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For static stimuli or at gross (∼1-s) time scales, artificial neu-
ral networks (ANNs) that have been trained on challenging en-
gineering tasks, like image classification and automatic speech
recognition, are now the best predictors of neural responses in
primate visual and auditory cortex. It is, however, unknown
whether this success can be extended to spiking activity at fine
time scales, which are particularly relevant to audition. Here
we address this question with ANNs trained on speech audio,
and acute multi-electrode recordings from the auditory cortex
of squirrel monkeys. We show that layers of trained ANNs can
predict the spike counts of neurons responding to speech audio
and to monkey vocalizations at bin widths of 50 ms and below.
For some neurons, the ANNs explain close to all of the explain-
able variance—much more than traditional spectrotemporal–
receptive-field models, and more than untrained networks. Non-
primary neurons tend to be more predictable by deeper layers of
the ANNs, but there is much variation by neuron, which would
be invisible to coarser recording modalities.
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Introduction
The primate auditory system transforms incoming acoustic
information dispersed in time and frequency into distinct audi-
tory “objects” that can be interpreted, localized, and integrated
with information from the other senses. A human listener can
resolve, for example, a monophonic musical recording into
piano and guitar, or again into more abstract “objects” like a
melody over a sequence of chords. Although two decades of
electrophysiology have yielded precise characterizations of
many of the tuning properties of neurons in auditory cortex,
we currently do not understand how these together underwrite
such computations.
On the other hand, we now have in deep artificial neural net-
works (ANNs) a more easily investigated system that—as of
this last decade—solves such problems at human performance
levels. Although crude as biophysical models, ANNs strongly
resemble biological neural networks in terms of computation
and representation (1–5). Recently, this has been demon-
strated convincingly for the ventral visual pathway (1, 3, 4):
the deep layers of ANNs trained as image classifiers explain
more than half the variance of single-unit responses in areas
V4 and IT atop the visual hierarchy, more than any other mod-
eling approaches (6). This is despite the fact that these ANNs
were not trained to predict activity in the brain, but only to
complete an ecologically relevant task (image classification);

the connection between the artificial and real neural activity
was made only by way of a few hundred parameters of a linear
map.
In addition to visual cortex, ANNs have been studied as encod-
ing models for auditory cortex, as in the present study, chiefly
for fMRI data (2, 7–12). The major findings from these studies
are threefold: (1) ANNs trained on challenging audio “pretext”
tasks (like automatic speech recognition) predict the BOLD
signal in auditory cortex better than the spectrotemporal filters
in classical models; (2) there is some correspondence between
the hierarchical organizations of the ANNs and of auditory
cortex; and (3) model prediction quality correlates with perfor-
mance on the pretext task, but more strongly for some pretext
tasks than others. For example, models trained to recognize
speech in noise are better predicters of the BOLD signal than
those trained to recognize clean speech; and models trained on
multiple pretext tasks are better predictors than those trained
on just one (12).
The advantage of fMRI over invasive techniques is that it
allows for human subjects. On the other hand, fMRI is nec-
essarily limited to predicting the average cortical activation
(voxel intensity) over the course of the entire two-second stim-
ulus, since it cannot resolve temporal fluctuations faster than
about 1 Hz. Therefore although the studies just cited employ
ANNs operating on fine time scales, their outputs are simply
averaged across approximately 1 second before making predic-
tions. This limitation is likely to be particularly destructive for
the auditory system and its stimuli, which are information-rich
in precisely the temporal (as opposed to spatial) dimension.
Population-based decoding in core auditory cortex, for exam-
ple, is optimal at a temporal resolution of less than 2 ms for
discriminating sounds based on their temporal features (13).
Very recent work from the Chang lab has examined ANNs as
models for electrocorticography (ECoG) in the auditory cortex
of humans listening to speech (14). Here, likewise, something
like the three points adduced above is shown for a few dif-
ferent ANN architectures. For example, training ANNs on
Mandarin rather than English yields better predictions of neu-
ral responses to Mandarin—in native speakers of Mandarin,
but not of English. Model predictions of the ECoG envelope
in the high-γ range were made at a fine time scale, effectively
up to about 20 Hz (beyond which the analytic amplitude has
no power).
What remains unclear is whether the correspondence between
ANNs and auditory cortex continues to hold at the level of
spiking activity. Individual ECoG channels, like fMRI voxels,
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Figure 1: Example cortical responses and ANN predictions. (A) Left: Sequences of spike counts (50-ms bins) in response to an English
sentence (“A tiny handful never did make the concert.”; spectrogram above). Shown are cortical responses to ten repetitions (gray) and their
mean (black), and the prediction from the WHISPER [base] ANN (green). Right: the same as the left panel but for a different sentence (“A
bullet, she answered”), ANN (WAV2VEC2, in yellow), and monkey. The locations of the recordings are indicated by color in (B). (B) Locations
of recording sites across monkeys B, C, and F. All recordings in right hemisphere except upper left panel. The large circle indicates the location
of the recording cylinder, within which the upper half plane corresponds roughly to primary auditory cortex (core); the lower half, non-primary
(belt and parabelt).

represent the aggregate activity of ∼105 neurons, so as far as
these results go, the correspondence might emerge only at the
population level. To explain the tuning properties of auditory
cortical neurons, it is necessary to record spiking activity.

Accordingly, we made multielectrode recordings from single-
and multi-units in the core, belt, and parabelt areas of the
auditory cortex of squirrel monkeys, during which the animals
were exposed to a battery of ∼600 spoken English sentences
and ∼450 monkey vocalizations. We then compared these
to the responses (to the same battery of stimuli) of units in
ANNs that have been trained on speech data—either fully
supervised (mapping audio to letters or characters) (15–17),
“weakly” supervised (18), or with a combination of super-
vised and unsupervised learning (19)—and with a range of
different architectures and model sizes: fully convolutional,
recurrent, and self-attentional. In particular, we asked how
well sequences of spike counts in small (∼50-ms) bins can be
(linearly) predicted by different layers of the ANNs. For the
best network, the median correlation between model predic-
tions and cortical responses for held-out data exceeds ∼0.6
(after correcting for unpredictable trial-to-trial variation and
removing unpredictable neurons); typically increases with
layer until approximately midway through the network, al-
though this varies by neuron and by network architecture;
and exceeds that of untrained ANNs and of classical models
based on spectrotemporal receptive fields (STRFs) (20). We
also find some correspondence between the hierarchies of our
ANNs and the traditional primary (core) vs. non-primary (belt,
parabelt) distinction of primate auditory cortex.

Results
The basic element of our analyses is the thresholded voltage
on a single channel. These are likely to include multiple
neurons, but for brevity and to avoid confusion with the units
of the ANNs, we refer to each henceforth as a “neuron.” (We
discuss spike sorting in Methods.)
We begin, then, with the response of such a “neuron” in mon-
key B to ten repetitions of a single sentence, whose spectro-
gram is shown on the top left in Fig. 1A. (No instance of
this sentence was used in fitting the linear map from ANN to
neural response; see Methods). In Fig. 1A (bottom left), the
sequence of spike counts (in 50-ms bins) predicted by layer 2
of the WHISPER [base] model is superimposed in green on top
of the sequences of actual spike counts from these ten trials
(gray) and their mean (black). The location of the electrode
in core auditory cortex that recorded this activity is shown in
green in Fig. 1B. The right half of Fig. 1B shows similar re-
sults for a recording site in a different animal (colored yellow
in Fig. 1B), in response to a different sentence, and predicted
by a different network (WAV2VEC2, layer 8). In both cases,
the match is evidently quite close even at fine time scales.

Performance of ANNs as models of auditory cortex.
We expand our view to all six ANN architectures, all stimuli,
and the entire set of tuned neurons. We identified a neuron as
tuned if its responses to multiple tokens of the same stimulus
correlate with each other above chance (see Methods). Note
that this determination is sensitive to the width of the bin in
which spikes are counted; unless stated otherwise, we used
50-ms bins. About 42% (725/1718) of neurons were tuned to
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Figure 2: Model-neuron correlations for TIMIT stimuli. Leftmost plot: median correlation with low-variability neurons for the STRF
models (gray), and for the best layers of each of the neural networks, both trained (dark colors) and untrained (light colors). Line plots: the
distributions of correlations as a function of ANN layer for each of six trained networks (colored) and their untrained counterparts (gray).
The median (solid line) and interquartile range (shaded region) are shown. At starred layers, the trained ANN is significantly superior to its
untrained counterpart (top row of stars) or a STRF (bottom row of stars; Wilcoxon signed-rank test with p < 0.01). The layer type is indicated
along the top of each plot: convolutional (brown), self-attention (blue), and recurrent (light blue).

speech under this criterion, and 47% tuned to monkey vocal-
izations (see Table S1); this validates the use of speech audio
as a stimulus.

To make predictions, we fit a separate linear temporal receptive
field (TRF) from each layer of each ANN to each neuron
(across all electrode channels, all recording sites, and all three
monkeys), i.e., to the sequence of spike counts in 50-ms bins.
As a baseline, we also fit a spectrotemporal receptive-field
(STRFs) to each neuron. To evaluate these encoding models,
we compute the correlation between sequences of spike counts
and corresponding TRF predictions on a held-out set of stimuli.
When reporting these correlations, we follow the standard
practice of correcting for unexplainable trial-to-trial variability
(21). For tuned but still highly variable neurons, this involves
dividing by numbers much less than 1, which greatly increases
the variance of distributions of correlations (inducing, e.g.,
correlations much greater than 1.0). Therefore in what follows
we report correlations only for a subset of “highly tuned”
neurons (253/1718) that exhibit lower levels of trial-to-trial
variability (see Methods and Table S1).

Fig. 2 (colored shading and colored lines) shows the distri-
bution of correlations across all neurons and at each layer
of each ANN, in response to English sentences. First, we
note that each ANN makes superior predictions to the STRF
(median correlation shown as gray bar in leftmost plot and
as a dashed line in all other plots) at most or all layers (i.e.,
the distribution of model-neuron correlations is significantly
higher for the ANN layers; gray stars; Wilcoxon signed-rank
test, p < 0.01). Indeed, the most predictive ANN layers corre-
late with the median neuron at about 0.65 (noise-corrected).
This is comparable to the best models of auditory neurons to
date (22), which are complex neural networks fit directly to
the neural data, whereas our models fit only the linear readout.

Second, the distribution of correlations typically rises over the
first few layers, peaks before the middle of each network, and
then falls off. The rise is expected: For networks that take the
raw waveform as input (WAV2LETTER (15) and WAV2VEC2
(19)), it is not surprising that multiple layers of nonlinearities
provide for better predictions, since the relationship between
auditory-cortical responses and sound is known to be highly

complex and nonlinear. But the same holds even for networks
that take the spectrogram as input (SPEECH2TEXT (16), the
WHISPER models (18), and DEEPSPEECH2 (17)), which im-
plies that even the STRF (which is linear in the spectrogram) is
several nonlinearities away from the optimal response model.
The post-peak fall off in correlations could be a result of ANN
specialization for the speech-recognition task: the deepest lay-
ers predict phonemes or characters, a task that is arguably
foreign to the squirrel monkey. We return to this theme in the
Discussion.

The importance of task optimization. To verify that task
optimization improves model predictions, we investigate the
predictive performance of untrained networks. Because each
layer of an artificial neural network contains nonlinearities,
a linear readout from deeper layers can be more expressive,
even when the network is untrained. To determine how much
of the ANN’s predictive power is due to training on the task of
automatic speech recognition (ASR), and how much merely to
these stacked nonlinearities, we also attempt to predict cortical
activity with untrained networks. In particular, we “reset” the
weights to their initial values, i.e. before training began, and
then fit a new set of linear maps (TRFs) from each layer to
each cortical neuron (see Methods). The distributions of the
resulting correlations are also shown in Fig. 2, in grayscale.
Trained networks are superior to untrained networks almost
everywhere (Wilcoxon signed-rank test; p < 0.01 indicated
with top row of black stars), and the most predictive layers are
all in trained networks.
In networks that take the spectrogram as input, the difference
beween trained and untrained networks is much smaller than
in networks that take the waveform as input—presumably
because in the latter, something like the spectrogram computa-
tion is learned by the trained network, but cannot be randomly
assembled by the untrained network. This accords with the
classical emphasis on STRFs and with the well understood
transformations of the audio signal by the cochlea.

The ecological relevance of speech recognition. In or-
der to avail ourselves of ANNs trained with supervision on
large datasets, we have let the “pretext” task for our networks
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Figure 3: Distributions of model-neuron correlations as a function of maximum frequency of the model predictions. Median (solid line)
and interquartile range (shaded) are indicated. Results are shown only for each ANN’s most predictive layer at 50-ms bins (see Fig. 2). Layer
activities were low-pass filtered at the cut-off frequencies given by the horizontal axis prior to the fit of the linear readout (TRF). Position
of red star corresponds to the cut-off frequency having the peak median, and black dots indicate bin widths having correlation distributions
indistinguishable from that of red star (Wilcoxon signed-rank test with p < 0.01).

be speech recognition. This in turn has narrowed our focus
(up to this point) to English-sentences stimuli, since it is un-
clear how such networks will respond to sounds not occurring
in their training sets. Three findings support this choice: (1)
Roughly as many neurons—indeed, mostly the same neurons—
are tuned to English and to monkey vocalizations; (2) our
ANNs linearly predict the spiking responses to English sen-
tences about as well as the best nonlinear models of auditory
cortex (22); and (3) the pretext training (on speech) improves
model-neuron correlations beyond what can be achieved with
random nonlinearities. Although English speech is not entirely
irrelevant to these animals, these results together suggest that
neurons in squirrel-monkey auditory cortex are tuned to audio
features that are higher-order than spectrograms but generic
enough to be useful (if not used) for speech recognition, as
well as processing other sounds, like monkey vocalizations.
If this is the case, we expect our ANNs also to explain the
responses of auditory neurons to monkey vocalizations. Fig.
S1 shows the results (in the same format as Fig. 2). Note that
the linear readout was re-fit for these stimuli, but the ANNs
are identical to the ones analyzed in Fig. S1: they have been
pretrained only on speech tasks. Nevertheless, the results are
qualitatively very similar, the only notable difference being
that the deepest layers of most networks tend to make better
predictions of the responses to monkey vocalizations than of
the responses to English speech.
Still, there is a limit to the ecological relevance of speech to the
squirrel monkey. The ANNs’ performance in speech recog-
nition does not, for example, correlate with model-neuron
correlations (Fig. S2), as has been observed in studies in hu-
mans (2, 12, 14). And although in core we found about as
many neurons highly tuned to speech as to monkey vocaliza-
tions, we found only about 40% as many in non-primary areas
(see Table S1) (see Discussion).

The time scale of predictions. Up to this point, we have
performed all analyses (Figs. 1 and 2 as well as Figs. S1 and
S2 and Table S1) with 50-ms bins, i.e. at 20 Hz. This repre-
sents a modeling decision: the various layers of the various
ANNs operate at various sampling rates, which we have sim-
ply resampled to a single rate (20 Hz) in order to match a

single bin size for counting spikes (50 ms), which is itself
arbitrary. At the extreme, the biological and artificial activi-
ties could be summed over the entire stimulus-presentation
period, and just one prediction made per stimulus. This is
the approach that has (necessarily) been taken in the fMRI
studies described previously (2, 7–12). However, the large
values of correlations in Fig. 2 and the examples in Fig. 1A
strongly suggest that the ANNs in this study can predict neural
activity at much finer time scales than this. Here we ask more
precisely what resolution yields the best correlations.
To answer this question, we low-pass filter the ANN activities
with various cut-off frequencies before attempting to predict
spikes binned at “high frequency” (50 Hz).
If increasing the cut-off frequency—e.g., above 10 Hz—
increases model-neuron correlations, then the model is ca-
pable of explaining aspects of the neural activity that are faster
than 10 Hz. Fig. 3 shows the result for a range of cut-off
frequencies up to the Nyquist limit, for all six (trained) ANNs.
More precisely, at each bin width, we plot the distribution of
model-neuron correlations from the layer that is most predic-
tive with 50-ms bins. The pattern is the same for all networks:
model-neuron correlations increase monotonically with cut-
off frequency. This shows that the ANNs are predicting fine
temporal structure in the spike-count sequences, all the way
up to their Nyquist limits.

Hierarchy. We now investigate the relationship between the
hierarchies of auditory cortex and of the deep neural networks
used to explain it. So far we have not distinguished between
neurons recorded from core areas and those recorded in non-
primary (belt, parabelt) regions of auditory cortex. Here we
ask whether a neuron’s putative location in auditory cortex
(and, by implication, the auditory hierarchy) is related to the
depth of the ANN layer that best predicts its responses to
speech and monkey vocalizations.
For each highly tuned neuron and each ANN, we find the depth
of the most predictive layer, as a fraction of the total network
depth. Fig. 4 shows the distribution of these depths across all
networks, and all primary (blue) and non-primary (orange)
neurons. Whether the stimuli are speech or (especially) mon-
key vocalizations, non-primary neurons are significantly more
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normalized network depth

Figure 4: Distributions of most predictive layers (normalized) for
primary (blue) and non-primary (orange) neurons. Histograms
and corresponding kernel density estimates are shown as a function of
network depth (from shallowest to deepest), pooled across all neurons
and all six ANNs. The distribution of preferred layers is significantly
“deeper” for non-primary than primary neurons (Wilcoxon rank-sum
test; * for p < 0.05, ** for p < 0.01, *** for p < 0.001).

likely than primary neurons to be best predicted by deeper lay-
ers (Wilcoxon rank-sum test, p < 0.05 and p < 0.001, resp.).
The primary and non-primary distributions are broad com-
pared to the the differences between them. This suggests a
“soft” anatomical hierarchy, with many neurons in belt and
parabelt playing the role of lower-level neurons, and vice
versa.

Discussion

We have shown that deep neural networks make good en-
coding models for neurons in the auditory cortex of squirrel
monkeys, even though those networks were trained, not to
predict the activity of those neurons, but instead to solve a
challenging auditory task, automatic speech recognition. This
is (to our knowledge) the first time such an approach has been
used successfully to explain spiking activity at high temporal
resolution—in this case, bin widths for counting spikes as
small as 20 ms.
Since the spike-count predictions are allowed to depend on a
temporal window of layer activity (see Methods), each ANN
based encoding model is a temporal receptive field (TRF) in
the feature space of a particular ANN layer, just as the STRF
is a TRF in the amplitude spectrum. The most predictive ANN
layers—six or seven convolutional layers after raw waveform
inputs, or about three convolutional and transformer layers
after log-mel features—provide much better predictions than
STRF models for most neurons. So we can say that neurons
in primate auditory cortex are more tuned to the intermedi-
ate features of deep neural networks than to the amplitude
spectrum. Indeed, these features explain essentially all of the
explainable variance of some of the neurons from which we
obtained recordings.
The present study also sheds light on the hierarchy of auditory
cortex, and on the importance of task optimization, which we
discuss below in connection with recent similar studies using
ECoG and fMRI.

Speech as a stimulus and speech-trained ANNs as
models. We chose speech-recognition for the pretext because
(1) we have found English sentences to elicit robust responses
from neurons in squirrel-monkey core and belt; (2) monkey
vocal calls contain somewhat similar spectrotemporal features;
and (3) labeled training sets for English speech are several
orders of magnitude larger than anything available for mon-
key calls or environmental sounds. Still, those calls do lack
the complex phonemic structure of English; and, conversely,
contain sounds not found in English. From this perspective, it
is not surprising that the deepest layers of the ANNs do not
provide as good features for explaining the activity of these
neurons. Furthermore, although we found nearly the same
number of core neurons tuned or highly tuned to speech as to
monkey vocalizations, this ratio is much lower in non-primary
areas (Table S1). This is consistent with the observation that
non-primary neurons are more specialized and sparsely firing.
Similarly, the explanatory power of our ANNs is on average
worse for neurons in non-primary rather than in primary areas.
This suggests that we are still missing important features for
explaining higher-order auditory cortex.
One way to address these issues would be to train ANNs un-
supervised on monkey vocalizations or environmental sounds.
However, comparing the results of such an experiment with
the results of this study is not straightforward, because it is
harder to evaluate what “good” performance is on the unsu-
pervised task. For example, if such a network outperforms the
networks evaluated in this study, is it the result of better task
performance or of a better task? We have therefore not taken
this approach in the present study, although we consider it the
clear follow up to this investigation.

Untrained ANNs as decoding models. In our study,
trained ANNs provided better encoding models than untrained
ANNs; but, for ANNs that take the amplitude spectrum (i.e.,
the spectrogram—as opposed to a waveform) as input, un-
trained networks still outperform STRFs. This ordering of
models held for both types of stimuli, English speech and
monkey vocalizations. A recent fMRI study in humans listen-
ing to speech (9) found the same ordering and even qualitative
differences among trained and untrained ANNs used as encod-
ing models for auditory cortex: the performance of untrained
networks intermediate between trained networks and STRFs,
but closer to the former (see especially Fig. S3, op. cit.).
The result is not unexpected, although it has sometimes been
obscured in the literature. Weights in ANNs are standardly
initialized to small random values, which produces full-rank
matrices with high probability. Furthermore, the activation
functions in these ANNs are often linear (or even identity
functions) near zero. Since the random weights are small and
symmetrically distributed about zero, their product with inputs
are also typically near zero, and therefore pass through the
linear portion of the nonlinearity. So the “nonlinearities” in
untrained networks are mostly information-preserving linear
transformations. Consequently, the first few layers of un-
trained networks that take the spectrogram as input are likely
to predict (linearly) neural activity as well as the spectrogram
itself, i.e. as well as a STRF.
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Furthermore, because the transformations are not perfectly
linear, some new features can be created and some old features
destroyed. The balance is shifted towards the former for layers
that have (many) more outputs than inputs. Any such features
that are (by chance) useful for predicting neural activity will
be found by the linear readout that we fit to the data, and
therefore provide better predictions of neural activity than
the original spectrogram. This is what we observe in the
first convolutional layer or two of the ANNs that take the
spectrogram as input (Fig. 2, last four panels)—as expected,
since the first layers have an order of magnitude more outputs
than inputs.
This also explains some of the discrepancies found in the lit-
erature. Untrained networks that take the waveform, rather
than the spectrogram as input, will generally provide worse
models of neural activity than the STRF, because they are
mostly linear in the waveform across layers. This can be
seen for WAV2LETTER and WAV2VEC2 in our study (Fig. 2)
and for WAV2VEC2 in (e.g.) the recent study using ANNs
as encoding models for the electrocorticogram (14). More
subtly, another recent fMRI study (12) found that permuting
the weights of a trained network degraded the ANNs’ per-
formance as encoding models well below even the level of
the STRF, even though those models took the spectrogram
as input. But this is because training increases the size of
the weights, so permutation—as opposed to re-initialization—
yields large inputs to the nonlinearities, which exceed their
linear regimes.

Correspondence between the hierarchies of ANNs and
auditory cortex. We found only a somewhat subtle corre-
spondence between (on the one hand) the hierarchy of the
ANNs and (on the other) the distinction between primary and
non-primary auditory cortex (Fig. 4). A similar, although
perhaps slightly less subtle distinction was found by Li and
colleagues in ECoG data—in this case between the homolo-
gous regions in humans, Heschl’s gyrus and superior temporal
gyrus, respectively (Fig. 2a, op. cit.). In fMRI studies (9, 12),
the correspondence is more conspicuous still. Although all of
these studies are in humans, rather than squirrel monkeys, the
emergence of more robust hierarchical distinctions at coarser
spatial and temporal granularities suggests that single units
are simply more diverse in their functional role. Averaging
over time and space masks this diversity.

ANNs can predict the number of spikes in small bins.
What the present study reveals, that cannot be observed from
the electrocorticogram or fMRI, is that the representational
correspondence with artificial neural networks emerges at the
level of the single neuron, or at least single “unit” (typically 1–
5 neurons), not merely at the population level: The number of
action potentials occurring in 20-ms intervals is well explained
by features learned by the ANNs.
So ANNs can explain spiking activity in auditory cortex at
time scales as fine as the networks’ Nyquist limits. But can
they explain neural activity at time scales finer still? After all,
neurons in the primate auditory cortex are known to encode
information about stimuli at almost millisecond precision (23).

Here we are limited by our networks and, presumably, the
pretext task. The Nyquist limits of the ANNs are set by archi-
tectural choices (e.g., stride lengths of convolutions), which
could in theory be changed. However, these choices were
made to achieve optimal performance on the pretext task; in
particular, by the intermediate layers, sampling rates decline to
about 50 Hz, which is on the order of the phoneme-production
rate (10–20 Hz). Thus, complex features that require multiple
layers of nonlinearities but are at finer time scales will not be
predictable by such models, and the models probably cannot
be changed to predict them without sacrificing performance
on the pretext task.
This is another reason to explore non-speech ANNs. An in-
teresting alternative, however, would be use sped-up speech
as stimuli. This would retain the same enormous, labeled
datasets for training; increase the optimal sampling rates for
the ANNs; and (arguably) decrease only minimally the rele-
vance of the stimulus to the monkey.

Biological implausibility of networks components.
Transformer attention, bidirectional recurrence, and standard
convolutions are all non-causal. In theory, all of these could
be remedied (with causal masking, the use of unidirectional
RNNs only, and causal convolutions, respectively), although
these would have adverse affects on performance on the pre-
text task. We have made no attempt to address these here and
consider this important future work. Similarly, none of the
ANNs allow information to flow from deeper to earlier layers
during processing, whereas primate cortex is known to have
dense feedback connections from higher to lower areas of the
processing hierarchy. A new class of ANNs known as “pre-
dictive coding networks” has attempted to capture this aspect
of neural computation (24); they would make potentially very
interesting alternatives to standard ANNs as encoding models
for the cortex.

Methods
Data collection. Electrophysiological signals were recorded
from the auditory cortex of squirrel monkeys using a prepara-
tion described in detail elsewhere (13), which we summarize
briefly here. Over the course of several months, recordings
were made from penetrations into the core, belt, and parabelt
areas of right auditory cortex of three animals (B, C, F). For
monkey C, recordings were also made in left auditory cor-
tex. Electrodes consisted of either 16- or a 64-channel linear
probes. Auditory stimuli were played from a free-field speaker
inside the soundproof chamber where recordings tooks place.
All animal procedures were approved by the Institutional Ani-
mal Care and Use Committee of the University of California,
San Francisco and followed the guidelines of the National
Institutes of Health.
During each recording session, two sets of stimuli were pre-
sented. The first set consisted of sentences from the TIMIT
corpus, each approximately 1–3 seconds in length, which we
have found to elicit strong responses from the auditory cortex
of squirrel monkeys. A total of 499 unique sentences were
presented: 489 were presented exactly once (in random order),
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while the remaining 10 were repeated 11 times each, for a
total of 110 presentations (also in random order). The second
set consisted of monkey vocalizations, each approximately 1
second in length, including grunts, screams, and coos. In this
set, a total of 303 unique vocalizations were presented: 292
were presented once, and the remaining 11 were presented 15
times each, for a total of 165 presentations, also in random
order.
Spikes were identified by threshold crossing and, for the main
results of this study, counted in bins of 50 ms. For Fig. 3,
spikes were binned at 20 ms.

Trial-to-trial neural variability. Neurons do not respond
identically to identical stimuli, whether because they are tuned
instead or additionally to other, uncontrolled stimuli; as a con-
sequence of feedback or attention; due to false alarms or
misses in spike detection; or simply because of intrinsic noise
in the spiking process.
To characterize this variability, we used each neuron’s re-
sponse to the repeated stimuli (see previous). In particular,
since sample correlation coefficients converge on the true cor-
relation as the number of samples (in our case, bins) increases,
we first concatenated together responses from multiple trials.
More precisely, we randomly selected (without replacement) a
pair of responses to each of the 10 repeated sentences or each
of the 11 repeated vocalizations, and concatenated together
all of the first elements of each pair and likewise (in the same
order) for the second elements. With 50-ms bins, this yielded
two sequences of about 320 samples (20 samples/second ×
1.6 seconds/sentence × 10 sentences) for speech or about 220
samples (20 samples/second × 1.0 second/vocalization × 11
vocalizations) for the vocalizations. We computed the correla-
tion between these two sequences for each of 100,000 such
random assignments, generating a distribution of trial-to-trial
neural correlations for each of the ∼1700 putative neurons
(recording channels).
In order to quantify this variability, we also constructed a null
distribution of correlations that would be produced by a neuron
simply firing at a constant rate over the entire 320-sample (for
speech) or 220-sample (for vocalizations) sequences. We com-
puted this distribution empirically by drawing samples from
a Poisson distribution with a mean firing rate of 50 spikes/s,
although the rate parameter does not in fact affect the result-
ing distribution. The null distribution is, however, sensitive
to the number of samples used to compute each correlation
and therefore to the bin width. Therefore we constructed a
separate null distribution for each of the stimulus sets (speech
and monkey vocalizations), since their sequences lengths dif-
fered; and for the analysis in Fig. 3, which was carried out at
20-ms bins. We then put these distributions to three related
but distinct uses.

Identifying tuned neurons. For each neuron, we asked
whether its distribution of trial-to-trial response correlations
is significantly greater than the null distribution under a
Wilcoxon rank-sum test. With a p-value of 0.05, this yields
725 and 810 tuned neurons, at 50-ms bin widths, for speech
and vocalizations, respectively (see Table S1).

Correcting for unexplainable variance. Since trial-to-trial neu-
ral variability to the same stimulus cannot be explained by
any encoding model, it is common to “correct” model-neuron
correlations for this excess variance. For each neuron, one
first estimates the correlation between responses to identical
stimuli, and then normalizes the model-neuron correlation
by (a function of) this number. More precisely, there are
two sources of noise in the trial-to-trial correlations (since
the independent noise on the two trials) but only one in the
model-neuron correlations (since the model is noise-free);
so the model-neuron correlation must be normalized by the
square root of the correlation between responses to identical
stimuli. We estimated this correlation with the median of the
trial-to-trial response correlations just described. This is very
similar to (e.g.) the noise correction used by Pennington and
David (22); they use the mean rather than median correlation.

Restricting to low-variability neurons. Unfortunately, distri-
butions of correlations significantly above chance can still
have very small medians. Dividing by these small numbers
(or their square roots) inflates the variance in the distribution,
even generating (corrected) correlations much greater than 1.0.
This makes all results noisier and harder to interpret. To avoid
this, we restricted our attention further to neurons whose me-
dian trial-to-trial correlation is above 90% of the probability
mass of the null distribution. At 50-ms bins, there are 253 and
308 such neurons for English speech and monkey vocaliations,
respectively, out of a total of 1718. This procedure is similar
to that employed by Kell and colleagues (2); in their case,
trial-to-trial correlations below a threshold were capped at that
threshold (biasing reported correlations downward), rather
than disqualifying those neurons from analysis.

Encoding models.

ANN architectures and pretext tasks. We considered six dif-
ferent neural-network architectures, all designed for speech-
to-text tasks:

• WAV2LETTER (15): 15 convolutional layers, mapping
raw waveforms to letters. We modified the original net-
work to have more slowly growing receptive fields (by
reducing the convolutional kernel widths and strides),
which is more computationally expensive but arguably
more biologically plausible. In order to reach the same
final sampling rate, we used 15 rather than 12 layers.
We trained the model on 960 hours of LibriSpeech until
character error rates fell below 8% on a held-out test
set.

• SPEECH2TEXT (16), based on the Huggingface imple-
mentation (25): two convolutional layers followed by
12 transformer-encoder (self-attentional) layers, map-
ping log-mel filter bank to word pieces. We do not
analyze the decoder. We used a model (pre)trained with
standard supervised learning on LibriSpeech.

• WAV2VEC2 (19), based on the Huggingface imple-
mentation (26): seven convolutional layers (with layer
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normalization (27) and GELU activation functions
(28)) followed by one convolutional layer of positional
embedding, and then 12 transformer-encoder layers,
mapping raw waveform to words. Our model was
(pre)trained under a self-supervised contrastive loss and
then only the transformer layers (and a linear projection
layer following transformer layers) were fine-tuned with
supervision on a speech-to-text task. The contrastive
loss obliges the transformer layers to generate output
that can be used to distinguish tokens masked out of
its own input sequence (the output of the convolutional
network) from tokens taken from other input sequences.

• DEEPSPEECH2 (17), based on a publicly available im-
plementation (29): two convolutional layers followed
by five bidirectional recurrent (LSTM (30)) layers, map-
ping log-mel filter banks to letters. We used a model
(pre)trained with standard supervised learning on about
12,000 hours of read and conversational English speech
(including LibriSpeech, Switchboard, WSJ, and Fisher).

• WHISPER (tiny) (18) (based on the trained instance
uploaded to Huggingface by OpenAI): two convolu-
tional layers followed by four transformer-encoder lay-
ers, mapping log-mel filter banks to word pieces. We
do not analyze the decoder. The model was trained to
recognize speech from audio under “weak” supervision,
that is, with possibly low quality labels sourced from the
internet, but (consequently) upwards of 700,000 hours
of audio data. About 20% of the data were non-English
speech, and training also included a translation task, in
addition to standard ASR.

• WHISPER (base) (18) (based on the trained instance up-
loaded to Huggingface by OpenAI): two convolutional
layers followed by six transformer-encoder layers, map-
ping log-mel filter bank to word pieces. We do not
analyze the decoder. The model was trained the same
way as WHISPER (tiny).

Untrained ANNs. In order to distinguish the effect of training
(on the pretext task) from the effects of architectural choices,
we also considered the untrained counterparts to these net-
works. Untrained networks were obtained by (re-)initializing
the network weights using the default initialization schemes
for each network.

Predicting spiking activity with ANNs. The effective sampling
rate in the ANN (imposed by the “strides” of the convolutions)
declines across layers. All layer activities were therefore
resampled to 20 Hz to match the 50-ms bins for the main
results of this study (and for the analyses reported in Fig. 3,
to 50 Hz). We then fit a temporal receptive field (TRF) from
each ANN layer to each low-variability (biological) neuron
(see Fig. 5). In particular, the predicted neural response at
one bin was allowed to depend linearly on a 350-ms window
of ANN activity. TRFs were fit on the non-repeated stimuli
(see Data collection above) by minimizing L2-regularized

squared error (∼20,000 samples and ∼6000 samples at 50-
ms bins for speech and monkey vocalizations, respectively).
The magnitude of the L2 penalty was determined with three-
fold cross validation over a range of regularization parameters
(10−5 to 1010). All fits were made with the naplib python
package (31), partly customized to run on GPUs.
We emphasize the rationale for using a (merely) linear map:
We want to be able to identify the layer of the network that
best explains cortical neural activity. Allowing (arbitrary)
nonlinear maps would break this correspondence, since the
layers themselves are related by nonlinear maps. (We can say,
colorfully, that if layer n makes the best predictions through
a linear map, then layer 1 also makes the best predictions
through the nonlinear map consisting of the neural network
itself up to layer n, and thence out through the linear map.)
At the other extreme, we are uninterested in mapping single
ANN units to single neurons because a layer is arbitrary up
to a (full-rank) matrix multiplication (the subsequent weight
matrix could absorb the inverse of this matrix).

Predicting spiking activity with STRFs. As a baseline, we also
fit spectrotemporal receptive fields (STRFs) (20) to every low-
variability neuron. The fitting process was identical to the
one just described for the ANNs, except that the input to the
TRF in this case is not the ANN layer activity but the time-
varying amplitude spectrum of the stimulus. For the monkey
vocalizations, the amplitude spectrum was computed with a
wavelet transform to mimic cochlear processing of natural
sounds (31).
For the speech stimuli, however, we report STRFs fit to
the log-mel filterbank computed by the input processor for
SPEECH2TEXT (25), since we found this to yield higher model-
neuron correlations than the wavelet-based computation.

Evaluating model predictions. Our main metric of model
performance is the noise-corrected correlation coefficient (see
above), which we computed for every combination of low-
variability neuron and encoding model. Note that an “encod-
ing model” corresponds to a single layer from a single ANN,
either trained or untrained, or to a STRF. Correlation coef-
ficients were computed between the sequences of predicted
and actual (biological) responses to the 110 and 165 held-out
stimuli for speech and monkey vocalizations, respectively.
Since longer sequences yield better estimates of the correla-
tion coefficient, we concatenated together the responses of a
neuron to all of the first tokens of each stimulus type (sentence
or vocalization), and likewise for the responses of the model,
and computed the correlation between these long sequences.
We then repeated this procedure for the second tokens of each
stimulus type, and so on up through the last tokens. We report
the average of these correlations coefficients across all 11 (for
speech) or 15 (for vocalizations) tokens.
To compare models with each other, we compare the distri-
butions of correlation coefficients across all low-variability
neurons. (Including tuned but highly variable neurons adds
noise to these comparisons, which is why we have focused on
low-variability neurons.) Since the distributions to be com-
pared consisted of paired samples (each corresponding to the
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Figure 5: Schematic of ANN-based encoding models. Spiking activity (upper right) in response to stimuli (e.g., speech; waveform at left) is
recorded from squirrel monkey auditory cortex (blue dots on brain in upper left). The exact same stimuli are presented to the ANN (bottom).
The spike sequences are then regressed separately (linear plots, middle) onto each hidden layer’s responses to the same stimuli, yielding a
temporal receptive field (TRF) for each layer of the ANN. Performance is evaluated on held-out stimulus-response pairs by computing the
correlation between the TRF-based predictions and the spike-count sequences.

same neuron), but are not Gaussian, we tested for significant
differences with the Wilcoxon signed-rank test.

Evaluating performance on the ecologically relevant
pretext task. To relate the ANNs performances at predic-
tion neural activity to their performances on the pretext task,
we evaluated the word-error rates (WER) of all the six ANNs
on the following datasets:

• TED-LIUM 3 (32): Test split of release 3 from the
TORCHAUDIO repository (33).

• Common Voice 5.1 (34): Test split of Common Voice
5.1 for English language (35).

• VoxPopuli (36): Test split of transcribed speech for
English language from the Meta Research repository
(37).
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Supplementary Information

WAV2LETTER WAV2VEC2 SPEECH2TEXT WHISPER (tiny) WHISPER (base) DEEPSPEECH2
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Figure S1: Model-neuron correlations for monkey vocalizations. Leftmost plot: median correlation with low-variability neurons for the
STRF models (gray), and for the best layers of each of the neural networks, both trained (dark colors) and untrained (light colors). Line plots:
the distributions of correlations as a function of ANN layer for each of six trained networks (colored) and their untrained counterparts (gray).
The median (solid line) and interquartile range (shaded region) are shown. At starred layers, the trained ANN is significantly superior to its
untrained counterpart (top row of stars) or a STRF (bottom row of stars; Wilcoxon signed-rank test with p < 0.01). The layer type is indicated
along the top of each plot: convolutional (brown), self-attention (blue), and recurrent (light blue).
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Figure S2: Maximum (across layers) median ANN-neuron correlation vs. ANN word error rate on three ASR data sets. Each point
corresponds to an ANN (color scheme as throughout).
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Figure S3: Distributions of most predictive layers (normalized) for primary (blue) and non-primary (orange) neurons, for TIMIT
stimuli. Histograms and corresponding kernel density estimates are shown as a function of network depth (from shallowest to deepest) for
all neurons, separately for each ANN. The distribution of preferred layers is significantly greater for non-primary than for primary neurons
(Wilcoxon rank-sum test; * for p < 0.05, ** for p < 0.01, *** for p < 0.001).
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Figure S4: Distributions of most predictive layers (normalized) for primary (blue) and non-primary (orange) neurons, for monkey
vocalizations. Histograms and corresponding kernel density estimates are shown as a function of network depth (from shallowest to deepest)
for all neurons, separately for each ANN. The distribution of preferred layers is significantly greater for non-primary than for primary neurons
(Wilcoxon rank-sum test; * for p < 0.05, ** for p < 0.01, *** for p < 0.001).

tuned highly tuned

neural area speech vox both speech vox both

core 433 437 334 220 227 172
Non-primary 292 373 216 33 81 23

all 725 810 550 253 308 195

Table S1: Number of tuned neurons. Tuning is determined by the correlations between a neuron’s responses to identical stimuli on separate
trials. A neuron is considered tuned or highly tuned (respectively) if the distribution of these correlations is distinguishable from (Wilcoxon
rank-sum test, p < 0.05), or has a median above 90% of, a null distribution of correlations (see Methods). Speech stimuli were drawn from
TIMIT; “vox” indicates monkey vocalizations.

layer type RF(ms) Ts(ms) free parameters ρ

0 conv 1.94 1.25 250
1 conv 4.44 2.50 250
2 conv 9.44 5.00 250
3 conv 19.4 10.0 250
4 conv 39.4 20.0 250
5 conv 79.4 20.0 250
6 conv 119.4 20.0 250
7 conv 159.4 20.0 250
8 conv 279.4 20.0 250
9 conv 399.4 20.0 250

10 conv 519.4 20.0 250
11 conv 639.4 20.0 250
12 conv 1239.4 20.0 2000
13 conv 1239.4 20.0 2000

Table S2: Properties of WAV2LETTER (modified). RF: receptive field; Ts: sampling period; ρ: median correlation.

layer type RF(ms) Ts(ms) free parameters ρ

0 conv 0.625 0.312 512
1 conv 1.25 0.625 512
2 conv 2.50 1.25 512
3 conv 5.00 2.50 512
4 conv 10.0 5.00 512
5 conv 15.0 10.0 512
6 conv 25.0 20.0 512

7–20 attention 2565.0 20.0 768

Table S3: Properties of WAV2VEC2 RF: receptive field; Ts: sampling period; ρ: median correlation.

12 | bioRχiv Ahmed et al. | DNNs Explain Auditory Cortex Activity

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 14, 2024. ; https://doi.org/10.1101/2024.11.12.623280doi: bioRxiv preprint 

https://doi.org/10.1101/2024.11.12.623280
http://creativecommons.org/licenses/by-nd/4.0/


layer type RF(ms) Ts(ms) free parameters ρ

0 conv 65.0 20.0 1024
1 conv 145.0 40.0 2048

2–13 attention full 40.0 1024

Table S4: Properties of SPEECH2TEXT. RF: receptive field; Ts: sampling period; ρ: median correlation.

layer type RF(ms) Ts(ms) free parameters ρ

0 conv 45.0 10.0 384
1 conv 65.0 20.0 384

2–5 attention full 20.0 384

Table S5: Properties of WHISPER (tiny). RF: receptive field; Ts: sampling period; ρ: median correlation.

layer type RF(ms) Ts(ms) free parameters ρ

0 conv 45.0 10.0 512
1 conv 65.0 20.0 512

2–7 attention full 20.0 512

Table S6: Properties of WHISPER (base). RF: receptive field; Ts: sampling period; ρ: median correlation.

layer type RF(ms) Ts(ms) free parameters ρ

0 conv 120 20.0 2592
1 conv 320 20.0 1312

2–6 recurrent full 20.0 2048

Table S7: Properties of DEEPSPEECH2. RF: receptive field; Ts: sampling period; ρ: median correlation. The recurrent layers are bidirectional,
LSTM-based.
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