistically different. A, upper triangle: k0; lower triangle: k1. B, upper triangle: Ang0; lower triangle:

k0/k1. C, upper triangle: RTV for bevacizumab dose of 2 mg/kg; lower triangle: RTV for dose of 10 mg/kg. The color and asterisks indicate log10(p-value):

***, (p-value� 0.001); **, (0.001 < p-value� 0.01); *, (0.01 < p-value < 0.05).

https://doi.org/10.1371/journal.pcbi.1005874.g005
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high value of k0/k1 is associated with low treatment efficacy. In summary, the multivariate anal-

ysis provides a regression model that accurately predicts the relative tumor volume following

anti-VEGF treatment, given the tumor growth parameters. Additionally, the analysis confirms

the importance of k0/k1 as a key predictor of the tumor’s response to anti-VEGF treatment.

Effect of tumor receptor number on the response to treatment

After validating the model and investigating relationships between kinetic parameters describ-

ing tumor growth and response to treatment, we sought to investigate the effects of tumor-spe-

cific properties. In particular, we examined the effect of neuropilin and VEGF receptor levels

on relative tumor volume. VEGF receptor levels were varied from 0 to 10,000 receptors/cell,

and NRP levels were varied from 0 to 100,000 receptors/cell. Using a representative set of

parameters from the best fits for each dataset, we used the model to determine Tstart for each

Fig 6. Results from multivariate analysis. PLSR analysis quantifies how the tumor growth parameters influence the response to treatment (RTV). A,

PLSR model to predict RTV for two dosage levels of the anti-VEGF. The optimal PLSR model includes two components. Decreasing in component 1 or

increasing in component 2 corresponds to higher efficacy of the anti-VEGF treatment. B, VIP scores for the model inputs; a score greater than one

indicate variables that are important for predicting the RTV. C, Scores of the model output, revealing how tumors from each dataset compare in their

responsiveness to treatment. D, Loadings of the model inputs, indicating how the model inputs (fitted parameters) correspond to sensitivity to anti-VEGF

treatment.

https://doi.org/10.1371/journal.pcbi.1005874.g006
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combination of receptor levels. We then ran the model to simulate the tumor growth for six

weeks past Tstart to obtain the baseline control volumes. Treatment volumes were obtained by

simulating twice-weekly bevacizumab injections at a dose of 10 mg/kg for six weeks after Tstart.

The RTV values were calculated for each combination of the tumor receptor densities. The

model predicts that higher neuropilin levels led to increased treatment efficacy, especially for

high VEGFR2 levels (Fig 7). The predicted RTV values obtained using the estimated parameters

from certain datasets show that neuropilin expression has a noticeable impact on the response

to treatment (Fig 7A and 7B). In comparison, neuropilin levels seem to have a diminished

impact for the Volk dataset, indicated by contour plots that are very similar, even with drastic

changes in neuropilin receptor levels (Fig 7C). In summary, the model can be used to study

tumor-specific conditions that are favorable for anti-angiogenic treatment. Higher receptor

expression is predicted to increase anti-VEGF efficacy, although the relationship was not uni-

form across all datasets, indicating the importance of accounting for specific tumor settings.

Fig 7. Effect of VEGF receptor expression on tumor cells. Relative tumor volume (RTV) predicted by the model using optimized parameter values

obtained from fitting: A, Roland [34]. B, Zibara [35]. C, Volk 2008 [37], for different VEGF receptor levels on tumor cells. Neuropilin density varies: 0

receptors/cell (left), 20,000 receptors/cell (center), and 100,000 receptors/cell (right). Contour plots reveal the relationship between RTV and VEGFR1,

VEGFR2, and neuropilin receptor density on tumor cells. The colorbar indicates the RTV value, with the same range for all panels. Red color indicates

higher RTV, representing tumor conditions that are less favorable for anti-VEGF treatment.

https://doi.org/10.1371/journal.pcbi.1005874.g007
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Discussion

We have developed a compartmental model representing tumor-bearing mice in which the

tumor volume is responsive to changes in VEGF concentration. The tumor volume explicitly

depends on the “angiogenic signal”, which is the signal produced when VEGF binds to its recep-

tors on tumor endothelial cells. In this way, the model can be applied to analyze the effect of anti-

VEGF treatment on xenograft tumor growth, aiding in the analysis of pre-clinical data. Tumor

growth kinetic parameters are obtained by fitting the model to experimental data of breast xeno-

graft tumor growth in mice for control conditions (no anti-angiogenic treatment) and are vali-

dated with treatment data. By including a dynamic tumor volume that explicitly depends on the

concentration of VEGF-bound receptors, we address a primary limitation of our previous work.

Our approach of training the model using control data and using the optimized model to pre-

dict treatment data is a significant advantage over previous modeling work. For example, in

model fitting performed by other groups, tumor growth parameters were estimated by simulta-

neously fitting both control and treatment groups [33] or parameter values adopted from previous

models [42]. In other work [8,33], the tumor growth equation includes coefficients that character-

ize the killing effect of cancer drugs, including anti-angiogenic agents, on tumor growth. In con-

trast, our computational model is able to accurately predict response to anti-VEGF treatment,

validation data not used in the fitting. This is a significant feature of our model–it is trained using

control data and can reproduce the response to anti-VEGF treatment simply by introducing the

drug into the blood compartment, mimicking pre-clinical mouse studies.

The model provides unique insight into how certain kinetic parameters that characterize

tumor growth correlate with response to anti-angiogenic treatment. Our results demonstrate

how the parameters describing tumor growth could be used as a predictive biomarker for

treatment response. In comparison, other studies have used volume-based growth tumor

kinetics as a prognostic biomarker. Lee and coworkers found that the time to progression

(defined as the time it takes the tumor to grow from its nadir in volume after treatment to a

progressive disease state) was significantly correlated with overall survival [11]. In other work,

researchers used tumor growth kinetics to determine the efficacy of anti-angiogenic treatment

[12–15]. Excitingly, our approach is highly predictive, where volumetric measurements per-

formed prior to treatment can give insight into how the tumor might respond to an anti-

VEGF agent such as bevacizumab. This work is particularly useful in the pre-clinical setting–

the model parameters can be systematically varied, and the tumor volume can be predicted for

each case. Thus the model serves as a quantitative tool to perform in silico pre-clinical trials,

guiding in vivo pre-clinical studies. It may be possible to extend the model to simulate human

tumor growth in the future.

We performed various analyses to quantify how the tumor growth kinetic parameters influ-

ence the response to treatment. The PLSR and statistical analyses reveal that higher k0/k1 values

are related to decreased treatment efficacy. In nearly all cases of the pairwise comparisons,

datasets with significantly different responses to anti-VEGF treatment, the k0/k1 ratio is also

significantly different. Our statistical analyses indicate a direct relationship between the k0/k1

ratio and effectiveness of treatment. Simeoni et al. posit that k0 and k1 may be indicative of the

initial aggressiveness of the cell line and of the response of the animal to tumor progression

(i.e., immunological or anti-angiogenic response), respectively [33]. According to this inter-

pretation, treatment would be least effective for tumors with aggressive initial growth (high k0)

combined with a strong response from the animal (low k1). Additionally, we find that the basal

angiogenic signal, Ang0, is not predictive of anti-angiogenic treatment response. This agrees

with experimental results indicating that the ability of basal levels of circulating angiogenic fac-

tors to predict treatment efficacy is limited [7].
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We used the model to investigate how the number of VEGF receptors and co-receptors on

tumor cells influences the response to treatment. Currently, modified expression of VEGF

receptors (VEGFR1, VEGFR2, or NRP1) appears to be among the most promising markers for

bevacizumab treatment, though this has not consistently been replicated across different stud-

ies involving various cancer types [5]. In particular, low levels of soluble VEGFR1 expression

in plasma and NRP1 expression on tumor cells are characteristics of a bevacizumab-responsive

tumor [5]. Therefore, we wanted to use our model to predict the influence of tumor-specific

properties on treatment efficacy. The model predicts that low levels of VEGFR lead to

increased treatment efficacy for all datasets. The treatment is predicted to be most effective

when tumor NRP levels are high. These results are in agreement with other biomarker studies

[9,43]. Although there was a consistent relationship between receptor levels and treatment effi-

cacy, the extent to which receptor numbers influenced the predicted relative tumor volume

was not identical for all tumors. Datasets for tumors with higher k0/k1 ratios had higher RTV

(i.e., the treatment was less effective), even for a wide range of receptor expression levels. This

may indicate that intrinsic characteristics of the tumor related to its growth kinetics make

anti-angiogenic treatment less effective, regardless of microenvironmental tumor conditions.

As a result, solely using receptor expression as a predictive biomarker could lead to inconsis-

tent results across tumor types.

The focus of our model is on the molecular level interactions occurring between VEGF and

its receptors. In our model, the number of VEGF-receptor (pro-angiogenic) signaling com-

plexes formed directly influences tumor growth. We acknowledge that this representation of

tumor growth omits the intracellular signaling pathways and corresponding cellular-level

responses (i.e., proliferation and migration) involved in new blood vessel formation. However,

the model does indeed capture the dynamics of tumor growth, providing a mechanistic under-

standing of the growth kinetics that contribute to the response to anti-VEGF treatment.

We acknowledge some assumptions and limitations that may be addressed as more quanti-

tative data become available. We do not account for changes in tumor vascularity relative to

the tumor volume. The tumor volume consists of interstitial space, vascular volume, and

tumor cells. We account for tumor growth by assuming the tumor cell volume fraction

increases, while the interstitial space volume fraction decreases, and the relative proportion of

the vascular volume is constant (see Methods section for more detail). This means that the

tumor vascularity does change as the overall tumor volume grows, but it remains in the same

proportion relative to the whole tumor volume. Furthermore, we do not simulate remodeling

of the blood compartment or changes in vascular permeability in response to anti-VEGF

treatment. However, experimental data show a decrease in microvessel density following beva-

cizumab treatment [44], and incorporating this observation would enhance the model. Addi-

tionally, anti-angiogenic treatment promotes normalization of the vasculature, which allows

for more efficient delivery of chemotherapy to the tumor [45]. Accounting for changes in the

microvascular density would allow us to simulate combination treatments that include chemo-

therapy and anti-angiogenic agents. Unfortunately, there is a lack of robust time-series data

that can be used to predict changes in vascular density with treatment. This limitation may be

addressed as additional quantitative measurements are published.

The model is highly successful in capturing the growth kinetics of exponential or linear

growth curves. However, the model does not accurately predict sigmoidal tumor growth. The

equation governing tumor growth used in our model is based on the foundational work of

Simeoni et al., who adapted a Gompertz model of tumor growth to investigate both the expo-

nential and linear phases of growth [33]. Although this makes the tumor growth equation

more flexible, it also limits the ability to simulate an eventual plateau in growth. The model’s

inability to capture sigmoidal growth was particularly apparent when fitting the Volk datasets
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[37,38]. However, we have focused on exponential growth, as it has been implemented in

many other mathematical models [46,47] and shown to accurately fit tumor growth data [48].

Expansion of the tumor growth equation can be added in future studies.

Concluding thoughts

We constructed a computational model that simulates the kinetics of VEGF binding to its

receptors and the influence of VEGF-bound receptor complexes on tumor volume in tumor-

bearing mice. The validated model accurately predicts the tumor growth upon administration

of anti-angiogenic treatment that targets VEGF. The fitted parameter values estimated in the

present study point to the possibility of using tumor growth kinetics as a predictive biomarker

for anti-angiogenic treatment. Additionally, this model also helps to elucidate why biomarker

candidates such as expression of VEGF receptors on tumor cells may not be reliable for all

tumors. Although the model predicts that receptor levels influence response to treatment, the

effects are not uniform across all of the experimental datasets we analyzed. Thus, our modeling

work lays the foundation for future studies to investigate the importance of tumor growth

kinetics as a predictive and specific biomarker and can accelerate the discovery of biomarker

candidates in pre-clinical studies.

Materials and methods

Computational modeling

Compartmental model. In this work, we expand on our previous three-compartment

model [27] by including VEGF-mediated tumor growth. We briefly describe the full model

and detail the new additions that are the focus of this work. The model is comprised of three

compartments representing the whole mouse: normal tissue (assumed to be skeletal muscle),

blood, and tumor (Fig 8). The model includes human and mouse VEGF isoforms: human iso-

forms (VEGF121 and VEGF165) are secreted by tumor cells, and mouse isoforms (VEGF120 and

VEGF164) are secreted by endothelial cells in the normal, blood, and tumor compartments and

muscle fibers in the normal tissue. VEGF receptors (VEGFR1 and VEGFR2) and co-receptors

(neuropilins) are expressed on the surface of muscle fibers, endothelial cells, and tumor cells.

VEGFR1 and VEGFR2 are the primary receptors to which VEGF binds. The neuropilins

(NRP1 and NRP2) are co-receptors for VEGF, to which VEGF can directly bind. Additionally,

NRPs can couple to VEGF receptors VEGFR1 or VEGFR2, and then VEGF can bind to the

VEGFR-NRP complex. The interactions between VEGF and its receptors and co-receptors

occur in all three compartments. By binding to its receptors on endothelial cells in the tumor

compartment, VEGF is able to initiate pro-angiogenic signaling that mediates the formation of

new blood vessels. We account for VEGF-mediated tumor growth by incorporating the con-

centration of VEGF-bound receptors into the tumor volume equation (described in more

detail below). Parameters characterizing the compartment geometry, receptor densities,

kinetic rates, and transport rates are given in S1 Dataset [27].

Tumor volume and growth. Previously, we assumed the tumor volume increased expo-

nentially with time, based on measurements from tumor xenografts [27]. Under that assump-

tion, cancer treatment, including anti-angiogenic therapy, has no effect on tumor growth. In

the present study, we address that limitation by introducing an equation for tumor growth

wherein the volume of the tumor compartment is dependent on the “angiogenic signal” (Ang)

produced when VEGF binds to its receptors on endothelial cells in the tumor. By including the

concentration of VEGF-bound receptors directly into the tumor volume equation, we account

for VEGF-mediated tumor angiogenesis and subsequent tumor growth.
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The tumor compartment is assumed to consist of cancer cells, endothelial cells (vascular

volume) and interstitial space, each of which has a defined volume fraction (i.e., volume rela-

tive to the total tumor volume). Our previous model assumed that as the total tumor volume

increased, the relative proportions of cancer cells, vascular space, and interstitial space remain

constant. Here, we still have the volume fraction for the vascular space remaining constant,

based on a range of experimental data [49–51]. However, we used results from a recent imag-

ing study to account for an increase in the relative volume of cancer cells as the tumor volume

increases. Christensen and coworkers measure how tumor cell density increases as the tumor

grows by tracking cancer cells in xenograft tumors in rats using near near-infrared (NIR) fluo-

rescence dyes [52]. The authors quantify the fluorescence intensity in a tumor and use it to

estimate the number of cancer cells as the tumor grows over time. The estimated cell count

was normalized by the tumor volume to obtain the number of cancer cells per unit volume of

tumor tissue as the tumor grows. We extracted the values obtained by Christensen and

coworkers for MDA-MB-231 tumors and converted them to the cancer cell volume fraction

using the volume of tumor cells, as we have done in our previous work [27]. Therefore, we

have been able to incorporate into our model an increase in the cancer cell volume fraction

Fig 8. Model schematic. The computational model includes three compartments: normal tissue, blood, and tumor volume. The

compartments are connected via lymphatic flow from the interstitial space in the normal tissue to the blood and transendothelial

macromolecular permeability. Molecular species include human and mouse VEGF isoforms, VEGF receptors and co-receptors

(including the soluble receptor VEGFR1, sR1), and the protease inhibitor α-2-macroglobulin (a2m). Glycosaminoglycan (GAG)

chains represent the extracellular matrix. The volume of the tumor depends on the concentration of receptor-bound VEGF

complexes on tumor endothelial cells (denoted as [rec-VEGF]).

https://doi.org/10.1371/journal.pcbi.1005874.g008
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over time. Assuming a tumor cell volume of 905 μm3, based on our previous examination of

the literature [27], we developed expressions describing the decay of interstitial space during

tumor growth. We found that the relative decrease in interstitial space during tumor growth

was adequately modeled by exponential decay. The equations for how the relative volume of

the interstitial space varies with total tumor volume are given in S5 Table.

Data extraction

Data from six independent in vivo published experimental studies of MDA-MB-231 xenograft

tumors in mice were used for parameter fitting and validation [34–38]. The six datasets

included growth profiles for untreated tumors (control), as well as tumors treated with the

anti-VEGF agent bevacizumab. Experimental data was extracted using the WebPlotDigitizer

program (http://arohatgi.info/WebPlotDigitizer). The numerical values are provided in S1

Table.

The extended Fourier amplitude sensitivity test (eFAST), a global variance-based sensitivity

analysis, was used to understand how different parameters (“model inputs”) affect model pre-

dictions (“model outputs”). In this method, the inputs are varied together within specific

ranges at different frequencies, and the model outputs are calculated. The Fourier transform of

a model output is then calculated to identify which inputs have the most influence based on

the amplitude of each input’s frequency, where greater amplitudes indicate more sensitive

parameters. By varying the inputs at the same time, this method allows for the calculation of

the total FAST index, STi, for each input i. The total index is a measure of the global sensitivity,

accounting for second and higher-order interactions between multiple inputs.

We implemented the eFAST method using MATLAB code developed by Kirschner and col-

leagues. We analyzed the effects of the tumor growth parameters (k0, k1, ψ, and Ang0) on one

model output (the tumor volume without anti-VEGF treatment). The parameter values were

allowed to vary at least one order of magnitude (10−8 to 10−2 for k0 and k1, 0.1 to 50 for ψ, and

10−16 to 10−14 for Ang0) to account for potentially large uncertainty in the model parameters.

These are the same ranges used for the parameter estimation (described below). The parame-

ters for which the total FAST index is large are considered to be influential parameters, and

their values are estimated in the model fitting.

Parameter estimation

Model training. We fit the influential tumor growth parameters (“free parameters”) using

the control tumor growth profiles for each dataset. Each of the six datasets provides measure-

ments of the tumor volume in the mouse xenograft in vivo model, where MDA-MB-231 cells

were injected into mice. However, there are significant differences between the six studies, as

outlined in S2 Table. These include differences in the mouse strains used, the number of can-

cer cells injected to initiate tumor growth, whether the cancer cells were injected alone or with

matrigel, and the site of the cancer cell injection. Additionally, the equation used to calculate

the tumor volume influences the reported volume, and papers use different volume equations.

Given all of these differences, we treat each dataset individually. This is analogous to determin-

ing patient-specific tumor growth parameters, even for patients with the same type of tumor.

Fitting was performed using the lsqnonlin function in MATLAB to minimize the sum of

squared residuals (SSR):

minSSRðYÞ ¼ min
Pn

i¼1
ðVexp;i � Vsim;iðYÞÞ

2
ð4Þ

where Vexp,i is the ith experimentally measured tumor volume, Vsim,i is the ith simulated volume

at the corresponding time point, and n is the total number of experimental measurements. The
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minimization is subject to Θ, the set of upper and lower bounds on each of the free parameters.

We found that weighting the residual by the experimental measurement biased the error

towards early data points and reduced the model’s ability to fit the full course of tumor growth.

Therefore, we minimized the residual, with no weighting, to fit the model to the experimental

data.

We performed the parameter fitting 30 times for each dataset. To attempt to arrive at a

global minimum for the error, we initialized each fitting run by randomly selecting a value for

the free parameters within the specified upper and lower bounds. The bounds were set such

that the range for each parameter was at least one order of magnitude: 10−8 to 10−2 for k0 and

k1 and 10−16 to 10−14 for Ang0. After performing the model fitting, we used the SSR to identify

the optimal parameters. Parameter sets with the smallest errors were taken to be the “best” fits

and were used for subsequent statistical analysis. The number of “best” parameter sets varied

between datasets and ranged from 11 to 20 parameter sets. We first tested to see whether there

were significant effects of the experimental data being fit on the estimated parameters values

using one-way non-parametric ANOVA. This method makes no assumptions about the distri-

butions of parameter values and tests whether samples originate from a common distribution.

We then performed post-hoc analyses to make pairwise comparisons using the Kruskal-Wallis

test. We corrected for multiple comparisons by controlling the false discovery rate. All statisti-

cal analyses were performed using GraphPad Prism.

Two of the experimental datasets contained at least three data points prior to administra-

tion of treatment [34,38]. These points were used in a separate model fitting to see whether

limiting the data used for model training to only pre-treatment measurements could generate

a fitted model that still accurately predicts the response to anti-angiogenic treatment.

Model validation–anti-VEGF drug treatment. After fitting the control data, we validated

the estimated parameters with data not used in the fitting. We applied the fitted model to sim-

ulate anti-angiogenic treatment (bevacizumab, a monoclonal antibody that binds to the

human VEGF isoforms) and compared the predicted tumor growth profile to the experimental

measurements for the treatment cases. Here, we simulated the dosing regimens used in each

experiment with the same optimized parameters obtained by fitting the control data. For each

dataset, we simulated intravenous injections lasting for one minute (as in our previous model).

More specifically, this means that there is a net rate of secretion of the drug directly into the

blood compartment. All six experimental studies administered bevacizumab twice-weekly;

however, the dosage varied between the studies. The dosing regimens are given in S2 Table.

The binding affinity and clearance rate for bevacizumab were obtained from experimental

studies in which VEGF was immobilized on a flow cell (FC) and bevacizumab was injected

over the FC at varying concentrations [53]. Based on those measurements, the binding affinity

was set to 4456 pM (kon = 5.4×104 M-1s-1; koff = 2.19×10−5 s-1), and 5.73×10−7 s-1 was used for

the anti-VEGF clearance rate.

Partial least squares regression analysis

Partial least squares regression (PLSR) modeling was used to determine the relationship

between the fitted parameters characterizing tumor growth kinetics (inputs) and the response

to treatment given by the RTV value (output). PLSR modeling seeks to maximize the correla-

tion between the inputs and outputs. To accomplish this, the inputs and outputs are recast

onto new dimensions called principal components (PCs), which are linear combinations of

the inputs. The regression coefficients estimated by PLSR describe the relative importance of

each input. Quantitative measures from the PLSR modeling, including the loadings and scores,

provide some insight into the biological meaning of the PCs [54]. Additionally, we use the
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estimated regression coefficients to determine each input’s contribution across all responses.

This metric is given by the “variable importance of projection” (VIP) for each predictor. The

VIP value is the weighted sum of each input’s contribution to all of the responses. As such, the

VIP values indicate the overall importance of the predictors. VIP values greater than one indi-

cate variables that are important for predicting the output response.

In the final PLSR model we selected, the input matrix was 6 rows x 4 columns, where the 6

rows correspond to the best fit for each of the six datasets, and the 4 columns consisted of the

estimated free parameters (k0, k1, and Ang0) and the calculated ratio of k0/k1. The output

matrix was 6 rows x 2 columns, where the rows corresponds to the predicted RTV using the

best fit for each of the six datasets, and the columns are the two treatment doses (2 and 10 mg/

kg). We used two metrics to evaluate the model fitness: R2Y and Q2Y, both of which have a

maximum value of 1. The R2Y value indicates how well the model fits the output data. The

Q2Y metric specifies how much of the variation in the output data the model predicts [55],

and values greater than 0.5 indicate that the model can predict data not used in the fitting. We

performed PLSR modeling using the nonlinear iterative partial least squares (NIPALS) algo-

rithm [56], implemented in MATLAB (Mathworks, Inc.). We implemented many other PLSR

models, using various combinations of the four model inputs. The fitness metrics for each

model evaluated are given in S4 Table.

Numerical implementation

All model equations were implemented in MATLAB using the SimBiology toolbox. The final

model is provided as the SimBiology project file, as SBML, and as a MATLAB m-file (S2 Data-

set). Parameter fitting was performed using the lsqnonlin function MATLAB. GraphPad Prism

was used to run statistical analyses on parameter values.

Supporting information

S1 Fig. Sensitivity indices of tumor growth parameters. The sensitivity indices estimated

using the extended Fourier Amplitude Sensitivity Test (eFAST) quantifying the variance in the

model output (tumor volume without treatment) with respect with covariances in combina-

tions of model inputs: the tumor growth parameters k0, k1, ψ, and Ang0 at distinct times for

each dataset. A, Roland [34]. B, Zibara [35]. C, Tan [36]. D, Volk 2008 [37]. E, Volk 2011a

[38]. F, Volk 2011b [38]. The sensitivity indices for the growth parameters are compared to a

dummy variable that is not included in the model. Indices that are significantly different from

the dummy variable influence the model output. We used a cutoff of 0.4 to select which param-

eters to fit in the parameter estimation.

(PDF)

S1 Table. Experimental data extracted from published papers. Experimental data used for

model fitting.

(XLSX)

S2 Table. Experimental treatment from published papers. This table lists details regarding

the experimental conditions of the studies used for model fitting.

(XLSX)

S3 Table. Estimated parameter sets. This table lists the estimated parameter values for k0, k1,

and Ang0 obtained from fitting to all of the control volume measurements (Roland [34], Zibara

[35], Tan [36], Volk 2008 [37], Volk 2011a [38], and Volk 2011b [38]) and for fitting to the

datasets with at least three tumor volume measurements before anti-angiogenic treatment

began (Roland [34] and Volk 2011a [38]). The calculated errors for the training and validation
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data are shown, along with the calculated k0/k1 ratio.

(XLSX)

S4 Table. Fitness metrics for PLSR models. We evaluated several PLSR models to evaluate

the ability of the estimated tumor growth parameters (k0, k1, Ang0, and k0/k1) to predict the

response to treatment (RTV). We examined the predictive ability of PLSR models that

included all parameters, excluded one at a time, or excluded two at a time. We report the fit-

ness metrics (R2X, R2Y, and Q2Y) and the VIP scores for the inputs included in the model.

(XLSX)

S5 Table. Equations describing change in relative volume of the interstitial space. This table

presents the equations for how the relative volume of the interstitial space changes as a function

of the total tumor volume. This equation is unique for each of the datasets investigated.

(PDF)

S1 Dataset. Detailed description of computational model. This file contains a description of

the three-compartment computational model, including parameter values and initial condi-

tions.

(PDF)

S2 Dataset. Model file. This zipped file contains the computational model in multiple formats:

the MATLAB SimBiology project file (.sbproj), SBML model (.xml) and MATLAB m-file (.m).

To facilitate reproducibility, we provide a driver file that runs the m-file and simulates the con-

trol and treatment conditions (2 mg/kg) for a representative parameter set estimated from fit-

ting to the Roland dataset.

(ZIP)

Acknowledgments

The authors thank members of the Finley research group for critical comments and

suggestions.

Author Contributions

Conceptualization: Stacey D. Finley.

Formal analysis: Thomas D. Gaddy, Stacey D. Finley.

Investigation: Thomas D. Gaddy, Qianhui Wu, Alyssa D. Arnheim, Stacey D. Finley.

Supervision: Stacey D. Finley.

Writing – original draft: Thomas D. Gaddy, Stacey D. Finley.

Writing – review & editing: Thomas D. Gaddy, Qianhui Wu, Alyssa D. Arnheim, Stacey D.

Finley.

References
1. Olsson A, Dimberg A, Kreuger J, Claesson-Welsh L. VEGF receptor signalling—in control of vascular

function. Nat Rev Mol Cell Biol. 2006; 7: 359–371. https://doi.org/10.1038/nrm1911 PMID: 16633338

2. Carmeliet P, Jain RK. Molecular Mechanisms and and clinical applications of angiogenesis. Nature.

2011; 473: 298–307. https://doi.org/10.1038/nature10144 PMID: 21593862

3. Al-Husein B, Abdalla M, Trepte M, DeRemer DL, Somanath PR. Antiangiogenic therapy for cancer: An

update. Pharmacotherapy. 2012. pp. 1095–1111. https://doi.org/10.1002/phar.1147 PMID: 23208836

Tumor growth kinetics and response to anti-angiogenic treatment

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1005874 December 21, 2017 20 / 23

http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1005874.s005
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1005874.s006
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1005874.s007
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1005874.s008
https://doi.org/10.1038/nrm1911
http://www.ncbi.nlm.nih.gov/pubmed/16633338
https://doi.org/10.1038/nature10144
http://www.ncbi.nlm.nih.gov/pubmed/21593862
https://doi.org/10.1002/phar.1147
http://www.ncbi.nlm.nih.gov/pubmed/23208836
https://doi.org/10.1371/journal.pcbi.1005874


4. FDA Approval for Bevacizumab—National Cancer Institute [Internet]. [cited 24 Apr 2017]. Available:

https://www.cancer.gov/about-cancer/treatment/drugs/fda-bevacizumab

5. Lambrechts D, Lenz HJ, De Haas S, Carmeliet P, Scherer SJ. Markers of response for the antiangio-

genic agent bevacizumab. J Clin Oncol. 2013; 31: 1219–1230. https://doi.org/10.1200/JCO.2012.46.

2762 PMID: 23401453

6. Alberto MJ, Escobar M, Lopes G, Glück S, Vogel C. Bevacizumab in the Treatment of Metastatic Breast

Cancer: Friend or Foe? Curr Oncol Rep. 2012; 14: 1–11. https://doi.org/10.1007/s11912-011-0202-z

PMID: 22012632

7. Jain RK, Duda DG, Willett CG, Sahani D V, Zhu AX, Loeffler JS, et al. Biomarkers of response and

resistance to antiangiogenic therapy. Nat Rev Clin Oncol. 2009; 6: 327–338. https://doi.org/10.1038/

nrclinonc.2009.63 PMID: 19483739

8. Sharan S, Woo S. Quantitative Insight in Utilizing Circulating Angiogenic Factors as Biomarkers for Anti-

angiogenic Therapy: Systems Pharmacology Approach. CPT Pharmacometrics Syst Pharmacol. 2014;

3: e139. https://doi.org/10.1038/psp.2014.36 PMID: 25295574

9. Van Cutsem E, de Haas S, Kang Y-K, Ohtsu a., Tebbutt NC, Ming Xu J, et al. Bevacizumab in Combina-

tion With Chemotherapy As First-Line Therapy in Advanced Gastric Cancer: A Biomarker Evaluation

From the AVAGAST Randomized Phase III Trial. J Clin Oncol. 2012; 30: 2119–2127. https://doi.org/10.

1200/JCO.2011.39.9824 PMID: 22565005

10. Kopetz S, Hoff PM, Morris JS, Wolff RA, Eng C, Glover KY, et al. Phase II trial of infusional fluorouracil,

irinotecan, and bevacizumab for metastatic colorectal cancer: Efficacy and circulating angiogenic bio-

markers associated with therapeutic resistance. J Clin Oncol. 2010; 28: 453–459. https://doi.org/10.

1200/JCO.2009.24.8252 PMID: 20008624

11. Lee JH, Lee HY, Ahn M-J, Park K, Ahn JS, Sun J-M, et al. Volume-based growth tumor kinetics as a

prognostic biomarker for patients with EGFR mutant lung adenocarcinoma undergoing EGFR tyrosine

kinase inhibitor therapy: a case control study. Cancer Imaging. Cancer Imaging; 2016; 16: 5. https://doi.

org/10.1186/s40644-016-0063-7 PMID: 26984681

12. Seyal AR, Parekh K, Arslanoglu A, Gonzalez-Guindalini FD, Tochetto SM, Velichko YS, et al. Perfor-

mance of tumor growth kinetics as an imaging biomarker for response assessment in colorectal liver

metastases: correlation with FDG PET. Abdom Imaging. Springer US; 2015; 40: 3043–3051. https://

doi.org/10.1007/s00261-015-0546-1 PMID: 26353898

13. El Sharouni SY, Kal HB, Battermann JJ. Accelerated regrowth of non-small-cell lung tumours after

induction chemotherapy. Br J Cancer. 2003; 89: 2184–9. https://doi.org/10.1038/sj.bjc.6601418 PMID:

14676792

14. Stein WD, Yang J, Bates SE, Fojo T. Bevacizumab reduces the growth rate constants of renal carcino-

mas: a novel algorithm suggests early discontinuation of bevacizumab resulted in a lack of survival

advantage. Oncologist. 2008; 13: 1055–1062. https://doi.org/10.1634/theoncologist.2008-0016 PMID:

18827177

15. Rezai P, Yaghmai V, Tochetto SM, Galizia MS, Miller FH, Mulcahy MF, et al. Change in the growth rate

of localized pancreatic adenocarcinoma in response to gemcitabine, bevacizumab, and radiation ther-

apy on MDCT. Int J Radiat Oncol Biol Phys. 2011; 81: 452–459. https://doi.org/10.1016/j.ijrobp.2010.

05.060 PMID: 21570199

16. Day C-P, Merlino G, Van Dyke T. Preclinical Mouse Cancer Models: A Maze of Opportunities and Chal-

lenges. Cell. Elsevier; 2017; 163: 39–53. https://doi.org/10.1016/j.cell.2015.08.068 PMID: 26406370

17. Le Magnen C, Dutta A, Abate-Shen C. Optimizing mouse models for precision cancer prevention. Nat

Rev Cancer. Nature Publishing Group, a division of Macmillan Publishers Limited. All Rights Reserved.;

2016; 16: 187–196. https://doi.org/10.1038/nrc.2016.1 PMID: 26893066

18. Manning HC, Buck JR, Cook RS. Mouse Models of Breast Cancer: Platforms for Discovering Precision

Imaging Diagnostics and Future Cancer Medicine. J Nucl Med. 2016; 57: 60S–68S. https://doi.org/10.

2967/jnumed.115.157917 PMID: 26834104
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