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Abstract: A large number of diverse mechanisms that lead to cytoprotection have been described to
date. Perhaps, not surprisingly, the role of mitochondria in these phenomena is notable. In addition
to being metabolic centers, due to their role in cell catabolism, ATP synthesis, and biosynthesis these
organelles are triggers and/or end-effectors of a large number of signaling pathways. Their role in
the regulation of the intrinsic apoptotic pathway, calcium homeostasis, and reactive oxygen species
signaling is well documented. In this review, we aim to characterize the prospects of influencing
cytoprotective mitochondrial signaling routes by natural substances of plant origin, namely, flavonoids
(e.g., flavanones, flavones, flavonols, flavan-3-ols, anthocyanidins, and isoflavones). Flavonoids
are a family of widely distributed plant secondary metabolites known for their beneficial effects on
human health and are widely applied in traditional medicine. Their pharmacological characteristics
include antioxidative, anticarcinogenic, anti-inflammatory, antibacterial, and antidiabetic properties.
Here, we focus on presenting mitochondria-mediated cytoprotection against various insults. Thus,
the role of flavonoids as antioxidants and modulators of antioxidant cellular response, apoptosis,
mitochondrial biogenesis, autophagy, and fission and fusion is reported. Finally, an emerging
field of flavonoid-mediated changes in the activity of mitochondrial ion channels and their role in
cytoprotection is outlined.
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1. Introduction

Different forms of cell death (i.e., apoptosis, necroptosis, ferroptosis, and necrosis) have been
implicated in the pathogenesis of many human diseases. Myocardial infarction, myocardial infarction
with reperfusion, stroke and Alzheimer’s disease are perhaps the most important examples in terms of
mortality, morbidity, and cost. Ischemic heart disease alone accounts for 20% of deaths in the European
Union [1]. Importantly, protecting cardiomyocytes from death resulting from acute myocardial
infarction is vital for improving survival. It has been demonstrated that infarct size remains a major
determinant of subsequent heart failure and mortality [2,3]. Additionally, in the case of hemorrhagic
and ischemic stroke, extensive neuronal death is known to follow the event [4]. The death of neuronal
cells is also implicated in the neurogenerative diseases Alzheimer’s and Parkinson’s disease, both
of which have shown increasing prevalence in aging populations [5,6]. Cell death restriction is also
vital for the moderation of severe complications that accompany many other conditions, ranging from
oxidative damage, obesity, inflammation, etc. to toxicity of chemotherapeutic agents [7–10].

More than 9000 flavonoids are known to be present in plants and several hundred of them
are ubiquitous in the human diet. The reported total consumption of flavonoids by adults ranges
from 209 to 1017 mg/d in European, U.S., and Australian cohort studies [11]. Moreover, it has been
shown that the level of dietary flavonoid consumption correlates with the reduced risk of many
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noncommunicable diseases in epidemiological, preclinical, and clinical studies [12]. The effect has been
very recently described by Bondonno et al. in a Danish Diet, Cancer, and Health cohort study involving
56,048 participants and 23 years of follow-up [13]. Namely, the moderate intake of flavonoids has been
shown to be inversely associated with cancer-related, cardiovascular disease-related, and all-cause
mortality, especially for individuals who smoke or consume large amounts of alcohol. Extensive studies
have shown that flavonoids have antioxidant [14,15], metal chelation [16,17], signal transduction, gene
expression, and enzyme function modulating properties [18]. The potential therapeutic application
of flavonoids has been studied in the context of the prevention and treatment of cardiovascular
disease, diabetes, cancer, and cognitive diseases. Indeed, it has been demonstrated that flavonoids, i.e.,
suppress the expression of pro-inflammatory mediators (NF-κβ cascade), have vasodilator activity,
improve vascular endothelial function, protect cells against insulin resistance, regulate proliferation,
and suppress neuroinflammation by reducing cytokine release [19–26]. As shown in many studies, the
consumption of flavonoid-rich foods significantly decreases the possibility of cardiovascular disease
development [11,27–29]. A recent meta-analysis demonstrated that dietary intake of anthocyanins
reduced the risk of coronary heart disease and cardiovascular disease mortality [30]. Other studies have
shown a significant reduction in systolic and diastolic blood pressure by, i.e., cocoa flavanols [31,32].
The improvement of endothelial function and thus, the prevention of vasoconstriction have also
been demonstrated [12]. Additionally, the incidence of stroke was reduced with increased dietary
flavonol intake [33]. Data on neurodegenerative disorders are also encouraging [34,35]. The results by
Shishtar et al. suggest that higher long-term consumption of flavonoids in the diet lowers the risk of
Alzheimer’s disease development in adults [34]. Parkinson’s disease progression in men is also less
likely with higher dietary flavonoid consumption [36]. Recently, anthocyanins and flavan-3-ols have
been shown to reduce the risk of type II diabetes mellitus [37]. In addition, interest in the interaction
of flavonoids with gut microbiota is increasing [38]. The influence on gut microbiome constituents
and their function has been described. This effect leads to the modulation of endotoxin production,
primary to secondary bile acid conversion, gut immune homeostasis, and nutrient absorption and
metabolism [39].

The role of mitochondria in the sustenance of cellular functions is clear, as these organelles are
at the center of cellular metabolism and signaling pathways. In this review, we intend to describe
in detail the interaction of flavonoids with mitochondrial pathways. Our aim is to concentrate on
the modulation of mitochondrial function by flavonoids, which leads to cytoprotection and thus the
possible application of these chemicals as pharmacological agents.

2. Flavonoids

Flavonoids represent a range of polyphenolic plant secondary metabolites. They share a common
phenylbenzopyran structure with two benzene rings linked by a heterocyclic pyran ring (Figure 1A) [40].
Classes of flavonoids are defined by the level of oxidation and saturation of the C ring. The major
classes are flavanones, flavones, flavonols, flavan-3-ols, anthocyanidins, and isoflavones. Within the
classes, the compounds differ in the pattern of substitutions of A and B rings (Figure 1B). Flavonoids
are widely distributed among plants and are crucial for various aspects of plant interactions with
the environment. They attract pollinating insects [41], protect plants against UV, act as antimicrobial
agents, and deter herbivores [42–44]. Due to the numerous reports suggesting the beneficial effects of
flavonoids on human health, there has been continuously growing interest in their nutritional role.
The most common dietary sources of flavonoids for humans are berries, grapes, teas, cocoa-based
products, apples, onions, parsley, citrus fruits, and soybeans (Table 1) [45–49]. After being consumed,
flavonoids undergo extensive transformations, leading to their absorption, distribution, metabolism,
and finally elimination [50]. In the epithelium and in the lumen of the small intestine, flavonoids
in glycosidic forms are hydrolyzed. The aglycone forms are then transported to the liver. In the
liver, they are oxidized or demethylated by phase I drug-metabolizing enzymes. Further rapid
glucuronidation, sulfation, or methylation by phase II drug-conjugating enzymes takes place in the
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liver or intestine. However, a large proportion (up to 90%) of dietary flavonoids are not absorbed
in the small intestine. These compounds have been found to be metabolized in the large intestine
by microbiota into absorbable aglycone forms or other biologically active small metabolites, e.g.,
ring-fission products [51].
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Delphinidin Blackcurrants, blueberries, grapes 
Pelargonidin Strawberries, radishes 

Isoflavones 
Genistein Soy, red clover, alfalfa 
Daidzein Soy, nuts 
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Table 1. Flavonoid classes and their representative dietary sources [47–49].

Flavonoid Class Selected Compounds Examples of Dietary Sources

Flavanones
Hesperetin Oranges, tangelo, lemons, limes
Naringenin Grapefruit, pomelo, kumquats, oregano
Eriodictyol Oregano, peppermint, oranges, lemons

Flavones

Apigenin Parsley, celery, kumquats
Baicalein Welsh onion, Chinese skullcap
Luteolin Peppers, radicchio, oregano, celery seed

Tangeretin Tangerines, sweet oranges

Flavonols

Fisetin Strawberry, apple, persimmon, grape, onion
Kaempferol Capers, saffron, arugula, chard, chives
Myricetin Cranberries, goji berry
Quercetin Capers, elderberry, chokeberry

Flavan-3-ols
Catechin Cocoa, green tea, blueberries, blackberries

Epicatechin Cocoa, green tea, grapes, red wine
Epigallocatechin Green tea, apples, plums, nuts

Anthocyanidins
Cyanidin Chokeberries, elderberries, blackberries, red cabbage

Delphinidin Blackcurrants, blueberries, grapes
Pelargonidin Strawberries, radishes

Isoflavones
Genistein Soy, red clover, alfalfa
Daidzein Soy, nuts
Glycitein Soy

3. Mitochondrial Pathways

Mitochondria are complex and multifunctional organelles engaged in almost all cellular
processes [52,53]. They are well known for being a cellular “powerhouse” due to their role in
the catabolism of carbon-rich fuel molecules (glucose, lipids, and glutamine) and in ATP synthesis via
oxidative phosphorylation (OXPHOS). ATP synthase, located in the inner mitochondrial membrane,
uses a proton electrochemical gradient produced by electron transport chain (ETC) complexes to
drive ATP synthesis. The reduction of necessary electron carriers (NAD+ and FAD) takes place in the
mitochondrial matrix via the tricarboxylic acid (TCA) cycle (Figure 2A). Other equally fundamental
metabolic processes (amino acid catabolism, fatty acid oxidation, the urea cycle, elements of the
biosynthetic pathways leading to fatty acids, cholesterol, nucleotides, amino acids, glucose, and heme)
also occur in mitochondria (Figure 2B). Moreover, these organelles are an essential part of cellular
signaling pathways, both as end effectors responsive to changes in energy demand and as initiators
and transducers [54,55] (Figure 3). Mitochondria play a central role in calcium homeostasis [56],
influencing, among many other processes, the release of neurotransmitters and hormones [57,58],
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tissue regeneration [59], and interferon-β signaling [60]. As a main source of cellular reactive
oxygen species (ROS), mitochondria are involved in ROS signaling [61–63]. Alterations in the level of
mitochondria-produced ROS have been found to modify, e.g., immune system function [64], angiotensin
II signaling [65], insulin secretion [66], and various stress responses [67,68]. Important elements of
cellular ROS scavenging systems are also located in mitochondria. These include superoxide dismutase
(SOD2), glutathione peroxidases (GPX 1 and GPX4), peroxiredoxins (PRX3, PRX5), thioredoxin 2,
and thioredoxin reductase 2 (TRR2) [69]. Mitochondria are also part of multiple pathways that
lead to cell death. The intrinsic apoptotic pathway is initiated in response to a large number of
stimuli in all multicellular organisms by mitochondria-derived factors [70]. Cytochrome c, the second
mitochondria-derived activator of caspase (SMAC/DIABLO) and OMI/high-temperature requirement
protein A2 (HTRA2) promote procaspase activation. The release of cytochrome c, SMAC/DIABLO and
HTRA2 from mitochondria requires mitochondrial outer membrane permeabilization (MOMP). MOMP
is tightly regulated by pro- and anti-apoptotic BCL-2 family proteins (BAX, BAK, BIM, BID, PUMA,
BAD, NOXA, etc. and BCL-2, BCL-xL, BCL-w, respectively) [71,72]. Mitochondria also contribute to the
extrinsic apoptotic pathway by amplifying the death signal, e.g., by BID cleavage by Caspase-8 leading
to MOMP and the release of mitochondrial factors [72,73]. Regulated necrosis [74], ferroptosis [75]
and parthanatos [76] are additional cell death types in which mitochondria play an important role.
Moreover, a crucial event in necrosis, i.e., the Ca2+-induced opening of the mitochondrial permeability
transition pore (MPTP), is also mediated by mitochondria [77]. This event leads to the rapid dissipation
of mitochondrial inner membrane potential (m∆Ψ) and ATP depletion.

Efficient and regulated transport across the outer and inner mitochondrial membranes (OMM
and IMM, respectively) is required for mitochondrial function. OMM is equipped with a number of
channel-forming proteins that show quite broad substrate specificity. The transport of proteins, small
hydrophilic ions and metabolites is mediated by the translocase of the outer membrane (TOM) complex,
the sorting and assembly machinery (SAM) complex, Mdm10, Mim and the voltage-dependent anion
channel (VDAC) [78]. The IMM, which maintains the bioenergetic functions of mitochondria must
be impermeable to protons. However, it contains proteins responsible for the transport of other
cations (K+, Na+, Mg+, and Ca2+) and anions (nucleotide phosphates, di- and tricarboxylates, Cl−, and
PO4

−3). The transport of metabolites and ions across the IMM is tightly regulated and mediated by
numerous specific metabolite carriers, translocases, and ion channels [79,80]. Over the last 30 years,
the existence of ion channels in the IMM has attracted growing appreciation and interest [81–85].
A large variety of cation- and anion-selective channels have been described. For example, potassium
channels similar to all types of K+ channels previously discovered in the plasma membrane (inwardly
rectifying, two P-domain, voltage-gated, and calcium- and sodium-regulated potassium channels)
have been found in the IMM [81,86]. The inner membrane anion channel (IMAC) and chloride
intracellular channel proteins 4 and 5 (CLIC4 and CLIC5) represent the anion channel family of the
IMM [82,86]. Since the discovery in 1997 that the activation of the mitochondrial ATP-sensitive K+

channel (mitoKATP) protects hearts against ischemia/reperfusion (I/R) injury [87,88], an important
role of IMM K+ permeability in cytoprotection has been described in numerous cellular models and
various insults [89]. It all started with the discovery that the activation of the mitoKATP channel
mimics ischemic preconditioning (IPC)—a well-known phenomenon in which brief periods of ischemia
protect cells against the subsequent injury resulting from sustained ischemia [90,91]. Since then, it has
been shown that the involvement of mitoKATP channel activation provides protection in brain, heart
and muscle cells [92,93]. The activation of the mitochondrial large conductance K+ channel KCa1.1
(mitoBKCa) has also been described as cytoprotective, for instance, in the heart and brain [85,94–98].
The mechanisms involved in the cytoprotection triggered by K+ transport activation in the IMM are
not yet fully understood. However, it has been suggested that these mechanisms may involve the
induction of mitochondrial ROS production and triggering prosurvival pathways or, on the contrary,
may involve lowering ROS levels during reperfusion [99–102]. The decrease in the massive Ca2+

influx into the mitochondrial matrix at reperfusion due to mild uncoupling after K+ channel activation
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may also diminish the possibility of MPTP opening and cell death [103]. Mitochondrial volume
regulation, and thus the regulation of ATP synthesis efficiency, have also been described as part of the
mechanisms [104].Molecules 2020, 25, x FOR PEER REVIEW 5 of 23 
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Figure 2. Mitochondrial catabolic and anabolic pathways. Pyruvate, fatty acid, and amino
acid oxidation is accompanied by a reduction of NAD+ and FAD. The electrons from NADH
and FADH2 are transferred to the electron transport chain (ETC) and the proton electrochemical
gradient is built that drives ATP synthesis. (A). Mitochondria as a source of building blocks for
biosynthesis. The tricarboxylic acid cycle (TCA cycle) and urea cycle supply metabolites for synthesis
of glucose, amino acids, heme, cholesterol, and fatty acids. Nucleotide synthesis also partially
takes place in mitochondria (B). Dotted line—multiple reaction steps; PEP—phosphoenolpyruvate;
UQ—ubiquinone; 5,10-CH2THF—5,10-methylenetetrahydrofolate; I, II, III, IV—respiratory chain
complexes; cyt c—cytochrome c.
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Figure 3. Mitochondrial targets of flavonoids. Mitochondrial regulation of apoptosis, necrosis,
antioxidant response, and mitochondrial dynamics. The influence of flavonoids on the pathways
marked in color is described in this review. The effect of flavonoids on antioxidant response is mediated
by modulating antioxidant enzymes hemeoxygenase 1 (HO-1), NADPH:quinone oxidoreductase 1
(NQO1), superoxide dismutase (SOD2), peroxiredoxin (PRX), glutathione peroxidase (GPX), catalase
(CAT) and ROS generation by complex I (I) and complex III (III) of the electron transport chain
(ETC), and monoamine oxidase (MAO). Flavonoids regulate apoptosis by changing the levels
of pro-(BAX, BIM, BAD, PUMA, NOXA, and BID) and anti-apoptotic proteins (BCL-2, BCL-XL,
BCL-w). Mitochondrial dynamics is affected by tuning mitochondrial biogenesis (sirtuin—SIRT1;
PGC-1α—proliferator-activated receptor gamma coactivator; NRF1, NRF2—nuclear respiratory factor 1,
2), fission (mitochondrial fission protein 1—FIS1; dynamin-related protein 1—DRP1), fusion (mitofusin
1—MFN1; mitofusin 2—MFN2; optic atrophy protein 1—OPA-1), and mitophagy (PINK and PARKIN).
The flavonoid interaction with potassium channels of the inner mitochondrial membrane (mitochondrial
ATP-sensitive K+ channel—mitoKATP; mitochondrial large conductance K+ channel KCa1.1—mitoBKCa)
results in an increased K+ flux into mitochondria. In addition, the proteins involved in transport of
ions and metabolites through mitochondrial membranes are presented. AGC—aspartate–glutamate
carrier; ANT—adenine nucleotide translocase; CLIC—chloride intracellular channel; cyt c—cytochrome
c; DIC—dicarboxylate carrier; HTRA2—high-temperature requirement protein A2; IMAC—inner
membrane anion channel; KHE—K+/H+ exchanger; m∆Ψ—mitochondrial inner membrane potential;
MCU—mitochondrial calcium uniporter; MOMP—mitochondrial outer membrane permeabilization;
MPTP—mitochondrial permeability transition pore; NF2L2—nuclear factor erythroid 2-related factor
2; NHE—Na+/H+ exchanger; OGC—2-oxoglutarate carrier; PIC—phosphate carrier; PyC—pyruvate
carrier; SAM—sorting and assembly machinery; TIM—translocase complex of the inner membrane;
TOM—translocase complex of the outer membrane complex; Ub—ubiquitin; UCP—uncoupling protein;
VDAC—voltage dependent anion channel.
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4. Flavonoids in Mitochondrial Pathways

4.1. Flavonoids as Mitochondrial ROS Scavengers

Increased ROS levels cause the oxidation of proteins, nucleic acids, and lipids leading to detrimental
processes, such as cellular aging [105], mutagenesis [106], and carcinogenesis [107]. The beneficial
effects of flavonoids on health have long been attributed to their antioxidant properties [41], which lead
to a reduction in ROS, regardless of their source (endogenous: mitochondria, peroxisomes, xanthine
oxidase, Fenton reaction, NADPH oxidase, lipoxygenases, cytochrome P450 or exogenous: visible, UV
and ionizing radiation, chemotherapeutics, etc.) [108,109]. The ability to scavenge ROS and reactive
nitrogen species (RNS) is determined by the hydroxyl configuration of the flavonoid B-ring, as it
donates hydrogen and an electron to superoxide (O2−•) [110], hydroxyl (•OH), peroxyl (ROO•) and
peroxynitrite (ONOO−) [111]. Relatively stable flavonoid radicals are formed in this process [111].
The direct antioxidant effect of numerous flavonoids has been demonstrated in many studies using
in vitro and ex vivo models in cell cultures, tissue homogenates, etc., as well as in vitro in animal
models [112]. As mitochondria are the main source of intracellular ROS, flavonoid antioxidant effects
are briefly described in this chapter. For example, flavonoids from red wine significantly reduce the
oxidation of low-density lipoprotein in humans [113], baicalein binds iron ions and strongly inhibits
the Fenton reaction by ROS scavenging in combination with iron chelation [114], flavonoids have
also been found to protect rat hippocampal cells against oxidative stress by ROS scavenging [115],
whereas silibinin A protects neuronal and liver cells from nitrosative stress by influencing mitochondria,
namely, increasing m∆Ψ and ATP levels [116]. A recent study showed the direct scavenging of O2−•

generated in mitochondrial complex III of the ETC by quercetin in isolated rat heart mitochondria [117].
Numerous studies show that flavonols (catechins and quercetin) protect cells against oxidative injury by
activating the transcription of antioxidant enzymes in nuclear factor erythroid 2-related factor 2 and an
antioxidant response element (ARE)-dependent manner [118–122]. Enzymes involved in this regulation
of cellular redox status and protection against oxidative damage include glutathione-S-transferase
(GST), hemeoxygenase 1 (HO-1) and NADPH:quinone oxidoreductase 1 (NQO1). The antioxidant
properties of flavonoids have also been shown to improve cell survival in cerebral I/R injury [123],
colistin-induced nephrotoxicity [124], chronic inflammatory diseases [125] and Parkinson’s disease [126].
In addition, flavonoids have also been shown to modulate cellular endogenous levels of antioxidants by
influencing the activity of enzymes responsible for glutathione synthesis (e.g., glutathione reductase)
and antioxidant enzymes (glutathione peroxidase, superoxide dismutase, and catalase) [127,128].
Manuka honey, containing a mixture of polyphenols, including flavonoids, has been shown to protect
skin fibroblasts against oxidative stress and improve wound healing by ameliorating mitochondrial
function and induction of superoxide dismutase and catalase [122]. Although there are reports
questioning the direct role of flavonoids in ROS scavenging (since plasma concentrations of flavonoids
after indigestion are approximately two orders of magnitude lower than an effective antioxidant
dose in vitro-IC50 10–100 µM) [129], they may exert their protective actions in exposed organs such
as gastrointestinal or skin mucosa or after specific accumulation in mitochondria [128]. Indeed,
mitochondria-targeted ROS scavengers have been demonstrated to be protective in certain types of
cancer and cardiac disease [69,130].

4.2. Flavonoids Attenuate Mitochondrial ROS Formation

Mitochondrial complex I (NADH:ubiquinone oxidoreductase) and complex III (ubiquinol:
cytochrome c oxidoreductase) of the ETC are the most prominent sources of ROS, which are generated
as a byproduct of electron transfer [63,69]. Flavonoids have been found to suppress ROS production
by directly inhibiting enzymes and chelating the trace elements involved in ROS generation [131].
Early studies showed that flavonoids, namely, luteolin, myricetin, fisetin, robinetin, rhamnetin, and
baicalein, inhibit complex I [132,133]. Other reports describe complex III inhibition by hispidulin
and eupafolin [134,135]. In isolated mitochondria, reduced complex I activity has been linked to
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reduced ROS generation. Inhibition of complex I activity by quercetin, kaempferol, and epicatechin
has been found to significantly lower H2O2 production in isolated rat heart mitochondria [136].
Competition between flavonoids and ubiquinone for close binding sites has been suggested. Catechin
also inhibits complex I in isolated rat heart mitochondria and decreases H2O2 generation [137].
Nobiletin decreases mitochondrial oxygen consumption and H2O2 production in the presence of
glutamate and malate, but a slight increase has been observed with succinate [138]. However, other
reports have shown that the inhibition of complex I by an apple peel polyphenol extract leads to
increased mitochondrial superoxide production [139]. In addition, the reduction in mitochondrial ROS
generation by flavonoids was associated with slight uncoupling properties of some of these substances,
i.e., galangin [140]. The reduction in m∆Ψ resulting from increased H+ flow into the mitochondrial
matrix diminishes ROS formation. It has also been shown that an alternative mitochondrial source of
ROS, namely, mitochondrial membrane-bound monoamine oxidase (MAO), is inhibited by numerous
flavonoids [128,141]. MAO is implicated in neurodegeneration because its overexpression increases
•OH generation, causing oxidative stress and neuronal death.

4.3. Antiapoptotic Substances

Although numerous reports have described the proapoptotic effects of flavonoids and thus their
possible use in cancer prevention [142,143], several flavonoids have also been shown to have potent
antiapoptotic activity and protect cells against damage caused by various stimuli, both in vitro and
in vivo in animal disease models. The involved mechanisms include the inhibition of the intrinsic
apoptotic pathway by the preservation of mitochondrial function (i.e., maintaining m∆Ψ), regulation
of redox potential and MOMP by downregulation of BAX and BAK or upregulation of BCL-2 and
BCL-xL [144]. In the case of I/R-induced cell death, an increase in the protein level ratio of antiapoptotic
BCL-2/proapoptotic BAX has been induced in numerous experimental models by different flavonoids,
i.e., tilinin, luteolin, Bauhinia championii flavone (in myocardium), quercetin (in bladder and PC12 cells),
baicalein (in the lungs and brain), and apigenin and naringenin (in the brain) [145–152]. A similar
mechanism has been described for quercetin in oxidative stress-treated PC12 cells, as well as for chrisin
in Parkinson’s disease models [153,154]. Moreover, in PC-12 cells, hesperidin has been found to protect
against amyloid-β(Aβ)-induced apoptosis by reversing Aβ-induced mitochondrial dysfunction and
leading to a decrease in MPTP opening and an increase in cell survival [155]. It has also been observed
that cytotoxic substance-induced apoptosis is reduced by flavonoids. Namely, arsenic-induced
apoptosis is alleviated by (−)-epigallocatechin-3-gallate [156]. The mechanisms involved include m∆Ψ
preservation and apoptosis inhibition. Similarly, a number of reports show the antiapoptotic regulation
of BCL-2 family protein expression, i.e., diosmetin in endotoxin-induced hepatotoxicity, anthocyanin
in gentamycin-induced hepatotoxicity, apigenin and kaempferol in doxorubicin-induced cardiotoxicity
and nobiletin in cisplatin-induced kidney injury [157–161].

4.4. Influence on Mitochondrial Biogenesis

The tightly regulated process of the generation of new mitochondria (mitochondrial biogenesis)
together with the removal of damaged mitochondria (mitophagy) preserves mitochondrial
homeostasis [162]. The stimulation of mitochondrial biogenesis is important as an adaptive mechanism
in the cellular response to different stressors. Mitochondrial biogenesis also seems to be a promising
therapeutic target as it provides a protective mechanism in a broad spectrum of acute and chronic
diseases manifested by mitochondrial dysfunction [163]. Mitochondrial biogenesis is coordinated by
specific nuclear transcription factors. The major elements in the network are proliferator-activated
receptor gamma coactivators (PGC-1α and PGC-1β) and nuclear respiratory factors (NRF1 and NRF2).
The pathway is initiated by the activation of PGC-1α by phosphorylation or deacetylation, which leads
to the stimulation of a series of transcription factors, including NRF1, NRF2 and estrogen-related-α
(ERR-α) [164]. NRF1 regulates the transcription of genes encoding many mitochondrial proteins,
as well as transcription factors responsible for mtDNA transcription, including transcription factor A
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mitochondrial (TFAM) and transcription factor B1 mitochondrial (TFB1M), among others. Upstream of
PGC-1α, there are multiple regulators, including sirtuin (SIRT1), 5′ adenosine monophosphate-activated
protein kinase (AMPK), cAMP-response element binding protein (CREB) and forkhead transcription
factor (FOXO1) [165]. Flavonoids belonging to almost all classes have been found to stimulate
mitochondrial biogenesis in various experimental models. Most of these studies, carried out
both in vitro and in vivo, show that upregulation of PGC-1α is a central phenomenon in these
processes. Rasbach and Schnellmann demonstrated that isoflavones increase mitochondrial biogenesis
by stimulating PGC-1α expression and SIRT1 expression and/or activity [166]. Quercetin has also been
shown to induce mitochondrial biogenesis in the muscle and brain of mice in vivo. Increases in SIRT1
and PGC1α expression and mtDNA copy number were observed [167]. Nieman et al. showed that 2
weeks of quercetin supplementation resulted in a significant increase in skeletal muscle mRNA levels of
SIRT1, PGC-1α, cytochrome c oxidase, citrate synthase, and the relative copy number of muscle mtDNA
in untrained young adult males [168]. The induction of the expression of PGC-1α, NRF-1, TFAM,
mtDNA, and mitochondrial proteins in HepG2 cells by quercetin has been described [169]. These effects
seem to be heme oxygenase/carbon monoxide dependent. Yoshimo et al. have shown using a C2C12
murine muscle cell line in an in vitro model that flavonoids (with the most potent being isoflavone
daidzein) directly activate the TFAM promoter [170]. The effect was again PGC-1α, NRF, and SIRT1
dependent. More recent studies have shown PGC-1α-, SIRT1-, and/or AMPK-dependent effects of
myricetin and tangeretin on mitochondrial biogenesis in murine skeletal muscles and of isoharmnetin
in adipocytes [171–173]. In addition, flavonoid-induced protection has been demonstrated in various
models of human diseases. For example, the induction of mitochondrial biogenesis by baicalein
reverses mitochondrial dysfunction in a Parkinson’s disease model, puerarin improves mitochondrial
performance in diabetic rats, quercetin is beneficial in osteoarthritis and traumatic brain injury models,
and dihydromycetin ameliorates cardiac I/R injury [174–178].

4.5. Mitochondrial Autophagy Regulators

Mitochondrial autophagy or mitophagy is a process of mitochondrial degeneration in which
mitochondrial remnants are transported to peroxisomes or lysosomes for degradation. In most
mammalian cell types, mitochondrial impairment leads to the stabilization of phosphatase and tensin
homolog-induced kinase 1 (PINK1) on the outer mitochondrial membrane [179]. This leads to the
phosphorylation of ubiquitin and the recruitment of the E3 ubiquitin ligase—Parkin. Mitochondrial
proteins are then polyubiquitinated, and an autophagosome is formed, which next fuses with the
lysosome for degradation. In 2012, Filomeni et al. demonstrated that kaempferol treatment restores the
impaired mitophagy induced by acute rotenone toxicity and that the enhancement of mitochondrial
turnover is crucial for cell survival [180]. Quercetin has also been found to alleviate the mitochondrial
damage induced in murine liver by chronic ethanol treatment by inducing Parkin-dependent
mitophagy [181]. More recent studies have shown that quercetin enhances PINK1/Parkin-dependent
mitophagy in a nonalcoholic fatty liver disease model [182]. Interestingly, the activation of mitophagy
is mediated by the stimulation of frataxin expression. Frataxin is a mitochondrial protein involved in
assembly of iron-sulfur cluster-containing proteins. Purerarin, in addition to showing other beneficial
effects on palmitate-induced mitochondrial dysfunction, has been shown to attenuate impaired
mitophagy via the PINK1/Parkin pathway [183]. In contrast, naringin has been shown to have
protective effects during cerebral I/R injury by inhibiting the translocation of Parkin into mitochondria
and thus ONOO--mediated excessive mitophagy [184].

4.6. Mitochondrial Fission and Fusion Control

Rather than being static and fixed structures, mitochondria are dynamic organelles that undergo
constant morphological changes. Their structure constantly adapts via fusion and fission events to meet
cellular needs, including metabolic demands and nutrient availability (for a recent review see [185]).
Fusion, which means joining mitochondria together to form a tubular network, possibly allows
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matrix components to be distributed, improves oxidative phosphorylation efficiency, and prevents
autophagy. On the other hand, fission, which is the division of a mitochondrion, is enhanced under
stress conditions (associated with mitochondrial dysfunction) and in the G2/M phase of the cell cycle.
The proteins important for the correct progression of these processes include dynamin-related protein 1
(DRP1), dynamin 2 (DNM2), and mitochondrial fission protein 1 (FIS1) in fission [186] and mitofusins
1 and 2 (MFN1, MFN2) and optic atrophy protein 1 (OPA1) in fusion [187]. Recent reports show
that various flavonoids are able to regulate mitochondrial dynamics. Quercetin has been described
to protect against acute hypobaric hypoxia-induced mitochondrial dysfunction in rats by inducing
mitochondrial biogenesis via the SIRT1, PGC-1α, TFAM, and NRF1 pathways, and by inhibiting
mitochondrial fission [188]. The expression of DRP1 and FIS1 was enhanced by hypobaric hypoxia
and significantly reduced after quercetin treatment. At the same time, the expression levels of MFN1
and MFN2 were restored by quercetin, indicating the protection of mitochondria against excessive
stress-induced fission and reduced fusion. Similar effects of quercetin have been described in a model of
adenine-induced aortic calcification. Decreased expression and phosphorylation of DRP1 suppressed
mitochondrial fission [189]. The mechanism of the quercetin-induced alleviation of mitochondrial
fragmentation has been recently unraveled in murine endothelium [190]. Chen et al. showed that
quercetin specifically inhibits DRP1 phosphorylation at Ser 616, possibly by inhibiting PKCδ [190].
Parrado-Fernandez et al. also showed that anthocyanins prevent mitochondrial fragmentation in
rotenone- or familial Alzheimer’s disease genetic mutation-induced models of Alzheimer’s disease in
SH-SY5Y cells [191]. Anthocyanins block DRP1 overexpression and restore the expression levels of
MFN2 in cells carrying the mutation. Grape seed proanthocyanidins also prevent mitochondrial damage
in irradiated human lung fibroblasts by regulating DRP1 and MFN1 and 2 expression levels [192].
Baicalin has also been reported to suppress mitochondrial fission and enhance fusion by lowering
the expression of DRP1 and stimulating the expression of MFN2 [193]. One of the important effects
of kaempferol in the neuronal ischemic stroke model was the suppression of DRP1 activation [194].
Dihydromyricetin attenuated dexamethasone-induced muscle atrophy by sustaining mitochondrial
function, among other effects, inducing fusion by stimulating MFN2 expression [195]. Additionally,
puerarin and quercetogetin have been described to protect cells against palmitate- and cigarette smoke
extract-induced mitochondrial dysfunction by regulating mitochondrial dynamics [183,196].

4.7. Mitochondrial Ion Channel Openers

In 2006, Gao et al. showed that puerarin diminishes IR-induced injury in isolated rat hearts and that
the effect is mitoKATP channel dependent [197]. Inhibition of channel activity by 5-hydroxydecanoate
(5-HD) abolishes viability and hemodynamic function improvement. Genistein has also been
demonstrated to be cardioprotective in a rabbit model of IR injury, where its intravenous injection
after coronary artery occlusion (prior to reperfusion) reduces infarct size [198]. The effect was again
reversed by 5-HD. Interestingly, Akt phosphorylation is involved in the process, and the simultaneous
inhibition of glycogen synthase kinase 3β provides protection in the case of extended ischemia [198].
Proanthocyanidins protect neonatal rat myocardial cells against anoxia/reoxygenation by increasing
survival, diminishing ROS production, activating Caspase-3, and promoting Akt phosphorylation [199].
Again, all these effects are dependent on the activation of the mitoKATP channel and reversed by
5-HD. The same is true for naringenin applied during an I/R injury protocol with isolated rat
hearts. The flavonoid significantly decreases the infarct area and reduces cell death. All effects are
sensitive to glibenclamide (another KATP channel inhibitor) and 5-HD [200]. The works of Testai et al.
starting in 2013 implicate the role of mitoBKCa channel activation in the naringenin effect [201]. In a
model of acute infarct in rats, naringenin reduces IR-induced heart injury. The effect is reversed
by paxilline, a mitoBKCa channel inhibitor. Furthermore, in a perfused heart model, naringenin
improves postischemic functional parameters and decreases myocardial injury. A direct influence of
naringenin on mitochondria revealed by m∆Ψ depolarization and reduction of Ca2+ accumulation in
mitochondrial matrix has been observed in this model [201]. Moreover, naringenin cardioprotection
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has been characterized in vivo and ex vivo in aging rats [202]. The naringenin-induced effects observed
in this study were again antagonized by paxilline. In 2019, Kampa et al. finally showed the direct
interaction of the flavonoid naringenin with mitochondrial potassium channels [203]. It has been
demonstrated using isolated mitoplasts from primary human dermal fibroblasts and patch-clamp that
naringenin at micromolar concentrations directly increases mitoBKCa and mitoKATP channel activity.
Moreover, naringenin-induced activation of mitochondrial K+ channels leads to mild mitochondrial
uncoupling and results, as expected, in an increase in the mitochondrial respiration rate in these cells.
In addition, our latest study indicates that in mitochondria isolated from human endothelial cells,
naringenin stimulates inhibitor-sensitive mitoBKCa channel-mediated K+ flux, decreasing the m∆Ψ and
thus accelerating the mitochondrial oxygen consumption rate [204]. We have also demonstrated using
patch clamp that naringenin directly activates the mitoBKCa channel from endothelial mitochondria.
Furthermore, naringenin prevents cell damage in this model [204]. Thus, mitochondrial ion channels
are becoming promising new targets for flavonoids in cells.

5. Conclusions and Perspectives

A large amount of scientific evidence showing the cytoprotective and possibly therapeutic
application of numerous flavonoids in human diseases is available. In the case of civilization diseases
that affect large populations, diet-based medicine seems to be extremely beneficial. The use of bioactive
substances of natural origin could contribute to cost-effective disease prevention and could improve and
reduce observed side-effects of conventional therapies. In this review, we have presented flavonoids as
modifiers of mitochondrial function, substances that prevent mitochondrial damage resulting from
many insults and subsequent cell dysfunction. In addition to the direct effects of mitochondrial
ROS scavenging, we have described the modulation of mitochondrial ROS generation, mitochondrial
antioxidant system activity, mitochondrial apoptotic pathway, biogenesis, mitophagy, fission and
fusion, and mitochondrial potassium channel activity. The most representative examples of reported
flavonoids and their cytoprotective properties in various models are summarized in Table 2.

Table 2. Representative examples of flavonoids and their cytoprotective effects on mitochondrial
pathways in various models. I/R—ischemia/reperfusion; ETC—electron transport chain; TNF-α—tumor
necrosis factor alpha; CHX—cycloheximide; ↑—enhancement.

Flavonoid Cytotoxicity Model Cytoprotective Pathway Induced Reference

Baicalein

Oxidative stress Iron chelation, ROS scavenging,
Inhibition of complex I of ETC

[114]
[132,133]

I/R Inhibition of apoptosis (Bcl-2 family proteins) [148]
Parkinson’s disease model Mitogenesis [174]

Catechins
Oxidative stress ↑ Antioxidant enzyme transcription

Inhibition of complex I of ETC
[118,119]
[136,137]

Arsenic Inhibition of apoptosis (Bcl-2 family proteins) [156]

Kaempferol

Oxidative stress Inhibition of complex I of ETC [136]
Doxorubicin-induced cardiotoxicity Inhibition of apoptosis (Bcl-2 family proteins) [161]

Acute rotenone toxicity Mitophagy [180]
Ischemic stroke model Suppression of fission [194]

Luteolin
I/R Inhibition of apoptosis (Bcl-2 family proteins) [146]

Oxidative stress Inhibition of complex I of ETC [136]

Naringenin
Ischemic stroke Inhibition of apoptosis (Bcl-2 family proteins) [152]

I/R Activation of mitochondrial potassium channels [200–203]
TNF-α/CHX Activation of mitochondrial potassium channels [204]

Quercetin

Oxidative stress Direct ROS scavenging from complex III of ETC,
↑ Antioxidant enzyme transcription

Inhibition of complex I of ETC
Inhibition of apoptosis (Bcl-2 family proteins)

[117]
[120]
[136]
[153]

I/R injury Inhibition of apoptosis (Bcl-2 family proteins) [147,150]
Osteoarthritis Mitogenesis [176]

Traumatic brain injury Mitogenesis [178]
Chronic ethanol treatment Mitophagy [181]

Non-alcoholic fatty liver disease model Mitophagy [182]
Acute hypobaric hypoxia Mitogenesis, inhibition of fission [188]
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However, certain issues remain to be addressed. In this review, we focused on mitochondria-
mediated effects, but flavonoids seem to affect almost all cell signaling routes. Experimental and
methodological issues make it more difficult to identify pathways on which flavonoids have no
effect than to identify those on which flavonoids act. It is very important to determine the exact
sites of flavonoid interaction in cells and thus to distinguish between direct and indirect effects
and to understand the underlying complexity. The effects defined for a given disease model could
lead to unpredictable results in others. The inhibition of cellular death notably benefits in cardiac
I/R-induced injury but is detrimental in cancer. It is believed that there is no flavonoid toxicity, but some
reports indicate that further studies are inevitable because some flavonoids has been observed to have
pro-oxidative, estrogenic, or carcinogenic potential [205]. In addition, vast heterogeneity has been
observed in the individual response to increased uptake. The variability in absorption and metabolism
must be accounted for.
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