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Radiomics-based infarct
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stroke
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1North Sichuan Medical College, Nanchong, China, 2Department of Radiology, Chongqing General
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Objective: To develop and validate a model based on the radiomics features

of the infarct areas on non-contrast-enhanced CT to predict hemorrhagic

transformation (HT) in acute ischemic stroke.

Materials andmethods: A total of 118 patients diagnosed with acute ischemic

stroke in two centers from January 2019 to February 2022 were included.

The radiomics features of infarcted areas on non-contrast-enhanced CT

were extracted using 3D-Slicer. A univariate analysis and the least absolute

shrinkage and selection operator (LASSO) were used to select features, and

the radiomics score (Rad-score) was then constructed. The predictive model

of HT was constructed by analyzing the Rad-score and clinical and imaging

features in the training cohort, and it was verified in the validation cohort.

The model was evaluated with the receiver operating characteristic curve,

calibration curve and decision curve, and the prediction performance of the

model in different scenarios was further discussed hierarchically.

Results: Of the 118 patients, 52 developed HT, including 21 cases of

hemorrhagic infarct (HI) and 31 cases of parenchymal hematoma (PH).

The Rad-score was constructed from five radiomics features and was the

only independent predictor for HT. The predictive model was constructed

from the Rad-score. The area under the curve (AUCs) of the model for

predicting HT in the training and validation cohorts were 0.845 and 0.750,

respectively. Calibration curve and decision curve analyses showed that the

model performed well. Further analysis found that the model predicted HT

for different infarct sizes or treatment methods in the training and validation

cohorts with 78.3 and 71.4% accuracy, respectively. For all samples, the model

predicted an AUC of 0.754 for HT in patients within 4.5 h since stroke onset,

and predicted an AUC of 0.648 for PH.

Frontiers in Neuroscience 01 frontiersin.org

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://doi.org/10.3389/fnins.2022.1002717
http://crossmark.crossref.org/dialog/?doi=10.3389/fnins.2022.1002717&domain=pdf&date_stamp=2022-09-21
https://doi.org/10.3389/fnins.2022.1002717
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fnins.2022.1002717/full
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/


fnins-16-1002717 September 21, 2022 Time: 10:22 # 2

Xie et al. 10.3389/fnins.2022.1002717

Conclusion: This model, which was based on CT radiomics features,

could help to predict HT in the setting of acute ischemic stroke for any

infarct size and provide guiding suggestions for clinical treatment and

prognosis evaluation.

KEYWORDS

acute ischemic stroke, hemorrhagic transformation, computed tomography,
radiomics, prediction

Introduction

Hemorrhagic transformation (HT) is an important
complication of acute ischemic stroke (AIS). According to the
European Cooperative Acute Stroke Study II (ECASS II), HT
is divided into four types (Hacke et al., 1998). Hemorrhagic
infarct 1 (HI1) is defined as small spot hemorrhage along
the infarct edge, hemorrhagic infarct 2 (HI2) as patchy or
multiple confluent spotting hemorrhage in the infarct area
with no space-occupying effect, parenchymal hematoma
1 (PH1) as hematoma < 30% of the infarct size with a
slight space-occupying effect, and parenchymal hematoma
2 (PH2) as hematoma > 30% of the infarct size with a
significant space-occupying effect. HT is closely related to the
poor prognosis of patients. Previous studies have associated
parenchymal hematoma with functional deterioration, but
some studies found that small spot hemorrhage still affects
long-term functional outcomes (van Kranendonk et al., 2019;
Bivard et al., 2020). In addition, HT is also an important
indicator for clinical treatment. When the risk of HT, especially
symptomatic intracranial hemorrhage, is high, the advantages
and disadvantages of intravenous thrombolysis (IVT) or
mechanical thrombectomy (MT) need to be carefully evaluated
(Hacke et al., 2008). Therefore, predicting HT at an early
stage is of great importance. Previous studies have shown a
variety of HT prediction methods based on clinical biological
indicators, radiology or deep learning, all of which exhibited
good prediction performance (Whiteley et al., 2012; Hao
et al., 2017; Okazaki et al., 2017; Jiang et al., 2021). In recent
years, radiomics has played an important role in the diagnosis,
treatment, and prognosis of diseases. Radiomics features
can effectively reflect the heterogeneity of lesions, and this
quantitative index of microscopic differences provides a new
method to analyze and understand diseases (Davnall et al.,
2012). However, to our knowledge, only a few studies have
predicted HT based on the radiomics features of magnetic
resonance imaging and have shown promising results in this
regard (Kassner et al., 2009; Zhai et al., 2022). To further explore
the utility of radiomics features in predicting HT, this study
aimed to construct a model based on the radiomics features of

the infarct areas on non-contrast-enhanced CT in patients with
AIS to evaluate its predictive value for HT before treatment.

Materials and methods

Patients

This retrospective study was approved by the medical
ethics committee of the North Sichuan Medical College
(No. [2022] 27), and the requirement for written informed
consent was waived.

From January 2019 to February 2022, patients with AIS
who were treated at the stroke center of the Affiliated Hospital
of North Sichuan Medical College and Chongqing General
Hospital were included. The inclusion criteria were as follows:
(1) AIS patients with anterior circulation involvement who met
the WHO diagnostic criteria (Aho et al., 1980), (2) the initial
non-contrast-enhanced head CT data were collected before
treatment within 24 h of symptom onset, (3) the follow-up time
of head CT after treatment was not less than 7 days, unless HT
occurred within 7 days, and (4) the boundary of the infarct areas
could be determined by initial non-contrast-enhanced CT. The
exclusion criteria were as follows: (1) bleeding on the initial head
CT scan, (2) severe artifacts on CT images, and (3) incomplete
data. Finally, 118 patients with AIS who met the criteria were
included, and all patients were treated in strict accordance with
the AIS guidelines (Powers et al., 2018). The flow chart of this
study is shown in Figures 1, 2.

Data collection

Data, such as age, sex, stroke onset time, National Institutes
of Health Stroke Scale (NIHSS) score, and treatment methods,
were collected. The patients’ smoking status and drinking habits
as well as the presence of hypertension, diabetes mellitus,
hyperlipidemia, atrial fibrillation, heart failure, coagulation
disorder, dense middle cerebral artery sign, and massive cerebral
stroke were assessed. Relevant information was obtained from
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FIGURE 1

The flow chart of patient inclusion and exclusion criteria.

FIGURE 2

The flow chart of this study.
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the electronic medical record system and the picture archiving
and communication system (PACS).

Image acquisition and analysis

All patients’ head non-contrast-enhanced CT images were
acquired by LightSpeed VCT (GE) or IQon Spectral CT (Philips)
scanning. The patients were placed in the supine position, and
the orbitomeatal line was used as the scanning baseline. The
scanning range was from the top of the head to the base of the
skull. The scanning parameters were as follows: tube voltage
120 kV, tube current 220 mAs, pitch 1.0, layer thickness and
layer spacing 5 mm.

Two radiologists with more than 5 years of experience
analyzed the patient’s CT images independently: (1) the
boundary of the infarct areas was defined by marked low-
density areas in the initial CT after adjusting the gray value of
images, (2) the dense middle cerebral artery sign was defined as
a higher density of the middle cerebral artery on the infarcted
side than on the contralateral side, (3) massive cerebral stroke
was defined as the infarct areas exceeding 1/3 of the cerebral
hemisphere, and (4) HT was defined as a lack of high-density
shadow (CT attenuation values were approximately 60–90 Hu)
in or around the infarcted areas on the initial CT when high-
density shadows appeared on the follow-up CT and persisted
for ≥2 days or when a high-density shadow persisted after
iodine removal by the virtual non-contrast (VNC) of IQon
spectral CT. Kappa analysis was used to evaluate the consistency
of the diagnosis of two radiologists, with details described in
the Supplementary Table 1. Differences in the results were
discussed and eventually agreed upon.

Infarct lesion segmentation, feature
extraction, and selection

The 3D-Slicer1 was used for infarct lesion segmentation and
feature extraction. The initial non-contrast-enhanced head CT
images of all AIS patients were imported into the software in
DICOM format for analysis.

The specific process was as follows: (1) For image
normalization and lesion segmentation, the boundary of the
infarct areas was determined by adjusting the gray value of the
CT images, and semiautomatic segmentation was then used to
obtain the three-dimensional ROI of the infarct areas. All ROIs
of images were normalized, including resampling the image
voxels to 1 mm × 1 mm × 1 mm by linear interpolation,
smoothing the images with a Gaussian filter, and fixing the bin
width value of the image gray value at 25. (2) For radiomics

1 http://www.slicer.org

feature extraction, the radiomics features were extracted from
the ROIs of images using the Pyradiomics plugin in the software,
including 3D-shaped features, first-order features, gray-level
cooccurrence matrix (GLCM), gray-level dependence matrix
(GLDM), gray-level run length matrix (GLRLM), gray-level size
zone matrix (GLSZM), neighboring gray-tone difference matrix
(NGTDM), and wavelet-based features. (3) For radiomics
feature selection, and to ensure stability, 60 AIS patients were
randomly selected by the same radiologist one week later
for repeated ROI segmentation and feature extraction, and
the intraclass correlation coefficient (ICC) was then used to
evaluate the consistency of the two features. Features with
ICC > 0.75 were normalized with the Z Score. Feature
selection was necessary to avoid overfitting. Firstly, univariate
analysis (Student’s t-test or Mann–Whitney U test) was used to
select features with differences between groups, and the least
absolute shrinkage and selection operator (LASSO) and 10-
fold cross validation were then used to determine the optimal
texture features related to HT. Finally, the feature equation was
established via logistic regression. The radiomics score (Rad-
score) for each patient was the sum of the products of the
regression coefficients and the features in the equation.

Model construction and evaluation

All patients were randomly divided into a training
cohort (83 patients) and a validation cohort (35 patients)
according to the principle of stratified randomization at
a ratio of 7:3. In the training cohort, the Rad-score and
clinical and imaging features of patients were subjected to
a univariate analysis, and variables with P < 0.05 in the
univariate analysis were included for multivariate analyses.
Variables with P < 0.05 in multivariate analyses were
determined to be independent risk factors for HT, and logistic
regression was then used to construct a model. Moreover,
the model was validated in the validation cohort, and the
prediction performance of the model in different scenarios
was further discussed hierarchically. A receiver operating
characteristic curve analysis was used to calculate the area
under the curve (AUC) of the model, a calibration curve
was used to evaluate the consistency between the predicted
probability and the actual probability of the model, and clinical
decision curve analysis was used to evaluate the clinical net
benefit of the model.

Statistical analysis

A statistical analysis was performed using SPSS (version
26.0, IBM, Armonk, NY, USA) and R software (version 4.1.0).2

2 https://www.r-project.org
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FIGURE 3

Radiomics score (Rad-score) development. (A,B) Radiomics feature selection based on least absolute shrinkage and selection operator (LASSO)
and 10-fold cross-validation. When binomial deviance is the smallest, a total of five optimal features are obtained. (C,D) The Rad-score of each
patient in the training and verification cohorts. Red indicates hemorrhagic transformation (HT), and blue indicates non-HT.

Continuous variables with a normal distribution were described
as the mean ± standard deviation (SD), continuous variables
with a skewed distribution were described as the median
[interquartile range (IQR)], and categorical variables were
described as the frequency and constituent ratio (%). In the
univariate analysis, Student’s t-test or the Mann–Whitney U
test was used for continuous variables, and the chi-squared
test or Fisher’s exact test was used for categorical variables.
Logistic regression was used for multivariate analysis. A two-
sided P < 0.05 was considered statistically significant.

Results

Radiomics score development

Based on the ROI of the infarcted areas on non-
contrast-enhanced CT images, a total of 851 radiomic

features were extracted from each patient. After ICC and
univariate analyses, 201 stable features with differences
between groups were screened out, with details described
in the Supplementary. Finally, five features that are highly
related to HT were selected by LASSO and 10-fold cross
validation (Figures 3A,B). The five features were all wavelet-
based features, including one wavelet-filtered GLCM feature
and two wavelet-filtered GLDM and GLRLM features each.
Logistic regression was used to analyze the five features
and establish an equation, and the Rad-score was calculated
according to the regression coefficients in the equation.
Rad-score = 1.022 × (wavelet-LLH-InverseVariance) +
0.996 × (wavelet-LLL-DependenceNonUniformity) +
0.978 × (wavelet-LHL-RunVariance) - 0.177 × (wavelet-
LHH-DependenceNonUniformityNormalized) - 0.004 ×

(wavelet-LLH-RunLengthNonUniformity). The Rad-scores for
each patient in the training and validation cohorts were used to
generate a waterfall plot (Figures 3C,D).
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TABLE 1 Baseline characteristics of the hemorrhagic transformation (HT) and non-HT groups in the training and validation cohorts.

Training cohort (n = 83) Validation cohort (n = 35)

Variable HT (36) Non-HT (47) P-value HT (16) Non-HT (19) P-value

Sex (male) 18 (21.69%) 29 (34.94%) 0.372 8 (22.86%) 8 (22.86%) 0.740

Age, year 69.14 ± 12.34 68.28 ± 12.08 0.750 67.56 ± 14.71 73.11 ± 10.88 0.210

Smoking 10 (12.05%) 14 (16.87%) 1.000 3 (8.57%) 6 (17.14%) 0.460

Habitual alcohol intake 10 (12.05%) 11 (13.25%) 0.800 4 (11.43%) 6 (17.14%) 0.723

Hypertension 26 (31.33%) 30 (36.14%) 0.483 12 (34.29%) 17 (48.57%) 0.379

Diabetes mellitus 9 (10.84%) 10 (12.05%) 0.794 2 (5.71%) 7 (20.00%) 0.135

Hyperlipidemia 18 (21.69%) 22 (26.51%) 0.827 8 (22.86%) 8 (22.86%) 0.740

Atrial fibrillation 20 (24.10%) 22 (26.51%) 0.509 9 (25.71%) 11 (31.43%) 1.000

Heart failure 20 (24.10%) 22 (26.51%) 0.509 9 (25.71%) 8 (22.86%) 0.505

Coagulation disorder 8 (9.64%) 6 (7.23%) 0.376 3 (8.57%) 0 0.086

Treatment methods 0.154 0.140

Non-reperfusion 22 (26.51%) 21 (25.30%) 9 (25.71%) 9 (25.71%)

IVT 8 (9.64%) 12 (14.46%) 3 (8.57%) 3 (8.57%)

MT 3 (3.61%) 12 (14.46%) 0 5 (14.29%)

IVT with MT 3 (3.61%) 2 (2.41%) 4 (11.43%) 2 (5.71%)

Dense MCA sign 14 (16.87%) 9 (10.84%) 0.053 5 (14.29%) 8 (22.86%) 0.727

Massive cerebral stroke 26 (31.33%) 12 (14.46%) 0.000 11 (31.43%) 5 (14.29%) 0.018

Stroke onset time, h 5.00 (3.00–10.00) 4.00 (2.00–9.25) 0.412 4.50 (2.00–10.00) 4.00 (3.00–5.00) 0.569

NIHSS score 15.97 ± 5.60 12.83 ± 6.02 0.017 17.63 ± 4.19 14.00 ± 3.59 0.009

Rad-score 1.39 ± 1.59 -1.07 ± 1.95 0.000 1.15 ± 2.46 -0.95 ± 2.32 0.014

Data are expressed as the mean ± standard deviation, median (interquartile range) or frequency (constituent ratio). IVT, intravenous thrombolysis; MT, mechanical thrombectomy; Dense
MCA sign, dense middle cerebral artery sign; NIHSS score, National Institutes of Health stroke scale score; Rad-score, radiomics score.

Baseline characteristics and evaluation
of independent risk factors for
hemorrhagic transformation

Of the 118 patients with AIS, 63 were males and 55 were
females, and the patients were aged from 42–94 (69.22 ± 12.33)
years. Ultimately, 52 patients developed HT and 66 did not.
Among them, 21 cases were HI and 31 cases were PH. The
baseline characteristics of patients with HT and without HT in
the training and validation cohorts are compared in Table 1.
There were statistically significant differences in variables such
as massive cerebral stroke, NIHSS score and Rad-score between
the HT and non-HT groups (P < 0.05). In the training cohort,
a multivariate analysis showed that only the Rad-score was an
independent predictor for HT (Table 2). Moreover, the Rad-
score of HT patients were higher than those of patients without
HT (P < 0.05).

Model construction and evaluation

The AUCs of the logistic regression model constructed
based on the Rad-score for predicting HT in the training
and validation cohorts were 0.845 (95% CI, 0.763–0.927)
and 0.750 (95% CI, 0.585–0.915), respectively (Figures 4A,B).

Moreover, the sensitivities in the training and validation cohorts
were 0.667 and 0.562 and the specificities were 0.872 and
0.895, respectively. The calibration curve was highly consistent
between the predicted and actual probabilities of the training
and validation cohorts (Figure 4C). The clinical decision curve
analysis showed that the model had a good net clinical benefit
(Figure 4D). We visualized the model constructed from Rad-
score, which intuitively predicted the risk of HT in AIS patients
(Figure 5).

Although variables such as massive cerebral stroke and the
NIHSS score were not independent predictors for HT in the
multivariate analysis, they were related to HT (El Nawar et al.,
2019). When the two variables were added to the model, the
AUCs of the combined model for predicting HT in the training
and validation cohorts were 0.849 (95% CI, 0.767–0.930) and

TABLE 2 Multivariate logistic regression analysis of independent risk
factors for hemorrhagic transformation (HT) in the training cohort.

Variable Coefficient OR (95% CI) P-value

Massive cerebral stroke 0.01 1.01 (0.25–4.10) 0.994

NIHSS score 0.04 1.05 (0.95–1.16) 0.388

Rad-score 0.98 2.66 (1.47–4.82) 0.001

NIHSS score, National Institutes of Health Stroke scale score; Rad-score, radiomics score.
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FIGURE 4

Performance evaluation of the model in the training and validation cohorts. (A) Receiver operating characteristic curve of the model in the
training cohort. (B) Receiver operating characteristic curve of the model in the validation cohort. (C) The calibration curve of the model in the
training and validation cohorts. The closer the calibration curve (solid line) is to the diagonal (dotted line), the higher the consistency between
the predicted probability and the actual probability. (D) The clinical decision curve analysis of the model in the training and validation cohorts.
When the red line and the green line are farther away from the white line on the right and the black line below, the net benefit is high.

0.750 (95% CI, 0.586–0.914), respectively. The DeLong test
showed that the combined model and the original model did not
significantly differ (P > 0.05).

The prediction performance of the model under different
scenarios was further discussed hierarchically. For different
treatment methods, the model predicted HT with 40.0–100.0%
accuracy in the training and validation cohorts (Figures 6A,B).
For massive cerebral stroke and non-massive cerebral stroke, the
model predicted HT with 68.8–81.6% accuracy in the training
and validation cohorts (Figures 6D,E). Overall, the model
predicted HT in both settings with 78.3 and 71.4% accuracy in
the training and validation cohorts, respectively. In addition, the
model had no statistical difference in the prediction of HT for
different treatment methods or different infarct size (P > 0.05).

For all samples, the model predicted an AUC of 0.754 (95% CI,
0.630–0.878) for HT in patients within 4.5 h since stroke onset,
and predicted an AUC of 0.648 (95% CI, 0.539–0.757) for PH
(Figures 6C,F).

Discussion

To our knowledge, this study was a new attempt to construct
an HT prediction model based on the radiomics features of the
infarct area on non-contrast-enhanced CT images. The model
can assess the risk of HT after reperfusion or non-reperfusion
therapy in AIS patients with anterior circulation involvement
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FIGURE 5

Example of model visualization prediction. The cerebral infarct area was segmented and radiomics features were extracted, and the value of
Rad-score was then incorporated into the model for calculation. The results indicated an 80–90% probability of HT in the future, which was
confirmed on head CT one and four days after intravenous thrombolysis.

regardless of infarct size. The AUCs of the model in the training
and validation cohorts were 0.845 and 0.750, respectively.

Radiomic features can quantitatively reflect the voxel
differences in different image spaces, which represent the
microscopic pathological changes and heterogeneity of lesions
(Limkin et al., 2017; Guiot et al., 2022). Previous studies have
shown that the occurrence of HT is mainly related to damage
to the blood–brain barrier in the infarcted areas, reperfusion
injury and coagulation disorders (Bai and Lyden, 2015; Yang
et al., 2019; Zheng et al., 2019; Spronk et al., 2021). For AIS
patients, the state of the blood–brain barrier in the cerebral
infarction areas changes dynamically with the stroke onset
time, the location and degree of thrombus, the infarct size
and the body’s own physiological and pathological changes;
consequently, different changes will appear on imaging (Wu
et al., 2021). Compared with human visual analysis, radiomics
features can more fully reflect the microscopic differences within
the lesion and thus better evaluate the state of blood–brain
barrier damage (Kassner et al., 2009; Valdés Hernández et al.,
2017). In this study, a large number of radiomics features were

extracted from the infarct areas of the non-contrast-enhanced
head CT images of AIS patients, and five optimal features were
finally obtained through selection. Among them, the two GLDM
features reflect the similarity of image dependencies, the two
GLRLM features reflect the similarity of image run lengths, and
the GLCM features reflect the roughness of image texture. All
features reflect the heterogeneity of the cerebral infarct area,
that is, represent differences in the disruption of the blood-
brain barrier. By comparing the Rad-score calculated from the
five features, it was found that the Rad-scores of AIS patients
who developed HT in the future were significantly higher than
those of patients in the non-HT group in both the training and
validation cohorts (P < 0.05).

Based on further analyses combined with clinical and
imaging features, this study found that massive cerebral stroke
and higher NIHSS and Rad-score increase the probability of
future HT after stroke. Compared with smaller strokes, massive
cerebral strokes are more often caused by severe vascular
disease, such as internal carotid artery or middle cerebral artery
embolism. The severe cytotoxic edema caused by ischemia and
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FIGURE 6

Performance evaluation of model in different scenarios. In the training cohort (A) and validation cohort (B), the prediction accuracy of the
model for HT in the setting of non-reperfusion therapy, intravenous thrombolysis (IVT), mechanical thrombectomy (MT), and IVT combined
with MT therapy. In the training cohort (D) and the validation cohort (E), the prediction accuracy of the model for HT in the setting of massive
cerebral stroke and non-massive cerebral stroke. Red indicates a correct prediction, and blue indicates an incorrect prediction. For all samples,
the prediction performance of the model for HT in patients within 4.5 h since stroke onset (C), and prediction performance for parenchymal
hematoma (F).

hypoxia in massive cerebral stroke significantly exacerbates the
destruction of the blood–brain barrier, resulting in HT in the
future (El Nawar et al., 2019; Muscari et al., 2020; Yoshimura
et al., 2022). The NIHSS score is used to evaluate the degree
of neurological deficit in AIS patients. In this study, the NIHSS
score of HT patients was higher than that of patients without
HT, with an average score of approximately 16–17. Other factors
in the study did not significantly differ between the HT and
non-HT groups, which is consistent with some previous reports
but differs from the findings of other studies (Jickling et al.,
2013; Jensen et al., 2020; Tian et al., 2022). This discrepancy
may be related to differences in the data distribution and sample
size of this study. In addition, only the Rad-score was an
independent predictor of HT in the multivariate analysis of this
study, suggesting that radiomic features may be more significant
than clinical and imaging features in predicting HT.

To evaluate the performance of the model, we validated the
constructed model and discussed the prediction accuracy of HT
for different infarct sizes and different treatment methods. The
results show that the model performed well in evaluating HT.
In addition, further analysis showed that the model could still
be used to predict HT in patients within 4.5 h since stroke
onset, with an AUC of 0.754; it also could helped predict the
occurrence of PH, with an AUC of 0.648. When the model
predicts a higher risk of HT, irrespective of the occurrence of

massive cerebral stroke, the treatment benefits for the patient
needs to be comprehensively evaluated, especially regarding the
selection of IVT or MT. Previous studies, such as those that
developed the SPAN-100 and SICH models (Saposnik et al.,
2013; Lokeskrawee et al., 2017), mainly focused on evaluating
the occurrence of HT after IVT. Unlike the models described
in these studies, the model established in our study is suitable
for the evaluation of HT in the setting of various treatment
methods, such as non-reperfusion therapy, IVT, MT, and IVT
combined with MT. At present, very few studies have examined
the prediction of HT by radiomics. A previous study performed
a predictive analysis of HT based on the radiomic features
of the infarct area in the postcontrast T1-weighted images of
34 AIS patients, with an AUC of 0.60–0.80 (Kassner et al.,
2009). CT scanning is more convenient and rapid than magnetic
resonance, and it is also the preferred imaging method for AIS
patients within the time window. The applicability of the model
can be expanded to a certain extent based on CT image analysis.

This study remains subject to some limitations. First, this
study was retrospective and only examined a small sample,
which may lead to biased results. Thus, the applicability of the
model requires further prospective and multicenter validation
with larger samples. Second, the image analysis suffered from
errors in the segmentation of the infarct areas due to the
limitation of the resolution of CT. Therefore, cerebral infarct
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volume on non-contrast-enhanced CT was not included in this
study. To discuss the effect of infarct size on HT, we adopted
the concept of massive cerebral stroke. Third, the model may
no longer be applicable for some hyperacute AIS patients whose
infarct boundary cannot be determined by adjusting the gray
value of images. Further analysis based on cerebral perfusion
imaging may provide more meaningful results.

In conclusion, we developed and validated a model based
on the radiomics features of the non-contrast-enhanced head
CT images of AIS patients. The model could help to evaluate
the occurrence of HT before treatment to provide guidance for
clinical treatment and prognosis evaluation.
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