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ABSTRACT 
Artemisia sylvatica Maximowicz 1859 is one of the medicinal herbs in Artemisia. This study presents the 
complete chloroplast genome of A. sylvatica, sequenced using the Illumina NovaSeq platform. The gen
ome is 151,161 bp in length, featuring a GC content of 38%. It consists of a large single-copy (LSC) 
region of 82,892 bp, a small single-copy (SSC) region of 18,353 bp, and two inverted repeat (IR) regions 
of 24,958 bp each. In total, the genome contains 132 genes, including 87 protein-coding genes, 37 
tRNA genes, and 8 rRNA genes. Phylogenetic analysis positions A. sylvatica within the subgenus 
Artemisia, highlighting its evolutionary relationships within this diverse genus. The first chloroplast gen
ome of A. sylvatica was reported in this work contributes to the enrichment of genomic data for the 
genus Artemisia.
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Artemisia is one of the largest genera in the Asteraceae 
family, comprising more than 500 species worldwide. Many 
of these species are well-known medicinal herbs, such as 
Artemisia abrotanum, Artemisia absinthium, Artemisia 
annua, Artemisia dracunculus, and Artemisia vulgaris (Ekiert 
et al. 2022; Nurlybekova et al. 2022). Artemisia sylvatica 
Maximowicz 1859 has been reported as an herbal medicine 
for the treatment of inflammation (Jin et al. 2004; Lee 
et al. 1998), cancer (Choi and Kim 2013), and the use of 
anticomplement (Moon et al. 2012). With the development 
of Artemisia species research, increasing numbers of com
plete chloroplast genomes of Artemisia species have been 
reported (Lee et al. 2016; Lim et al. 2018). However, the 
complete chloroplast genome of Artemisia sylvatica has not 
yet been sequenced.

In this study, we characterized the chloroplast genome 
sequence of A. sylvatica thoroughly to provide insights into 
the genome characterization and evolution of this important 
species. This research contributes to molecular studies within 
the Artemisia genus and the broader Asteraceae family.

Materials and methods

Plant material collection and DNA extraction

Plant samples of A. sylvatica were collected from Xinyang, China 
(longitude 114�040 E, latitude 32�070 N) and authenticated by 

Dr. ZeLong Yu, an expert in plant identification at Xinyang 
Agricultural and Forestry University (XYAFU). Voucher specimens 
were deposited at the Dabie Mountain Biodiversity Herbarium 
(contact person: Wei Zhou, 634858289@qq.com) under acces
sion number ZW20230810025 (Figure 1). Fresh leaves were 
packaged in thin foil and then frozen by liquid nitrogen for 
high throughput sequencing. Genomic DNA was extracted 
using a DNA easy Plant Mini Kit (Qiagen Co., Hilden, Germany) 
following the manufacturers’ instructions. NanoDrop2000C spec
trophotometry and electrophoresis in 1% (w/v) agarose gel 
were used to detect the concentration and integration of the 
total DNA, respectively.

Sequencing, assembly, and annotation

Extracted DNA was fragmented to an average size of approxi
mately 400 bp using CovarisM220 (Gene Company Limited, 
China) for paired-end library construction. Paired-end library was 
constructed using NEXTFLEXVR Rapid DNA-Seq (BiooScientific, 
Austin, TX, USA). Adapters containing the full complement of 
sequencing primer hybridization sites were ligated to the blunt 
end of fragments. The paired-end sequencing was performed 
on the Illumina NovaSeq platform (Illumina Inc., San Diego, CA, 
USA) at Majorbio Bio-Pharm Technology Co., Ltd. (Shanghai, 
China). Raw reads were quality controlled with Trimmomatic 
and Fast QC software (https://www.bioinformatics.babraham.ac. 
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uk/projects/fastqc). The assembly strategy of cp genome 
referred to Zhou’s (Zhou et al. 2017). Cp-like reads were 
extracted by mapping clean reads against the collection of cp 
genomes retrieved from the NCBI nucleotide database based 
on their coverage and similarity. Cp contigs were assembled 
based on cp-like reads using SOAPdenovo2 (Luo et al. 2015), 
then scaffolded by SSPACE (Boetzer et al. 2011). Finally, gaps 
were filled with clean reads using the Gap Filler package 
(Nadalin et al. 2012). The annotation of the A. sylvatica chloro
plast genome was performed using CPGAVAS2 (http://www. 
cpgavas2) (Shi et al. 2019), concerning the annotation of 
Artemisia princeps isolate PRPS03 (OP359063.1), and manually 
curated using Apollo (Misra and Harris 2005). The overall fea
tures of the A. sylvatica chloroplast genome were visualized 
using CPGview (Liu et al. 2023).

Phylogenetic tree construction

A total of 45 whole chloroplast genomes from various 
Artemisia species were retrieved from the NCBI database for 
phylogenetic analysis, including A. absinthium (NC_066024.1), 
A. annua (KY085890.1), A. japonica (MG951491.1), A. ordosica 
(MN932370.1), A. selengensis (MG951497.1), A. transiliensis 
(NC_070210.1) and so on (Supplemental Table 1). These 
genomes were aligned using MAFFT (Katoh et al. 2002), and 
the phylogenetic tree was constructed using RaxML-ng after 
determining the best-fit model for phylogenetic inference 

(Minh et al. 2020). The resulting tree was visualized using 
iTOL (https://itol.embl.de/).

Results

A total of 18,450,012 paired reads were assembled to the com
plete plastid genome of A. sylvatica, revealing the average 
coverage depth was 1292X (Supplemental Figure 1). The com
plete chloroplast genome of A. sylvatica has been submitted 
to GenBank under the accession number PQ009835. The gen
ome exhibited a typical quadripartite structure (Figure 2) span
ning 151,161 bp in total length. The large single copy (LSC) 
region comprised 82,892 bp, the small single copy (SSC) region 
comprised 18,353 bp, and a pair of inverted repeat (IR) regions 
separated the LSC and SSC, each region spanning 24,958 bp. 
The chloroplast genome encoded 132 complete genes, includ
ing 87 protein-coding genes, 37 tRNA genes, and 8 rRNA 
genes (Supplemental Tables 2, 3, and 4). A total of 96 genes 
were unique, including 73 protein-coding and 23 tRNA genes, 
and all the rRNA genes were duplicated in IR regions. The 
average GC content was 38%. The schematic map of the cis- 
splicing genes in A. sylvatica chloroplast genome was shown 
in Supplemental Figure 2. Trans-splicing gene rps12 had three 
unique exons. Two of them were duplicated as they were 
located in the IR regions (Supplemental Figure 3).

Annotation of the chloroplast genome identified a total 
of 40 SSRs, predominantly consisting of mono-nucleotide 

Figure 1. A Specimen of the A. sylvatica, (A)a whole plant without the root, exhibited in the Dabie Mountain Biodiversity Herbarium. (B) One of the flowers. (C) The 
phyllaries of one flower, (D) Bisexual florets inside one flower. The image a was taken by Qiaoyu Zhang. The images B, C and D were taken by Yuan Xu.
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repeats (33; 82.5%), followed by di-nucleotide repeats (4; 
10%) and tri-nucleotide repeats (3; 7.5%) (Supplemental 
Table 5 and Supplemental Figure 4).

For further exploration of the phylogenetic relationships 
of A. sylvatica within the Artemisia genus, a maximum likeli
hood tree was constructed using 43 Artemisia species and 
two outgroup species (Helianthus annuus-NC_007977.1 and 
Helianthus tuberosus-MG696658.1). The analysis placed the cp 
genome of A. sylvatica in Clade 8 (Jiao et al. 2023), named 
subgenus Artemisia (Figure 3A). The phylogenetic tree (Figure 
3B) from the complete chloroplast genome sequences 
revealed that A. sylvatica was closely related to A.lactiflora 
(MW411453.1), additionally, it clustered with nine other spe
cies: A. princeps (MF034021.1), A. montana (KF887960.1), A. 
indica (NC080507.1), A. tangutica (MT701043.1), A. rubripes 
(MG951496.1), A. argyi (KM386991.1), A. argyrophylla 
(MF034022.1), A. stolonifera (MG951500.1), and A. lancea (NC 

071926.1), all of which were placed within the subgenus 
Artemisia.

Discussion and conclusions

This study reported the first complete chloroplast genome 
sequence of A. sylvatica. The genus Artemisia is known for its 
morphological diversity, characterized by morphological traits 
like pollen type and floret arrangement within the capitula 
(Bremer and Humphries 1993; Vall�es et al. 2011; Watson et al. 
2002). However, molecular sequencing has revealed discrepan
cies between molecular phylogeny and infrageneric taxonomy of 
Artemisia, challenging the reliability of traditional morphological 
classifications (Garcia et al. 2011b; Riggins and Seigler 2012; 
Shultz and Flora of North America Editorial Committee 2006).

Jiao’s et al. (2023) research is currently the most compre
hensive and authoritative study on Artemisia classification by 

Figure 2. The complete plastome map of A. sylvatica, which was generated by CPGview. LSC, SSC, and IRs (IRa and IRb) with their length are represented on the 
first circle. The second circle showed the GC ratio in dark gray. The outermost circle indicated gene names color-coded by their functional classification. The tran
scription directions for the inner and outer genes were clockwise and anticlockwise, respectively. The functional classification of the genes was shown in the bottom 
left corner. The optional codon usage bias was displayed in the parenthesis after the gene name.
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Figure 3. A maximum-likelihood (ML) based phylogenetic tree of A. sylvatica and related Artemisia species. The numbers on each node indicated the bootstrap support val
ues. (A) The overall phylogeny of all the species and outgroups. A detailed phylogenetic relationship of those species was illustrated in Supplemental Table 1. Artemisia was 
classified into five major clades (Clade 8, Clade 7, Clade 4, Clade 1, and Clade 5 shown by different colors, respectively) (Jiao et al. 2023). (B) A clear relationship of A. sylvatica 
with the other 10 species in the same clade named Clade 8. The following sequences were used: Helianthus tuberosus (MG696658.1) (Zhong et al. 2019), Helianthus.annuus 
(NC 007977.1) (Timme et al. 2006), A.princeps (MF034021.1) (Min et al. 2019), A.montana (KF887960.1) (Cao et al. 2020), A.indica (NC 080507.1), A.lactiflora (MW411453.1) 
(Lan et al. 2022), A.tangutica (MT701043.1) (Yu et al. 2022), A.rubripes (MG951496.1) (Kim et al. 2020), A.argyi (KM386991.1) (Kang et al. 2016), A.argyrophylla (MF034022.1) 
(Kim et al. 2020), A.frigida (JX293720.1) (Jin et al. 2023a), A.juncea (NC 070198.1) (Jin et al. 2023b), A.gmelinii (KU736962.1) (Lee et al. 2016), A.freyniana (MG951487.1) (Kim 
et al. 2020), A.dracunculus (NC 066025.1), A.giraldii (OK128342.1) (Yue et al. 2022), A.parviflora (NC 086944.1), A.hallaisanensis (MG951490.1) (Lim et al. 2018), A.scoparia 
(MN385624.1) (Iram et al. 2019), A.desertorum (MW415428.1), A.capillaris (KU736963.1) (Lee et al. 2016), A.japonica (MG951491.1) (Kim et al. 2020), A.ordosica (MN932370.1) 
(Lu et al. 2020), A.keiskeana (MG951492.1) (Kim et al. 2020), A.apiacea (MG951483.1), A.annua (KY085890.1) (Xinqiang Guo et al. 2024), A.nakaii (MG951494.1) (Kim et al. 
2020), A.fukudo (KU360270.1) (Kim et al. 2020), A.borotalensis (NC 066237.1), A.brevifolia (MT948202.1), A.karatavica (NC 070199.1), A.ferganensis (NC 070196.1), A.leucotricha 
(NC 070201.1), A.maritima (MK532038.1) (Jin et al. 2023c), A.qingheensis (NC 087976.1), A.santonicum (NC 070204.1), A.santolina (NC 070203.1), A.lessingiana (NC 087977.1), 
A.finita (NC 070197.1), A.lercheana (NC 070200.1), A.schrenkiana (NC 070206.1), A.terrae.albae (NC 070209.1), A.sublessingiana (NC 070208.1).
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molecular sequencing, sampling 228 species (258 samples) 
from both fresh and herbarium collections across all subge
nera and key geographical areas. He conducted a phyloge
nomic analysis using nuclear SNPs from genome skimming 
data, proposing eight subgenera. Our study, based on whole 
chloroplast genomes, supports this classification and confirms 
the placement of A. sylvatica and ten other species within 
the subgenus Artemisia.

However, our results did not fully align with Jiao’s et al. 
(2023) findings. In our study, A. sylvatica and A. lactiflora clus
tered together (Figure 3B), while Jiao reported A. sylvatica 
and A. princeps forming a cluster in Clade 8c. This discrep
ancy likely stem from the differing genetic data used: Jiao’s 
analysis based on nuclear genes and genome skimming, 
whereas our phylogenetic tree is based on whole chloroplast 
genomes. Since Artemisia plants are wind-pollinated and sus
ceptible to hybridization, phylogenetic trees derived from 
nuclear genomes and maternally inherited chloroplast 
genomes may differ. Further experimental verification is 
necessary to clarify these differences.
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