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INTRODUCTION: Insulin resistance (IR)/glucose intolerance is a critical biologic mechanism for the development of

colorectal cancer (CRC) in postmenopausal women. Whereas IR and excessive adiposity are more

prevalent in African American (AA) women than in White women, AA women are underrepresented in

genome-wide studies for systemic regulation of IR and the association with CRC risk.

METHODS: With 780 genome-wide IR single-nucleotide polymorphisms (SNPs) among 4,692 AA women, we

tested for a causal inference between genetically elevated IR and CRC risk. Furthermore, by

incorporating CRC-associated lifestyle factors, we established a prediction model on the basis of

gene–environment interactions to generate risk profiles for CRC with the most influential genetic and

lifestyle factors.

RESUTLS: In the pooled Mendelian randomization analysis, the genetically elevated IR was associated with 9

times increased risk of CRC, but with lack of analytic power. By addressing the variation of individual

SNPs inCRC in thepredictionmodel, wedetected4 fasting glucose–specific SNPs inGCK,PCSK1, and
MTNR1B and 4 lifestyles, including smoking, aging, prolonged lifetime exposure to endogenous

estrogen, and high fat intake, as the most predictive markers of CRC risk. Our joint test for those risk

genotypes and lifestyles with smoking revealed the synergistically increased CRC risk, more

substantially in women with longer-term exposure to cigarette smoking.

DISCUSSION: Our findings may improve CRC prediction ability among medically underrepresented AA women and

highlight genetically informed preventive interventions (e.g., smoking cessation; CRC screening to

longer-term smokers) for those women at high risk with risk genotypes and behavioral patterns.

SUPPLEMENTARY MATERIAL accompanies this paper at http://links.lww.com/CTG/A695, http://links.lww.com/CTG/A696, http://links.lww.com/CTG/A697, http://

links.lww.com/CTG/A698, http://links.lww.com/CTG/A699, http://links.lww.com/CTG/A700
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INTRODUCTION
Colorectal cancer (CRC) is the leading cause of cancer di-
agnosis and death in women in the United States and other
westernized countries (1), and approximately 90% of new
cases and deaths occur in women aged 50 years and older (2).
African American (AA) women have the highest CRC in-
cidence and mortality rates among all races/ethnic female
groups. Although new cases and deaths due to CRC have de-
creased throughout all racial/ethnic groups since the mid-
2000s (3), AA women still rank first, with incidence and

mortality rates of 20% and 35%, respectively, higher than
those in Whites during 2012–2016 (2,4). In addition, CRC is
the third most common cancer diagnosis and cause of cancer
deaths in AA women (4).

Excessive adiposity accounts for up to 60% of CRC suscepti-
bility (5,6), and insulin resistance (IR) or glucose intolerance has
been believed to be the major biologic mechanism of colorectal
carcinogenesis owing to obesity (7) by explaining more than 40%
of the association between obesity and CRC (8). In particular,
elevated insulin concentrations promoted the growth of CRC in
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cell lines (9), and in an animal study (10), increased levels of
glucose and insulin, which reflect IR, stimulated colorectal epi-
thelial proliferation (11). In addition, several population-based
epidemiologic studies reported that colorectal carcinogenesis is
associated with IR or impaired glucose tolerance (12–15). IR
promotes mitosis via insulin receptors and insulin-like growth
factor 1 receptors by dysregulating downstream cellular signaling
cascades, leading to enhancement of cellular anabolic status and
increased antiapoptosis and cell proliferation (16,17). IR may,
thus, initiate and promote CRC cell growth. Obesity and IR dis-
proportionately affect AA women (18,19), suggesting that they
tend to be more metabolically unhealthy than White women. A
recent DNA methylation study (20) for AAs (mainly female in-
dividuals) with CRC detected aberrant methylations of CpG is-
lands in the genes that are involved in an insulin network,
supporting the critical role of IR in AA women’s colorectal
tumorigenesis.

The systemic development of IR can be influenced by not only
environmental (21–23) but also genetic and epigenetic factors
(24). To detect genetic variations of IR, extensive genomic studies
have been performed, butmostly focusing onWhites. AAs, one of
the racial/ethnicminorities, are underrepresented in the genome-
wide genomic study of IR. Detecting IR-specific genetic charac-
teristics within AAs can contribute to advanced understanding of
molecular biology related to IR in the AA population and further,
as potential risk biomarkers, improve prediction accuracy for
CRC development. Thus, thismay highlight the promotion of IR-
specific, genetically informed, personalized interventions for
CRC preventive and therapeutic efforts. In addition, IR pheno-
types themselves explained a small to moderate proportion of
CRC variation (13,15,25), implying a potential role of IR genetic
signatures in validating the causal pathways of colorectal
carcinogenesis.

Furthermore, adherence to theWorld Cancer Research Fund/
American Institute for Cancer Research recommendations, such
as those for diet, physical activity, and body weight control (26),
did not substantially prevent CRC development in AA women
(27). This finding suggests the need for alternative strategies that
are more predictive of CRC risk, such as the combination of
genetic and environmental factors (e.g., lifestyles) that synergis-
tically interact, ultimately leading to CRC initiation and
progression.

For those reasons, we performed a genomic gene–environment
(G3E) interaction study by focusing on IR and relevant lifestyle
factors among AA postmenopausal women. First, we examined
780 IR single-nucleotide polymorphisms (SNPs) thatweredetected
as top signals from independent genome-wide association (GWA)
studies (28–33). After validating GWA IR-SNPs in our data, we
tested for a causal inference between genetically elevated IR and
CRCdevelopment.Next,we identifiedCRC-related lifestyle factors
from the literature, which disproportionately affect AAwomen. By
incorporating those lifestyle factors with the validated IR genetic
markers, we established a risk predictionmodel and computed risk
prediction of variables for CRC. With the most influential genetic
and lifestyle factors, we eventually generated CRC risk profiles and
estimated their combined and joint effects on CRC risk. We sur-
mised that our multimodal approach could resolve the in-
conclusive findings fromprevious studies of IR and lifestyle factors
in association with CRC and, thus, improve the predictive power
for CRC risk in medically and scientifically underrepresented AA
women.

MATERIALS AND METHODS

Study population

We examined AA postmenopausal women who had been en-
rolled in the SNP Health Association Resource (SHARe), a pro-
spective cohort of the AA and Hispanic minorities, which is part
of Women’s Health Initiative Database for Genotypes and Phe-
notypes (WHI dbGaP) Harmonized and Imputed GWA Studies,
with an effort to detect genes/genetic variants associated with
quantitative traits with enhanced statistical power in those racial/
ethnic minorities. Detailed descriptions of the study design and
rationale have been published (34–36). In brief, healthywomen in
theWHI studywere recruited between 1993 and 1998 at 40WHI-
designated clinical centers across the United States if they were
aged 50–79 years, postmenopausal, and able to provide written
informed consent. Further, they were enrolled in theWHI dbGaP
study if they hadmet eligibility for data submission to dbGaP and
provided their DNA samples. For 7,470 women who reported
their race or ethnicity as AA, we applied the following exclusion
criteria: quality control (QC) of genomic data, diabetes history,
less than 1-year follow-up, and diagnosis of any cancer type at
screening. Our final study sample included 4,692 AA women.
They were followed up through August 2014, with a 15-year
median follow-up end point. By their last follow-up, 73 women
(1.6%) in this group had developed primary CRC. Our study was
approved by the institutional review boards of each WHI par-
ticipating clinical center and the University of California, Los
Angeles.

IR genetic variants selection

IR genetic variants were selected on the basis of the publicly
available data resource on glycemic traits, the Meta-Analyses of
Glucose and Insulin-related traits Consortium (www.magi-
cinvestigators.org) (28–31). TheMAGIC analyzed fasting glucose
(FG) and fasting insulin (FI) levels as continuous variables. Two
other GWA data resources for an AA cohort were used: 1 (32)
found SNPs in a 500-kb linkage disequilibrium (LD) block as-
sociated with FG, and the other (33) detected functional SNPs
for glucose intolerance. From a total of 1,344 FG-SNPs and 313
FI-SNPs identified in those GWA studies, 689 FG-SNPs and 91
FI-SNPs are available in our AA SHARe genomic data set;
among those SNPs, 94 FG-SNPs (34 index in LD, 0.3) and 8 FI-
SNPs (4 index in LD , 0.3) were validated with a relevant
phenotype.

Genotyping and phenotyping

Genotyping data for AA women were extracted from the WHI
dbGaP SHARe for our study. Detailed information on the gen-
otyping has been reported (34,36). DNA samples were derived
from participant blood samples at baseline and genotyped via
Affymetrix 6.0 (Affymetrix, Inc., Santa Clara, CA) at the Fred
Hutchinson Cancer Research Center in Seattle, WA. Data were
normalized to Genome Reference Consortium Human Build 37,
imputed with the 1,000 genomes reference panels, and harmo-
nized via pairwise concordance among samples across WHI
GWA studies. We performed genomic data QC by filtering out
SNPs with a missing call rate of $2%, a Hardy-Weinberg equi-
librium of P, 1E–04, and R

2
, 0:6 imputation quality (37). We

further excluded individuals with unexpected duplicates, first-
degree and second-degree relatives, and outliers on the basis of
genetic principal components (PCs).
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Lifestyle factors and CRC outcome

We performed a literature review (2,4,6,7,27,38–42) on lifestyle
factors that are relevant to CRC in AA women and extracted
lifestyle variables from the SHARe data: age at enrollment; family
history of CRC (genetic inheritance), anthropometric measures
(body mass index and abdominal adiposity, including waist cir-
cumference and waist-to-hip ratio), physical activity, alcohol
intake (dietary alcohol per day and alcohol intake history),
smoking (years as a regular smoker and number of cigarettes per
day), and nutrition (dietary fiber, daily fruits and vegetables,
percentage calories from protein, percentage calories from satu-
rated and monounsaturated and polyunsaturated fatty acids
[PFAs], dietary calcium, vitamin K, and total sugars). Further-
more, we added to our data analysis the following: demographic
and socioeconomic variables (education, marital status, and
employment), comorbid conditions (depressive symptoms, lipid
metabolic profiles, cardiovascular disease ever, and hypertension
ever), and reproductive histories (ages at menarche and meno-
pause, oophorectomy and hysterectomy, duration of oral con-
traceptive use, number of pregnancies, duration of breast feeding,
and exogenous estrogen [E] use [unopposed and opposed (E plus
progestin)]). All the variables had been recorded at baseline from
participants via self-administered questionnaires (except height,
weight, and waist/hip circumferences, which were measured by
trained staff). The coordinating clinical centers monitored the
data collection process as part of data QC. With a total of 35

variables, we conducted preliminary univariate and stepwise
multiple regressions for CRC risk and checked multicollinearity
among variables.

Primary CRC diagnosis of the study participants was con-
firmed via a centralized review of medical records and pathology
and cytology reports by the WHI committee of physicians, who
followed the National Cancer Institute’s Surveillance, Epidemi-
ology, and End Results guidelines (43). The time between en-
rollment and CRC diagnosis, censoring, or study end point was
estimated, first in days, and then converted into years.

Statistical analysis

Linear and Cox proportional hazards regressions, respectively,
were used to estimate the associations of GWA IR-SNPs with
naturally log-transformed FG (mg/dL)/FI (mIU/mL) and with
CRC risk, both of which were adjusted for age and 10 genetic PCs.
The assumptions for each regression were met. A 2-tailed P ,
0.05 for validation tests with FG and FI was considered nominally
significant, and after the Bonferroni correction for multiple
comparisons, P , 7E-05 for FG and P , 5E-04 for FI were
considered statistically significant.

To test for the causal pathway between FG/FI and CRC risk,
we performed Mendelian randomization (MR) analysis using
GWA SNPs as genetic instruments. First, we checked the as-
sumptions to make a valid inference: (i) F statistics (44) of 8.0 for

Figure 1. Scatter plot for the effects of 38 individual FG- and FI-genetic instrumental variables on colorectal cancer risk. Each black dot reflects a genome-
wide FG/FI–raising genetic variant. The green and pink lines indicate IVWandWMestimates, respectively. The blue line indicates PWMestimates and 95%
CIs. (PWMHR5 9.24, 95%CI: 0.03–2.95E103;MR-Egger interceptP value5 0.701). CI, confidence interval; FG, fasting glucose; FI, fasting insulin; HR,
hazard ratio; IVW, inverse variance–weighted;MR,Mendelian randomization; PC, principal components; PWM, penalizedweightedmedian;WM,weighted
median. Note: All MR estimates were based on the phenotype association and cancer association with genetic instruments, each of whichwas adjusted for
age and 10 genetic PCs.
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FG and 10.2 for FI index-SNPs reflect enough strength (45); (ii)
for horizontal pleiotropy, pleiotropic SNPs associated with BMI
were identified (see Supplementary Table 1, http://links.lww.
com/CTG/A696) (46,47), and no SNPs overlapped with our
modeled SNPs; and (iii) for vertical directional pleiotropy, the
MR-Egger regression analysis (48) was performed, and no evi-
dence of pleiotropy was observed. Having confirmed that our
genetic instruments met theMR conditions, we assumed additive
effects of SNPs on phenotype and computed an inverse
variance–weighed (IVW) estimate and standard error to test for
the causal pathway between genetically determined FG/FI and
CRC risk as follows (49,50):

Here Xk is the observed mean change in the phenotype per
additional allele at genetic variant K (K 5 1…K), and sXk is the

associated standard error; Yk is the observed log odds change in
the BC outcome per allele at genetic variant K, and sYk is the
associated standard error.

In addition to the IVW estimate, we used weighted median
and penalized weighted median (PWM) estimates that allow up
to 50% of genetic variants’ invalidity. These alternative methods
can provide a more consistent estimate of the causal effect by
assigning a weight to the ordered estimates, establishing linearity
between neighboring estimates, and by down-weighting outlying
genetic variants with heterogeneous estimates (51,52). In addi-
tion, the PWM is believed to be a better estimate if there is di-
rectional pleiotropy. The results fromMR analysis were reported
as risk ratios (hazard ratios [HRs]) and 95% confidence intervals
(CIs) for the change inCRC risk per unit increase in naturally log-

Figure 2.The second stage of RSF analysis using 10 single-nucleotide polymorphisms and9 behavioral factors selected from the first stage of RSF analysis.
(a) Comparing rankings between minimal depth and VIMP. PFA, polyunsaturated fatty acid; RSF, random survival forest; SFA, saturated fatty acid; VIMP,
variable of importance. Note: The 4 behavioral variables within the gold ellipse and the 4 genetic markers within the blue ellipse were identified as the
topmost influential predictors. (b) Out-of-bag concordance index (c-index). (Improvement in c-indexwasobservedwhen the top8 variables [d] were added
to the model, whereas other variables [s] did not further improve the accuracy of prediction.)
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transformed FG/FI. As another measure of pleiotropy, the het-
erogeneity of the MR estimates across genetic instruments was
evaluated via Cochran Q test.

Next, we performed the Random Survival Forest (RSF) anal-
ysis with index and individual SNPs and lifestyle variables. RSF is
a nonparametric tree-based ensemble machine-learning method
that accounts for the nonlinear effects and high-order interac-
tions among variables (53); it has been shown to outperform
traditional prediction models, thus successfully yielding accurate
predictions (54–58). A tree from each bootstrapped sample was
generated to maximize risk differences across daughter nodes,
and this process was repeated numerous times (n5 5,000 trees in
this study) to create a forest of trees (54,59). By using the out-of-
bag (OOB) data, the prediction error (i.e., misclassification
probability) was estimated to calculate the OOB concordance
index (c-index 5 1 2 prediction error). The OOB c-index is a
quantitative measure of prediction performance, conceptually
similar to the area under the receiver operating characteristic
curve (59,60). The predictive power of each variable was de-
termined via 2 values: (i)minimal depth (MD), inwhich variables
with a small MD are highly predictive, and (ii) variable

importance (VIMP), calculated from the permutation of OOB
datasets, in which variables with a larger VIMP are more pre-
dictive (53,61).

We applied a multimodal 2-stage RSF approach. The first RSF
(see Supplementary Figure 1, http://links.lww.com/CTG/A695)
comprised separate analysis of SNPs and lifestyle variables, and
then only SNPs/lifestyles with significantly low MD and high
VIMP estimates were carried over to the second RSF. This
strategy excluded variables without sufficient effects on CRC risk,
giving more statistical power with the correct type I error in the
second stage. In the second RSF, we used a multimodal approach
to detect the most predictive genetic and lifestyle factors: (i)
comparison between theMD and VIMP estimates in the plot, (ii)
estimation of OOB c-index with the nested RSF model, and (iii)
computation of the incremental error rate of each variable within
the nested sequenced RSF models. With the topmost influential
variables identified, we eventually estimated the combined and
joint effects on CRC risk using multiple Cox regression adjusted
for covariates. A 2-tailed P value was corrected for multiple
comparisons via the Benjamini-Hochbergmethod, and a 5% false
discovery rate was statistically significant. Multiple R packages

Table 1. RSF second-stage analysis: predictive values of variables for colorectal cancer risk

Variablea Minimal depthb VIMP C-index Incremental errorc Drop errord

Years as a regular smokere 2.9426 0.0202 0.5026 0.4974 0.0026

Age at enrollmente 3.4192 0.0072 0.5635 0.4366 0.0609

Age at menopausee 3.5056 0.0065 0.6325 0.3675 0.0691

Percentage calories from PFA/daye 3.5902 0.0047 0.5993 0.4007 20.0332

Duration of oral contraceptive use 3.6041 0.0014 0.6217 0.3783 0.0224

Dietary total sugars/day (g) 3.8086 0.0011 0.6434 0.3567 0.0217

GCK rs730497f 4.0185 0.0034 0.6513 0.3487 0.0080

Percentage calories from protein/day 4.0939 0.0025 0.6595 0.3405 0.0082

PCSK1 rs144489757f 4.1934 0.0038 0.6622 0.3378 0.0027

MTNR1B rs10466351f 4.2558 0.0040 0.6446 0.3554 20.0176

PCSK1 rs9285019f 4.2797 0.0072 0.6671 0.3329 0.0225

Waist-to-hip ratio 4.2984 0.0019 0.6626 0.3374 20.0045

PCSK1 rs193069188 4.4524 0.0046 0.6666 0.3334 0.0040

Percentage calories from SFA/day 4.4530 0.0002 0.6643 0.3357 20.0023

GCK rs2908290 4.5190 0.0009 0.6666 0.3334 0.0023

FADS2 rs1535 4.6099 0.0045 0.6747 0.3253 0.0082

PCSK1 rs13169290 4.7623 20.0003 0.6576 0.3424 20.0172

GCKR rs1260326 4.9678 0.0028 0.6578 0.3422 0.0002

GCKR rs6753534 5.5591 20.0011 0.6603 0.3397 0.0025

C-index, concordance index; PFA, polyunsaturated fatty acid; RSF, random survival forest; SFA, saturated fatty acid; VIMP, variable of importance.
aVariables ordered by minimal depth.
bMinimal depth is the predictive value of the variable estimated from the nested RSF models with a lower value being likely to have a greater impact on prediction.
cThe incremental error rate was calculated in the nested sequence of models starting with the top variable, followed by the model with the top 2 variables, then the model
with the top 3 variables, and so on. For example, the third error rate was computed from the third nested model, including the first, second, and third variables.
dThe drop error rate of the variable was calculated by the difference between the error rates of a previous and the corresponding variable from the nested models. For
example, the drop error rate of the second variable was estimated by the difference between the error rates from the first and second nested models. The error rate for the
null model is set at 0.5; thus, the drop error rate for the first variable was obtained by subtracting the error rate (0.4974) from 0.5.
eVariables were selected as the most predictive behavioral markers on the basis of multimodal predictive values.
fVariables were selected as the most predictive genetic markers on the basis of multimodal predictive values.
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were used (R v4.0.4, survival,metaphor, forest plot, survival ROC,
random Forest SRC, ggRandomForests, ggplot2, ggthemes, and
gamlss).

Ethical approval and consent to participate: Our study was
approved by the institutional review boards of each WHI par-
ticipating clinical center and the University of California, Los
Angeles.

RESULTS

MR analysis

Among the 94 FG-SNPs (see Supplementary Table 2A, http://
links.lww.com/CTG/A697) and 8 FI-SNPs (see Supplementary
Table 2B, http://links.lww.com/CTG/A697) that were validated
at nominal significance and after multiple comparison correc-
tions, 34 index FG-SNPs and 4 index FI-SNPs in LD, 0.3 were
carried over to our MR analysis (see Supplementary Table 3A,
http://links.lww.com/CTG/A698). In the pooled analysis of 38
FG/FI SNPs, genetically elevated IR was associated with 9 times
increased risk of CRC, but that finding lacked statistical power
(Figure 1; see Supplementary Table 4A, http://links.lww.com/
CTG/A699 [PWM HR 5 9.24, 95% confidence interval:
0.03–2.95E103]). The subset analysis of 3 index SNPs (2 FG and
1 FI) at significance after correction for multiple comparisons
revealed a greater effect of genetically elevated IR on CRC risk
but, again, not reaching statistical significance (see Supple-
mentary Table 4A, http://links.lww.com/CTG/A699). The
phenotype-specific analyses for genetically determined FG and
FI (see Supplementary Tables 4B and 4C, http://links.lww.com/
CTG/A699) showed similar patterns. For example, a 1-unit
increase in the log-transformed genetically elevated FI was as-
sociated with 7 times higher risk of CRC, but without sufficient
statistical power.

Multimodal 2-stage RSF analysis

We analyzed all phenotype-specific individual SNPs in addition
to index SNPs in the first RSF prediction model to address the
possibility that a combined analysis of only index SNPsmaymask
individual SNP variation in the risk of CRC development. By
using 2 prediction estimates, MD and VIMP, we generated plots
for lifestyle factors and SNPs separately to compare the 2 mea-
sures in the plot (see Supplementary Figure 1, http://links.lww.
com/CTG/A695) and detected the most influential lifestyle and
genetic factors that were in agreement with high ranks: 9 of 35
lifestyle factors, 8 of 34 FG index SNPs, 6 (4 of which overlap with
the selected FG indexes) of 94 FG individual SNPs, and 1 index
(overlappingwith the selected FG indexes) of 4 FI-index and 8 FI-
individual SNPs each.

Next, we performed the second stage of RSFwith amultimodal
approach. Using the selected 9 lifestyle factors and 10 FG/FI
SNPs, we first plotted the 2 estimates, MD and VIMP (Figure 2a).
Both estimates with high ranks detected 4 lifestyle factors (years
as a regular smoker, age at enrollment, age at menopause, and
percentage daily calories from PFA) and 4 FG-specific SNPs
(GCK rs730497, PCSK1 rs144489757,MTNR1B rs10466351, and
PCSK1 rs9285019) as the most predictive variables for CRC de-
velopment. Of note, 2 of the selected SNPs (GCK rs730497 and
MTNR1B rs10466351) are indexes. Next, we computed the c-
index (i.e., area under the receiver operating characteristic) from
the nested RSFmodels and plotted with variables ordered byMD
rank (Figure 2b), revealing the same set of the topmost 4 lifestyle
and 4 genetic variables that showed distinction to improve pre-
diction ability compared with the rest of the variables. This im-
plies the usefulness of the c-index in complementary analysis to
determine variables’ prediction ability. Finally, we estimated a
drop error in each variable ranked by MD in the nested sequence
of RSF models (Table 1), detecting once again the same top 8

Figure3.Cumulative incidence rates of colorectal cancer for the8 topmost predictive variables: 4 single-nucleotidepolymorphismsand4behavioral factors
selected on the basis of a random survival forest analysis. AA, African American; PFA, polyunsaturated fatty acid. Note: Dashed red lines indicate 95%
confidence intervals.
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variables as the most influential lifestyle and genetic factors that
contribute to reducing the prediction error rate.

The selected topmost IRSNPs and lifestyles: combined and joint

effects on CRC risk

With the topmost influential IR-SNPs and lifestyle factors, we
computed the predictive cumulative CRC incidence rate,
implementing the RSF machine-learning process that accounts
for the confounding variables and potential nonlinearity effect
of each variable on CRC outcomes (Figure 3). The risk geno-
types of each SNP were accordingly categorized for further
analysis (Figure 3a–d): GCK rs730497 AG1GG; MTNR1B
rs10466351 TT; PCSK1 rs144489757GC 1 CC; and PCSK1
rs9285019 TC1CC. In addition, corresponding to the cutoff
values in Figure 3e–h, risk lifestyles were defined as$20 years of
regular smoking; age older than56 years at enrollment; age older
than 49 years at menopause; and $7.5% of daily calories from
PFA.Having categorized those genetic and lifestyle variables, we
first computed their individual risk of CRC (by adjusting or not
adjusting for each other), withHRs of SNPs ranging from1.64 to
1.81 (see Supplementary Tables 5A and 5B, http://links.lww.
com/CTG/A700) andHRs of lifestyles ranging from 1.59 to 2.92
(see Supplementary Tables 5C and 5D, http://links.lww.com/
CTG/A700), confirming their single effects on CRC risk.

However, when those genetic and lifestyle factors were com-
bined and tested for their joint effects with smoking, much
stronger risks for CRC development were observed (Tables 2 and
3). First, we combined the selected 4 SNPs and evaluated for the
risk of CRC (Table 2), revealing that the presence of $3 risk
genotypes was associated with 2 times greater risk of CRC than
null or 1 risk genotype. Next, to test for the combined genetic
effects on CRC risk jointly with smoking, we categorized smokers
as never smokers and shorter-term (,20 years) and longer-term
($20 years) regular smokers and compared never smokers with

(i) shorter-term regular smokers and (ii) longer-term regular
smokers. Overall, the joint effect of SNPs with smoking was ap-
parent in both comparisons (Table 2). In detail, compared with
the never smokers who carried null or 1 risk genotype, the
shorter-term regular smokers who carried$3 risk genotypes had
an almost 7 times higher risk of CRC. The joint effect of smoking
was much greater when never smokers were compared with
longer-term regular smokers: an almost 10 times higher CRC risk
was detected in the longer-term smokers with$3 risk genotypes
than in the never smokers with null or 1 risk genotype.

Similar patternswere observedwhenwe examined the selected
4 lifestyles for their combined and joint effects with smoking
(Table 3). For example, women who had 4 risk lifestyles had a 3.5
times higher risk of CRC than those who had #2 risk lifestyles.
Furthermore, when women were stratified by smoking status, no
joint effect of smoking was detected in the comparison between
never smokers and shorter-term regular smokers. However, the
joint effect of smoking was distinct between never smokers and
longer-term regular smokers. That is, compared with the never
smokers who had ,2 risk lifestyles, the longer-term regular
smokers who had 3 risk lifestyles were associated with 6.6 times
higher risk of CRC, suggesting an apparent effect of prolonged
exposure to cigarette smoking on lifestyles, which led to increased
CRC risk.

Furthermore, we combined the IR SNPs and lifestyles and
tested for CRC risk (Table 4), detecting a 5 times higher risk of
CRC in women with combined SNPs and lifestyles than in those
without both factors; this risk is substantially higher than those
for the separate combinations of SNPs and lifestyles (e.g., 2 times
and 3 times higher risk, respectively). In addition, a joint effect of
the combined SNPs and lifestyles with smoking was detected. In
detail, compared with the never smokers who had null genotypes
and lifestyles, shorter-term regular smokers who had both risk
genotypes and lifestyles had a 7 times greater CRC risk.

Table 2. Results of combined and joint tests for smoking with risk genotypes predicting colorectal cancer risk

SNPa Total Never smokers Regular smoker for <20 yr

No. of risk HRb (95% CI) P n HRb (95% CI) P N HRb (95% CI) P

0 Reference 810 Reference 733 2.87 (0.731–11.287) 0.1307

1 2.18 (1.317–3.597) 0.0024c 233 1.14 (0.119–10.992) 0.9086 221 5.78 (1.275–26.164) 0.0229

2 2.08 (1.007–4.294) 0.0479 90 3.32 (0.342–32.159) 0.3010 76 7.49 (1.238–45.370) 0.0284

Ptrend 0.0500 Ptrend 0.1000

Never smokers Regular smoker for ‡20 yr

n HRb (95% CI) P N HRb (95% CI) P

810 Reference 1,799 5.01 (1.515–16.569) 0.0083c

233 1.14 (0.119–10.981) 0.9084 532 11.70 (3.460–39.531) 0.0001c

90 2.90 (0.301–27.873) 0.3570 198 9.55 (2.376–38.374) 0.0015c

Ptrend 3.00E-04

Numbers in bold face are statistically significant.
CI, confidence interval; FDR, false discovery rate; HR, hazard ratio; SNP, single-nucleotide polymorphism.
aThe number of risk genotypes (GCK rs730497 AG1GG;MTNR1B rs10466351 TT;PCSK1 rs144489757GC1CC; andPCSK1 rs9285019 TC1CC)was defined as follows:
0 (none or 1 risk allele) vs 1 (2 risk alleles) vs 2 (3 or more risk alleles).
bMultivariate regression for risk genotypes was adjusted by waist-to-hip ratio, duration of oral contraceptive use, dietary total sugars/day (g), percentage calories from
protein/day, and percentage calories from saturated fatty acid/day.
cP value with FDR,0.05 was presented after multiple comparison corrections via the Benjamini-Hochberg method.
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Furthermore, the difference in risk of CRC owing to smoking
effect was greater in the comparison of never smokers with
longer-term regular smokers (8 times higher risk) than in the
comparison of never smokers with shorter-term regular smokers
(7 times higher risk). Notably, across the joint tests for shorter-
term/longer-term smoking effect, the CRC risk magnitude from
the combined SNPs and lifestyles was not greater than the sum of
both risks from the separate combinations, suggesting that ge-
netic and lifestyle factors, when combined, may override smok-
ing’s modification on CRC risk to some degree.

DISCUSSION
Our genetic G 3 E study for AA postmenopausal women
evaluated an extensive set of GWA-based IR SNPs for their
potential causal pathways of CRC development in an MR
framework and further, by incorporating lifestyle factors, tested
for interactions in the CRC risk prediction model. Having
considered the variations of individual SNPs in CRC risk, we
detected 4 FG-specific SNPs (including 2 indexes) and 4 lifestyle
factors as the most predictive variables for CRC risk. The joint
analysis of those risk genotypes and lifestyles with smoking
revealed a gene–lifestyle dose-dependent relationship with a
synergistic increase of CRC risk, indicating that CRC risk pro-
files that combined genetic and behavioral factors substantially
improved the CRC risk prediction; the results, thus, lead to the
potential promotion of genetically informed interventions for
cancer prevention/therapeutic effort.

All 4 selected FG SNPs are located in the intronic and inter-
genic regions of genes that play well-known roles in regulating
glucose metabolism and insulin production/sensitivity, suggest-
ing that their genetic variations may affect glucose homeostasis.
In particular, the GCK gene encodes a member of the hexokinase
family that phosphorylates glucose to produce glucose-6-
phosphate (P), the first step in glucose metabolism pathways

(62). GCK acts as a glucose sensor in the pancreatic beta cells by
playing a crucial role in modulating insulin secretion and in the
liver by facilitating glucose uptake and conversion to glycogen
(62,63). Thus, this gene’s mutation has been associated with
multiple types of diabetes in both Whites and AAs (64–66). In
addition, GCK showed potential in tumor development through
the glycolysis process from glucose-6P to fructose-6P, guided by
phosphoglucose isomerase, which promotes progression in the
tumor cells (67,68). However, few population-level genomic
studies (69) have been so far conducted for the association of this
gene variation with cancer. Our study is the first, to our knowl-
edge, to reveal the GCK variant associated with CRC risk, par-
ticularly among AA women.

The PCSK1 gene is one of the genes linked to early-onset
obesity, encoding prohormone convertase 1/3, which is in-
volved in the biosynthetic process of prohormones in endocrine
tissues, thus regulating food ingestion and glucose homeostasis
(70,71). In detail, the convertase one-thirdmediates the cleavage
of proinsulin in the process of insulin biosynthesis; thus, the
loss-of-function mutation of the gene leads to increased circu-
lating proinsulin and defects in insulin production, resulting in
impaired glucose tolerance, diabetes, and obesity (70,72–74). In
relation to carcinogenesis and cancer progress, the mutation of
this gene is associatedwith livermetastasis but is shown partially
in the primary CRC cells (75), indicating the selective process
involving the convertases during metastasis to the liver. Our
finding of the 2 genetic variants in the PCSK1 associated with
primary CRC is the first report and warrants further replication
studies with larger independent data sets.

In addition, MTNR1B encodes melatonin receptor 1B, which
plays a well-established role in insulin production and glucose
metabolism in pancreatic islets (76,77). Its genetic variation may
disturb circadian rhythm, resulting in glucose intolerance (78). In
addition, melatonin receptors have been reported to be involved

Table 3. Results of combined and joint tests for smoking with risk behaviors predicting colorectal cancer risk

Behaviora Total Never smokers Regular smoker for <20 yr

No. of risk HRb (95% CI) P n HRb (95% CI) P n HRb (95% CI) P

0 Reference 563 Reference 531 2.84 (0.721–11.149) 0.1356

1 2.82 (1.691–4.703) 0.0001c 427 0.48 (0.050–4.620) 0.5239 365 3.14 (0.726–13.541) 0.1256

2 3.51 (1.767–6.979) 0.0003c 143 1.76 (0.178–17.450) 0.6281 134 1.90 (0.192–18.888) 0.5828

Ptrend 0.0010 Ptrend 0.2000

Never smokers Regular smoker for $20 yrs

n HRb (95% CI) P n HRb (95% CI) P

563 Reference 1,072 2.50 (0.701–8.913) 0.1580

427 0.46 (0.048–4.410) 0.4995 1,059 6.80 (2.052–22.530) 0.0017c

143 1.30 (0.134–12.489) 0.8225 398 6.61 (1.843–23.740) 0.0038c

P trend 2.00E-04

Numbers in bold face are statistically significant.
CI, confidence interval; FDR, false discovery rate; HR, hazard ratio.
aThe number of behavioral factors (years as a regular smoker,20 yr vs$20 yr [in overall analysis only]; age at enrollment#56 vs.56 yr; age atmenopause#49 vs.49 yr;
and percent calories from polyunsaturated fatty acid/day ,7.5% vs$7.5%) was defined as follows: 0 (none, 1, or 2 risk behaviors) vs 1 (3 risk behaviors) vs 2 (4 risk
behaviors).
bMultivariate regression for risk genotypes was adjusted by waist-to-hip ratio, duration of oral contraceptive use, dietary total sugars/day (g), percentage calories from
protein/day, and percentage calories from saturated fatty acid/day.
cP value with FDR ,0.05 was presented after multiple comparison corrections via the Benjamini-Hochberg method.
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in the mechanism of melatonin-induced inhibitory proliferation
in cancer cells of the breast, prostate, and colorectum (79,80). In
particular, mRNA expression of those melatonin receptors de-
creased in colorectal tumor cells (80), suggesting its proactive
effect on cancer development. Our genomic study, consistent
with a previous genomic study (81), detected the decreased risk of
CRC, particularly in those with a CCminor allele (vs TT) despite
insufficient analytic power. All the aforementioned particular
genotypes of SNPs detected in our study showed in combination a
synergistic effect on CRC risk, requiring further validation and
functional studies.

In addition to aging (7,42,82), older age at menopause is a
critical risk factor of CRC development in postmenopausal
women (83–85), indicating that the greater exposure to en-
dogenous estrogenmay increase CRC risk. Our analysis of these
lifestyle factors combined showed greater risk of CRC than that
from analysis of the individual factors. Furthermore, the joint
effect of smoking with the genetic and those lifestyle factors was
apparent in our study by presenting synergistically increased
risk of CRC. Cigarette smoking can account for more than 20%
of CRC risk with a dose-response relationship to the number of
years of smoking (82). Carcinogens contained in tobacco reach
the colorectal mucosa through the digestive system and
bloodstream, causing tumorigenesis in the colorectum (86).
Among AAs, compared with other races/ethnicities, higher
total nicotine equivalents have been found after controlling for
the number of cigarettes smoked per day (87). But, little study
has been done on AAs in association with CRC. Our results
from AA women showed that longer-term ($20 years) regular
smokers with the combination of genetic and lifestyle factors
were associated with an 8 times higher risk of CRC than never

smokers without both risk factors, although our induction pe-
riod (median, 15 years) was somewhat shorter than the typical
period (88). An analysis of CRC screening among AAs revealed
lower screening prevalence in active smokers than in never
smokers (89); thus, the importance of screening in those high-
risk (i.e., active/longer-term regular smokers) subjects cannot
be overemphasized. Furthermore, our finding suggests that
smoking and glucose metabolism are interrelated with partic-
ular lifestyles in promoting CRC carcinogenesis, warranting
future studies for biologic mechanisms of IR phenotypes/
genotypes in smokers with different levels of lifestyles for CRC
initiation and/or progression.

Our data on smoking were self-reported, thus subject to a
possible misclassification bias, but a previous validation study
(90) confirmed the high reliability of self-reported measures for
active smoking assessment. In addition, our genetic instruments
had relatively weak power in the causal inference testing, leading
to variations of individual geneticmarkers on CRC risk. A 2-stage
RSF may overfit the model with multiple tasks, requiring a rep-
lication study with an independent data set. Finally, we examined
AA postmenopausal women, so the generalizability of our find-
ings to other populations is limited.

Our study indicates that IR SNPs in combination with aging,
prolonged lifetime exposure to endogenous estrogen, and a
higher-fat diet, jointly with smoking, synergistically increased the
risk of CRC, more substantially in women who had longer-term
exposure to cigarette smoking. Our findings may improve CRC
prediction ability among the medically underrepresented AA
women and highlight the development of genetically focused
preventive interventions (e.g., smoking cessation; encouraging
CRC screening for longer-term smokers) for those women who

Table 4. Results of combined and joint tests for smoking with risk genotypes and behaviors predicting colorectal cancer risk

SNPs combined with behaviorsa Total Never smokers Regular smoker for <20 yr

No. of riskb HRc (95% CI) P n HRc (95% CI) P n HRc (95% CI) P

0 Reference 1,043 Reference 954 3.41 (1.069–10.878) 0.0382d

1 1.79 (1.034–3.088) 0.0375d 90 3.21 (0.355–28.935) 0.2992 76 7.25 (1.313–40.055) 0.0231d

2 5.42 (1.316–22.347) 0.0193d Ptrend 0.0900

Ptrend 0.0800

Never smokers Regular smoker for ‡20 yr

n HRc (95% CI) P n HRc (95% CI) P

1,043 Reference 1964 6.09 (2.161–17.166) 0.0006d

90 2.82 (0.315–25.214) 0.3545 565 8.41 (2.788–25.379) 0.0002d

P trend 0.0020

Numbers in bold face are statistically significant.
CI, confidence interval; FDR, false discovery rate; HR, hazard ratio.
aThe risk genotypes are GCK rs730497 AG1GG; MTNR1B rs10466351 TT; PCSK1 rs144489757GC 1 CC; and PCSK1 rs9285019 TC1CC. The behavioral factors are
years as a regular smoker ,20 vs $20 yr [in overall analysis only]; age at enrollment #56 vs .56 yr; age at menopause #49 vs .49 yr; and percentage calories from
polyunsaturated fatty acid/day ,7.5% vs$7.5%.
bThe combined number of risk genotypes and risk behaviors was based on risk genotypes defined as 0 (none, 1, or 2 risk alleles) and 1 (3 ormore risk alleles) and based on
risk behaviors defined as 0 (none, 1, 2, or 3 risk behaviors) and 1 (4 risk behaviors). The ultimate number of risk genotypes combined with risk behaviors was defined as
0 (none of risk genotypes and risk behaviors), 1 (either risk genotypes or risk behaviors), and 2 (both risk genotypes and risk behaviors) in total analysis; in smoker-specific
analyses, 0 (none) and 1 (either risk genotypes or risk behaviors or both).
cMultivariate regression for risk genotypes was adjusted by waist-to-hip ratio, duration of oral contraceptive use, dietary total sugars/day (g), percentage calories from
protein/day, and percentage calories from saturated fatty acid/day.
dP value with FDR ,0.05 was presented after multiple comparison corrections via the Benjamini-Hochberg method.
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are at high risk with particular risk genotypes and behavioral
patterns.
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Study Highlights

WHAT IS KNOWN

3 Colorectal cancer (CRC) is the leading cause of cancer
diagnosis and death in women in the United States and other
westernized countries. African American (AA) women have
the highest CRC incidence and mortality rates among all
races/ethnic female groups. IR or glucose intolerance has
been believed to be the major biologic mechanism of
colorectal carcinogenesis owing to obesity. AA women are
underrepresented in genome-wide studies for systemic
regulation of IR and the association with CRC risk.

WHAT IS NEW HERE

3 We established a prediction model on the basis of
gene–environment interactions to generate risk profiles for
CRC with the most influential genetic and lifestyle factors. We
detected fasting glucose–specific single-nucleotide
polymorphismss and lifestyles, including smoking, aging,
prolonged lifetime exposure to endogenous estrogen, and
high fat intake, as the most predictive markers for CRC risk
among AAwomen. Our joint test for those risk genotypes and
lifestyles with smoking revealed the synergistically increased
CRC risk, more substantially in women with longer-term
exposure to cigarette smoking.
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